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Abstract. The spatio-temporal growth trajectory of coastal brackishwater aquaculture (CBA) 
in the coastal tracts of Purba Medinipur, India and its impending repercussions on the 
immediate environs, was primarily assessed in this study through application of geostatistics, 
landscape metrics, and geospatial technologies. Three Community Development (CD) Blocks, 
namely, Contai-I, Deshapran, and Ramnagar-II were considered to analyze the growth pattern 
of the area under CBA. Landsat datasets of the assessment years (1991, 2001, 2011, 2021, and 
2023) were used to prepare the land use/ land cover (LULC) maps and to derive pertinent 
landscape metrics of patch and class levels for this region. This brought forward a highly 
fragmented and dispersive spatial concentration of the CBA farms in the entire study area. 
Additionally, Census Village-wise growth pattern of CBA was analyzed by conducting a 
spatial autocorrelation analysis which depicted prominent clustering of villages with a higher 
concentration of CBA. Results showed that there has been an incessant growth of CBA in the 
last three decades, however, a sharp drop has been recorded owing to recurrent bouts of 
diseases, swelling production costs, and a sharp drop-in market rate. The nature of growth and/ 
or decay of the CBA was predicted for the year 2025 using Cellular Automata and Artificial 
Neural Network (CA-ANN) model. After careful calibration and validation, the model 
projected further lessening of the CBA area along with a continued expansion of abandoned 
aquaculture. Accordingly, ecologically viable livelihood alternatives and environmentally 
sustainable management measures were suggested for the efficient monitoring of these highly 
fragile tropical ecosystems. 
 
Keywords: abandoned shrimp-farm, CA-ANN modelling, coastal aquafarming, hotspots, land 
engulfment, spatial clustering. 
 

1. Introduction 
Brackishwater aquaculture has been considered a reliable source of foreign exchange for the 

nations and income opportunity for the marginalized communities inhabiting coastal 

floodplains in the third world (Stonich & Bailey, 2000). Commercial brackishwater 

aquaculture, especially shrimp farming, therefore, rapidly pervaded throughout the coastal 

zones of tropical countries of Asia, Latin America, and Africa (Stonich & Bailey, 2000; Hall, 
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2003; Hossain et al., 2013) since the 1980s, largely replacing the traditional livelihoods and 

transforming the natural habitat over widespread areas (Cruz-Torres, 2000; Pradhan & 

Flaherty, 2007; Pokrant, 2009). Although brackishwater aquaculture began as a traditional 

economic practice in coastal districts of Indonesia dating back to the 1400s, the sector started 

to expand at a rapid pace in the mid-1980s and became a promising source of foreign exchange 

(Gowing et al., 2006). For instance, the exponential growth of demand in the global market and 

price hikes have lured the farmers of coastal Bangladesh to convert agricultural lands to shrimp 

farms since the 1970s and have become one of the thriving industries in Bangladesh (Pokrant, 

2009; Hossain et al., 2013; Hoque et al., 2017). Similar scenarios have been found in Vietnam 

(Anh et al., 2010), Honduras (Dewalt et al., 1996), and the Philippines (Primavera, 1995). 

In India, traditional brackishwater aquaculture has been widely practiced along the east 

coast, especially in Tamil Nadu, Andhra Pradesh, Orissa, and West Bengal for ages. However, 

since the 1980s aquaculture in India shifted from its traditional form and largely became an 

export-oriented commercial activity, and the area under coastal brackishwater aquaculture 

(CBA) grew incessantly throughout the coastal states including West Bengal, Orissa, Andhra 

Pradesh, and Tamil Nadu, in response to the huge demand of shellfishes in the global market 

(Rajitha et al., 2007; Pradhan & Flaherty, 2007; Ojha & Chakrabarty, 2018). Owing to high 

profitability, shrimp farming became the most important and widely cultured species in this 

sector and attracted huge investments from private companies (Pradhan & Flaherty, 2007). 

Since the 1980s, India has become one of the major shrimp exporters in the global market 

(Galappaththi & Nayak, 2017). As a result, wide tracts of land along the coastal plain having 

higher soil salinity and low productivity of rice were rapidly converted to CBA farms, causing 

considerable land use transformation (Dutta et al., 2016). In West Bengal, export-oriented 

shrimp production started in the late 1980s and has grown exponentially since 1995 (Ghoshal 

et al., 2017). The lucrative profit margin provided the initial impetus for the local farmers to 

adopt CBA over the traditional paddy culture. West Bengal in particular, contributed a major 

share of India’s total brackishwater fish and shrimp production and export (Boyd et al., 2018; 

Ghoshal et al., 2019). CBA in West Bengal is mostly practiced in Purba Medinipur, South 24 

Parganas, and North 24 Parganas (Datta et al., 2010; Roy, 2013; Datta & Ghosh, 2015; Ojha & 

Chakrabarty, 2018).  

Despite the wide scope of research to address the dramatic changes brought about by 

the hasty growth of CBA in the regional landscape characteristics, most of the research so far 

has adopted the theoretical approach and focused on the production growth, technical issues, 

policy issues pertaining to the industry, and socio-economic and ecological implications. 
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However, there remains a noticeable dearth of empirical research and quantitative data to 

address the changes in the landscape and associated ecological and social impacts at the 

regional level (Bhattacharya, 2012; Roy, 2013). In India, brackishwater aquaculture has been 

an explored area of research till recent times, and most of the existing research regarding shrimp 

farming mainly involved discussions on various technical and economic issues (Bhattacharya, 

2012). With regards to West Bengal, very little research was found in this field and they were 

mostly restricted to the Sundarban regions and concentrated on the benefits of the thriving 

shrimp culture (Roy, 2013). Accordingly, empirical research is needed to address the growth 

pattern of CBA and the consequent changes in the landscape characteristics as well as imminent 

socio-economic and environmental impacts. In this backdrop, the present study aims to pursue 

an empirical study on the spatio-temporal patterns of growth of CBA in the selected coastal 

CD Blocks of the Purba Medinipur district of West Bengal and its looming impacts on the 

surrounding landscape which can abridge the existing research gap. 

 

2. Methods 
2.1. Study area 

The present study took into consideration three coastal CD Blocks namely, Ramnagar-II, 

Contai-I, and Deshapran of Purba Medinipur district of West Bengal. Geographically, the area 

is located within the Medinipur Coastal Plain along the Bay of Bengal which was formed due 

to the Quaternary fluvio-tidal deposition of alluvium. This area was drained by multiple rivers 

including Rasulpur, Champa, and Pichaboni inlets, and contained a notable number of inland 

water bodies (Chakrabarti, 1995; Mondal, 2012). The meso-tidal coastal plain of the study area 

contained successive rows of dunes and interdunal flat tracts which were formed due to 

continuous sediment deposition during the interrupted regression of the sea throughout the 

Holocene (Das & Dandapath, 2012). A perusal of scientific studies showed that the conducive 

physical settings such as wet-tropical climate, presence of wide flat coastal tract, easy access 

to saline water through various rivers, creeks, and canals, natural salinity of the soil, etc. 

provided an impetus for the expansion of CBA in the study area. In the study area, CBA has 

developed mainly based on the source of saline water which was available in the coastal region 

from the tidal rivers, creeks, and canals. Besides, low productivity of paddy and vegetables due 

to high soil salinity, lack of drainage, frequent incidence of flood, and invasion of tidal water 

resulted in backward economic conditions, prompting the marginal communities inhabiting the 

study area, to adopt brackishwater aquaculture as a lucrative source of income. Despite its 
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economic significance, the rapid growth of CBA in the study area has become a debatable issue 

due to its obvious detrimental impacts on the environment and socioeconomic conditions. 

Rapid decrease in area and productivity of traditional agriculture, constant increase in soil and 

water salinity, and adverse effects on the sensitive coastal ecosystem were some of the direct 

consequences of the rampant growth of CBA in the area (Dutta et al. 2016; Ojha & 

Chakrabarty, 2018). 

 

 
 

Figure 1. Location map of the selected study sites. Numeric digits in parenthesis indicate 
different CD Blocks of Purba Medinipur district, viz. (1): Ramnagar-II; (2): Contai-I; and (3): 
Deshapran 

 

2.2. Data used 

Six orthorectified, cloud-free multi-temporal satellite images of pre-monsoon months covering 

the study area were acquired from the open-source collection of the United States Geological 

Survey (USGS) Glovis (http://glovis.usgs.gov) website for the present study (Table 1) (Roy & 

Datta, 2018). These images, having Universal Transverse Mercator (UTM) projection and 

World Geodetic System 84 datum, included data of Landsat 5 Thematic Mapper (TM) (Path 

139, Row 45; dated February 9, 1991, March 6, 1991, April 25, 2001, and February 16, 2011), 

Landsat 8 Operational Land Imager (OLI) (Path 139, Row 45; dated March 15, 2021), and 

Landsat 9 Operational Land Imager 2 (OLI–2) (Path 139, Row 45; dated April 14, 2023) (Roy 

et al., 2021b). Since the pre-monsoon months are regarded as the prime season for aquaculture 
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cultivation, they were deliberately chosen for analysis. Alongside, a total of 200 ground control 

points (GCPs) were collected from different parts of the study area covering all the land use/ 

land cover (LULC) classes relying on GPS-based surveys (Handheld Garmin 12 channel 

device). During the satellite data collection, the only challenge we faced was that the used data 

be the only freely available data source and of moderate resolution (30 m). The results could 

be more precise if fine-resolution imagery could be used, especially for LULC classification. 

 

Table 1. Details of satellite images used for LULC classification. 

Date of 
Acquisition Sensor       Path/    

      Row 

     Spatial   
     resolution  
     (m) 

9th February 1991 

Landsat 5 Thematic Mapper (TM) 

  139/45       30 

6th March 1991 
25th April 2001 
16th February 2011 

15th March 2021 Landsat 8 Operational Land Imagery 
(OLI) 

14th April 2023 
Landsat 9 Operational Land Imager 2 
(OLI–2), Thermal Infrared Sensor 2 
(TIRS–2) 

 

2.3. Image processing and classification 

Radiometric correction and atmospheric corrections were performed using ERDAS Imagine 

2014 software to obtain improved accuracy of the satellite data for the image classifications 

(Roy & Datta, 2018). Afterward, the image of 2023 was geocoded with the help of GCPs 

collected from the field, and the other images were successively geo-referenced using the 

image-to-image georeferencing method. For the georeferencing of the successive images, a 

third-order polynomial geometrical model was selected and the root mean square error (RMSE) 

was retained less than 0.5 pixels (Bhattacharjee et al., 2022). The area of interest indicating the 

study area was clipped from the images using the same software. 

Supervised image classification of the five images was carried out using the maximum 

likelihood parametric decision rule (Lillesand et al., 2008; Li et al., 2014). A total of eight 

LULC classes were taken into consideration for the image classification relying on the authors’ 

a-priori knowledge regarding the present study area. The LULC classes were aquaculture, 

abandoned aquaculture, other waterbody, cropland, mangrove vegetation, other vegetation, 

built-up, and bare land and sand (Datta & Deb, 2012). It is noteworthy to mention that the 

aquaculture LULC class in this study denoted the CBA. To distinctively identify CBA, during 
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the field survey CBA farms were identified in the field and the record was maintained 

separately which was used during the LULC classification. Besides, the spectral signature of 

the pixels, along with tones, patterns, shapes, and textures were taken into consideration to 

distinguish between CBA and other waterbodies (Mazumder et al., 2021). It is necessary to 

mention that other vegetation also included the under-canopy rural settlements. Accuracy 

assessment was performed for all five classified images with the help of 200 GCPs collected 

from all eight LULC classes during the ground truth survey. Alongside, overall accuracy and 

Kappa Coefficient were generated to validate the accuracy level. Following the image 

classification, LULC transformation matrices were generated to assess the inter-class LULC 

changes within the assessment period (Mazumder et al., 2021; Roy et al., 2021a). 

2.4. Geo-statistical analysis 

To detect the growth trajectory of CBA, the percentage of Census Village-wise aquaculture 

area was calculated for the assessment years, i.e., 1991, 2001, 2011, 2021, and 2023, and was 

predicted for the year 2025. Additionally, a hotspot analysis was carried out for similar years. 

Anselin (1995) stated that spatial data analysis techniques can identify spatial association and 

autocorrelation in ortho-referenced images. One such measure of spatial autocorrelation is 

Moran's I (Moran, 1950). The Local Influence of Spatial Autocorrelation (LISA) method is 

found to be useful in identifying the existence of local spatial clustering or ‘hot spots’ and, 

accordingly, has been applied here (McCullagh, 2006; Pérez‐Peña et al., 2009; Ratcliffe, 2010; 

Yunus et al., 2015). The Hot Spot Analysis calculates the Getis-Ord Gi* (Gi) statistic for 

features in a weighted set of features. Given a set of weighted data points, the Gi statistic 

identifies the clusters of points with values higher in magnitude and tells whether features with 

high values or features with low values tend to cluster in a study area. In Gi statistics, if a 

feature's value is high, and the values for all its neighbouring features are also high, it is part 

of a hot spot. The Getis-Ord Gi* is defined as:  

                                          Gi* = � 𝑤𝑤𝑖𝑖𝑖𝑖(𝑑𝑑)𝑥𝑥𝑗𝑗
𝑗𝑗

÷ � 𝑥𝑥𝑗𝑗
𝑗𝑗

 

where, wij(d) are the elements of the contiguity matrix for distance d. The matrix assigns a 

spatial weight for each point pair within a distance d of i. The resultant Gi statistic is in the 

form of a statistically significant Z score. The larger the Z score is, the more intense the 

clustering of high values. These statistical analyses have been taken into account since they are 

proportionate to the global indicator of spatial correlation and they show the degree of 

significant geographical clustering of comparable values around the specific observation 

(Anselin, 1995). 
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2.5. Analysis of patch dynamics of CBA 

Numerous extensively recognized spatial metrics were computed to assess the growth 

trajectory of CBA from 1991 – 2023 from the LULC raster datasets, using the spatial pattern 

analysis program, FRAGSTATS version 4.2 software (University of Massachusetts, Amherst, 

USA) (McGarigal, 1995; Tolessa et al., 2016; Nandi et al., 2020; Roy, et al., 2021b). Patch 

area (AREA), patch perimeter (PERIM), and shape index (SHAPE) were chosen for analysis 

at the patch level after construing pertinent research related to relevant spatial metrics (Li et al. 

2004; Matsushita et al., 2006). Furthermore, ten traditional landscape indices were selected at 

the class level, covering three aspects of patch complexity, namely, area, shape, and degree of 

agglomeration (Supplementary Table 1). 

(1) Area indices. In this study, class area (CA) was chosen as a measure of landscape 

composition; specifically, to identify how much of the landscape is comprised of a particular 

patch type (Li et al., 2004; Jia et al., 2019). To measure the proportional abundance of each 

patch type in the landscape, the percentage of the landscape (PLAND) was chosen. The number 

of patches (NP) of a particular patch type is a simple measure of the extent of subdivision or 

fragmentation of the patch type, thereby representing the class consisting of a single patch. The 

mean patch area (AREA_MN) measured the statistical distribution of land area. In addition, 

the largest patch index (LPI), a measure of dominance, that depicts the degree of landscape 

fragmentation, was selected to measure the proportion of the total area taken up by the largest 

patch in the study area (Lausch & Herzog, 2002; Li et al., 2004; Su et al., 2011).  

(2) Shape indices. In this study, the mean perimeter-area ratio (PARA_MN) and the mean 

fractal dimension index (FRAC_MN) were used as two shape indices under a particular class 

(Southworth et al., 2004; Su et al., 2011). Between the two, PARA_MN is the simplest measure 

of patch shape. When the shape of a patch remains constant, PARA_MN changes with the 

patch area. FRAC_MN circumvents PARA_MN's primary shortcoming in gauging shape 

complexity, with a greater FRAC_MN indicating a more irregular shape.  

(3) Degree of agglomeration indices. The degree of spatial agglomeration or separation of 

patches in a landscape is represented by agglomeration indices. The degree of agglomeration 

is low when a landscape is made up of numerous small, discrete patches; it is high when a 

landscape is made up of a few large patches or if the patches belonging to the same category 

are sufficiently connected. In this study, the indices assessing the degree of agglomeration were 

patch density (PD), landscape shape index (LSI), and percentage of similar adjacency 

(PLADJ). PD represents the degree of fragmentation in a landscape. Landscape patch indices, 
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LSI and PLADJ, both quantify the degree of class aggregation in terms of shape complexity 

(Southworth et al., 2004; Datta et al., 2021). 

 

2.6. Projecting future CBA growth trajectory 

After the preparation of LULC maps of 2011, 2021, and 2023, prediction for the year 2025 was 

done using a hybrid modelling approach, i.e., Cellular Automata and Artificial Neural 

Networks (CA-ANN) model with the help of the MOLUSCE (Modules of Landuse Change 

Evaluation) plugin in open-source QGIS software (Version 2.18.23). Several spatial variables, 

namely, digital elevation model (DEM), slope, rainfall, temperature, population density, and 

distance from roads and canals were considered as driving factors to run the projection. In this 

CA-ANN model, a hidden layer of 10, an iteration of 1000, a momentum value of 0.06, and a 

learning rate of 0.001 were used (Perovic et al., 2018; El-Tantawi et al., 2019). Area change 

and transition probability matrices were generated using the 2011 and 2021 LULC maps. 

Initially, the LULC scenario of 2023 was simulated using LULC data for the years 2011 and 

2021. Further, it was validated with reference to the actual LULC map of 2023 as a measure of 

calibration. Finally, the LULC map for the year 2025 was developed by the calibrated system 

(by calculating the overall Kappa coefficient), using the actual classified maps of 2021 and 

2023, respectively.  

 

3. Results 
3.1. Patterns of LULC transformation 

During the span of the assessment period of 33 years (i.e., from 1991 to 2023), the landscape 

of the study area experienced a notable transformation of the landscape where the major 

noticeable aspect was the pattern of growth and decay of aquaculture in the region (Fig. 2). The 

classification accuracy of all the five LULC maps was generated in this regard. Here, the 

overall Kappa coefficient values were 0.75, 0.78, 0.77, 0.80, and 0.84 and overall classification 

accuracies were 79.50%, 81.31%, 80.90%, 83.33%, and 86.36 % for the years 1991, 2001, 

2011, 2021, and 2023, respectively (Table 2). 

 

https://link.springer.com/article/10.1007/s10708-022-10814-1#ref-CR60
https://link.springer.com/article/10.1007/s10708-022-10814-1#ref-CR22


9 
 

 
Figure 2. Spatial distribution of different LULCs for the year (a) 1991, (b) 2001, (c) 2011, (d) 
2021, (e) 2023, and predicted for the year (f) 2025 

 

In 1991, the area under CBA was 24.28 km2 which increased by 73.35% and covered 

42.09 km2 in 2001 (Table 3A). 10.44 km2 of land under agriculture was converted to CBA. 

Besides, 3.06 km2 of other waterbody and 2.75 km2 of other vegetation also got converted to 

CBA. Between 1991 and 2001, agricultural land had marginally increased from 266.09 km2 to 

270.81 km2 whereas land under other vegetation decreased from 208.67 km2 to 189.35 km2. It 

was also noticeable that the patch of coastal mangroves also reduced in area, a considerable 

part of which got converted to CBA. 

Following the trend of the previous decade, between 2001 and 2011 the land under 

CBA increased by 74.54%, and 73.47 km2 area came under CBA (Table 3B). Specifically, 

22.88 km2, 5.72 km2, and 2.57 km2 of area under cropland, other waterbodies, and other 

vegetation respectively got converted to CBA. The patch of coastal mangroves was further 

reduced from 2.51 km2 to 1.45 km2 of which 0.77 km2 was converted to CBA.  

Between 2011 and 2021, CBA drastically grew from 73.97 km2 to 155.97 km2 which 

indicates 110.87% of growth (Table 3C). A considerable amount (i.e. 70.78 km2) of agricultural 

land was converted to CBA. As a result, between 2011 and 2021, agricultural land was reduced 

from 284.41 km2 to 217.17 km2. Other vegetation had also reduced from 149.92 km2 to 122 

km2 of which 8.63 km2 of other vegetation was converted to CBA. Besides, to compensate for 

the conversion of agricultural land to CBA, 33 km2 of other vegetation had been converted to 

agricultural land. Coastal mangrove covers were further reduced from 1.45 km2 to 1.06 km2, 

and 33 km2 of mangrove was converted to CBA. 
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A drastic change in the landscape scenario was observed in 2023, especially in the case 

of CBA (Table 3D). Although, from 1991 to 2021, CBA increased incessantly, a drastic fall in 

land under CBA was observed in 2023 when the land under CBA reduced from 155.97 km2 to 

96.94 km2 within only two years and 36.76 km2 of land under CBA had become abandoned. 

Some amount of land under CBA also got converted to agricultural land, other vegetation, other 

water bodies, and barren land.  
 
 
Table 2. Accuracy assessment report of classified images. 

Year Overall accuracy (%) Overall Kappa (K^) 
1991              79.50              0.76 
2001              81.31              0.78 
2011              80.90              0.77 
2021              83.33              0.80 
2023              86.36              0.84 
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Table 3A. LULC transformation matrix from 1991-2001. 

LULC class 

Area in 2001 (km2) 

Abandoned 
aquaculture Cropland Aquaculture 

Bare 
earth and 
sand 

Built-up Mangrove 
vegetation 

Mixed 
vegetation 

Other 
waterbody 

Total area 
(1991) 

Area in 1991 (km2) 
Abandoned 
aquaculture 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cropland 0.00 207.93 10.44 0.32 1.73 0.01 40.86 4.80 266.09 
Aquaculture 0.00 0.01 24.21 0.03 0.00 0.01 0.01 0.01 24.28 
Bare earth and sand 0.00 0.16 0.64 0.29 0.53 0.02 0.10 0.37 2.11 
Built-up 0.00 0.00 0.01 0.01 4.32 0.00 0.01 0.01 4.36 
Mangrove 
vegetation 0.00 0.16 0.98 0.08 0.00 2.31 0.27 0.40 4.20 

Other vegetation 0.00 55.73 2.75 0.17 2.44 0.08 143.35 4.15 208.67 
Other waterbody 0.00 6.82 3.06 0.08 0.23 0.08 4.75 17.78 32.80 
Total area (2001) 0.00 270.81 42.09 0.98 9.25 2.51 189.35 27.52 542.51 

 
Table 3B. LULC transformation matrix from 2001-2011. 

LULC class 

Area in 2011 (km2) 

Abandoned 
aquaculture Cropland Aquaculture 

Bare 
earth and 
sand 

Built-up Mangrove 
vegetation 

Mixed 
vegetation 

Other 
waterbody 

Total area 
(2001) 

Area in 2001 (km2) 
Abandoned 
aquaculture 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cropland 0.00 219.97 22.88 0.02 1.46 0.01 23.83 2.64 270.81 
Aquaculture 0.00 0.22 41.81 0.02 0.01 0.00 0.01 0.02 42.09 
Bare earth and sand 0.00 0.35 0.20 0.20 0.01 0.05 0.06 0.11 0.98 
Built-up 0.00 0.01 0.02 0.01 9.17 0.00 0.01 0.03 9.25 
Mangrove 
vegetation 0.00 0.15 0.77 0.20 0.00 1.30 0.06 0.03 2.51 

Other vegetation 0.00 56.11 2.57 0.07 6.37 0.05 122.75 1.43 189.35 
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Other waterbody 0.00 7.60 5.72 0.11 0.08 0.04 3.20 10.77 27.52 
Total area (2011) 0.00 284.41 73.97 0.63 17.10 1.45 149.92 15.03 542.51 

 
Table 3C. LULC transformation matrix from 2011-2021. 

LULC class 

Area in 2021 (km2) 

Abandoned 
aquaculture Cropland Aquaculture 

Bare 
earth and 
sand 

Built-up Mangrove 
vegetation 

Mixed 
vegetation 

Other 
waterbody 

Total area 
(2011) 

Area in 2011 (km2) 
Abandoned 
aquaculture 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cropland 0.00 183.44 70.78 0.02 4.61 0.02 22.23 3.31 284.41 
Aquaculture 0.03 0.02 73.49 0.07 0.03 0.04 0.05 0.24 73.97 
Bare earth and sand 0.00 0.01 0.40 0.18 0.01 0.00 0.02 0.01 0.63 
Built-up 0.00 0.02 0.01 0.00 17.02 0.00 0.03 0.02 17.10 
Mangrove 
vegetation 0.00 0.09 0.33 0.00 0.00 0.98 0.03 0.02 1.45 

Other vegetation 0.00 33.30 8.63 0.00 7.38 0..02 99.62 0.99 149.92 
Other waterbody 0.00 0.29 2.33 0.07 0.10 0.02 0.02 12.20 15.03 
Total area (2021) 0.03 217.17 155.97 0.34 29.15 1.06 122.00 16.79 542.51 

 
Table 3D. LULC transformation matrix from 2021-2023. 

LULC class 

Area in 2023 (km2) 

Abandoned 
aquaculture Cropland Aquaculture 

Bare 
earth and 
sand 

Built-up Mangrove 
vegetation 

Mixed 
vegetation 

Other 
waterbody 

Total area 
(2021) 

Area in 2021 (km2) 
Abandoned 
aquaculture 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03 

Cropland 3.18 151.01 10.32 2.02 15.01 0.00 31.12 4.51 217.17 
Aquaculture 36.76 13.79 84.82 2.43 1.23 0.01 11.79 5.14 155.97 
Bare earth and sand 0.01 0.01 0.01 0.31 0.00 0.00 0.00 0.00 0.34 
Built-up 0.00 0.04 0.00 0.00 29.09 0.00 0.01 0.01 29.15 
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Mangrove 
vegetation 0.01 0.48 0.01 0.02 0.00 0.51 0.02 0.01 1.06 

Other vegetation 0.05 41.16 1.48 0.06 10.39 0.03 66.42 2.41 122.00 
Other waterbody 0.01 1.50 0.30 0.05 0.00 0.00 0.58 14.35 16.79 
Total area (2023) 40.04 208.00 96.94 4.89 55.72 0.55 109.94 26.43 542.51 

 

Table 3E. Projected LULC transformation matrix from 2023-2025. 

LULC class 

Area in 2025 (km2) 

Abandoned 
aquaculture Cropland Aquaculture 

Bare 
earth and 
sand 

Built-up Mangrove 
vegetation 

Mixed 
vegetation 

Other 
waterbody 

Total area 
(2023) 

Area in 2023 (km2) 
Abandoned 
aquaculture 37.76 0.41 0.40 0.01 0.01 0.00 0.90 0.55 40.04 

Cropland 1.42 194.14 0.80 0.01 2.16 0.00 1.01 8.46 208.00 
Aquaculture 20.17 0.74 73.34 0.01 0.03 0.00 1.49 1.16 96.94 
Bare earth and sand 0.03 0.02 0.01 3.80 0.00 0.00 0.05 0.98 4.89 
Built-up 0.00 0.00 0.00 0.00 55.72 0.00 0.00 0.00 55.72 
Mangrove vegetation 0.00 0.01 0.00 0.00 0.00 0.07 0.01 0.46 0.55 
Other vegetation 0.20 2.00 0.50 0.40 0.03 0.00 105.56 1.25 109.94 
Other waterbody 1.14 0.03 0.15 0.00 0.02 0.00 0.03 25.06 26.43 
Total area (2025) 60.72 197.35 75.20 4.23 57.97 0.07 109.05 37.92 542.51 
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3.2. Census Village-wise growth pattern of CBA 

In the study area, CBA was found to be growing incessantly from 1991 to 2021. It was observed 

that, at the initial phase, i.e., in 1991, CBA had developed nearly at all the coastal Census 

Villages of Ramnagar-II and the coastal Census Villages located at the southwestern part of 

Contai-I CD Blocks, respectively (Fig. 3). In the following decades, CBA spread in the other 

Census Villages located along the coast as well as in the Census Villages located at more inland 

parts mainly along the tidal rivers and canals. In 2001, CBA was initiated in those areas that 

were located away from the coastal region and had grown along the tidal rivers and canals. In 

2011, the area under CBA grew in the Census Villages where the CBA had already been 

established. Furthermore, CBA grew in adjacent Census Villages and spread in the more inland 

parts with the highest spread in the Deshapran block, where CBA got initiated in almost all 

Census Villages located along the Rasulpur river and had even spread in more western part as 

far as Chhota Kukraaul Census Village. The massive growth of aquaculture had taken place 

between 2011 and 2021, and CBA had grown and initiated in all the Census Villages located 

along the coast. Following the trend of the previous decade, the areal growth was highest in the 

Census Villages of Deshapran Block, where CBA had initiated in the further western side in 

the inland part. CBA had also spread in the extreme northern part of the study area. A drastic 

change in the scenario was found in 2023 when the land under CBA had been considerably 

reduced and a notable portion of CBA farms became abandoned. The concentration of CBA 

had reduced in almost all villages. In 2023, a high concentration of CBA was mainly found in 

the villages along the coast and a few villages in the inland part. Coastal villages in Contai-I 

and Deshapran still had a higher concentration of CBA, though the percentage of land under 

CBA in these villages had reduced than 2021. 

The hot spot analysis revealed the pattern of significant clustering of villages with 

higher concentrations of CBA. In 1991, hot spots (with 99% Confidence Interval) were mainly 

found in the all-coastal villages and a few near-coastal villages of Ramnagar-II, and in the 

coastal villages located at the southwestern part of the Contai-I Block. In 2001, hot spots 

propagated along the coast and in the near coastal villages in these two CD Blocks. Hot spots 

emerged in the eastern part of Deshapran Block mainly along the Rasulpur river and existing 

canals in 2011. Along with this, significant clustering of villages with low CBA, i.e., cold spots, 

were found in the middle portion of the study area where the amount of built-up was higher, 

which was developed over the dune ridges. In 2021, hot spots had spread across more villages, 

and the highest spread was found in the Deshapran Block. However, a more significant 

clustering of cold spots appeared in the middle portion of the study area. In 2023, the 
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concentration of CBA reduced, and hot spots were found mainly in the coastal and near-coastal 

villages (Fig. 4). It is noteworthy to mention here that the Z score values were 11.20, 17.17, 

23.44, and 27.97 for the years 1991, 2001, 2011, and 2021 respectively, which denoted that 

CBA continued to cluster more intensely up to 2021. However, the Z score value for the year 

2023 decreased to 20.20 denoting a decrease in the clustering of CBA. Nonetheless, p values 

for all the cases were statistically significant (p <0.05) and Z scores were positive 

(Supplementary Table 2). This indicated more significant spatial clustering and fewer chances 

of spatial randomness (Badlowski et al., 2021). 

 

 

 
Figure 3. Census Village-wise percentage of area under aquaculture for the year (a) 1991, (b) 
2001, (c) 2011, (d) 2021, (e) 2023, and predicted for the year (f) 2025 
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Figure 4. Spatial distribution of aquaculture hotspots for the year (a) 1991, (b) 2001, (c) 2011, 
(d) 2021, (e) 2023, and predicted for the year (f) 2025 

 

3.3. Patch dynamics of CBA 

To assess the growth pattern of CBA, the output of patch level and class level metrics of the 

three CD Blocks of the study site had been intensively analyzed. At the patch level, the mean 

AREA metric of Contai-I had decreased from 5.25 ha to 1.65 ha and it had again increased to 

2.97 ha in 2023. Similarly, the largest patch AREA value (332.55 ha) came down to 40.05 ha 

only in a span of two years. The same trend can be noticed regarding maximum PERIM values, 

where there had been a constant increase (from 15060 m to 42600 m), followed by a huge fall 

to 8580 m. The mean values of the SHAPE metric depicted a drop in the first four decades 

(1.33 to 1.20), followed by a rise (1.30) in 2023. The same trend can be observed with regard 

to the SHAPE metric in Ramnagar-II. However, a steady notable rise in the SHAPE metric 

(1.16 to 1.40) can be noticed in Deshapran. Here, the mean AREA metric had constantly 

increased from 0.33 ha in 1991 to 4.68 ha in 2021, thereafter falling to 3.10 ha in 2023. The 

maximum PERIM values rose from 3660 m to 527820 m, thereby dropping to 397080 m. 

However, the mean PERIM values depicted a notable rise from 267.50 m to 1141.16 m. In 

Ramnagar-II, the mean AREA metric had sharply declined from 13.48 ha to 3.75 ha (Table 

4A). Similarly, the largest patch AREA value (3708.45 ha) came down to 435.15 ha only. The 

mean PERIM values depicted a declining pattern (1082.71 m to 79537 m) followed by an 

upsurge (1052.62 m). In this CD Block, the maximum PERIM values increased gradually 

between 1991 and 2021 (112440 m to 151920 m) and then fell to 108720 m in 2023. 
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Regarding the class level metrics, results revealed that from 1991 to 2021, the changing 

patterns of the CBA and the entire study region were consistent, and became more fragmented 

and dispersed. However, the scenario got reversed for the year 2023. The absolute values of 

CA for CBA increased rapidly suggesting an increased area and landscape heterogeneity, with 

the changing decades (from 236.07 ha to 2741.49 ha in Contai-I; from 31.23 ha to 7622.10 ha 

in Deshapran; from 2235.96 ha to 4313.25 ha in Ramnagar-II), up until the year 2023, when it 

fell to 1336.50 ha, 4657.21 ha, and 2102.40 ha respectively. (Table 4B). From 1991 to 2021, 

large areas of CBA have appeared, evident in the increasing PLAND for all the CD Blocks. 

After 2021, the metric reduced notably, reaching 6.80% in Contai-I, 25.32% in Deshapran, and 

12.95% in Ramnagar-II. Both NP and PD values (per 100 ha) have recorded a steep rise since 

1991 in Contai-I and Deshapran, thereby indicating an augmented area and landscape 

heterogeneity. However, both the values for these two CD Blocks fell sharply in the year 2023 

(NP: 813 and 1503; PD: 4.14 and 8.17, respectively). The scenario is different for Ramnagar-

II where a constant rise in NP and PD values can be noticed. LPI values have constantly 

increased over time (1991-2021), pointing towards the development of larger and combined 

patches in all the CD Blocks, i.e., the CBA patches were broken first and then aggregated and 

again broke in 2023. However, AREA_MN in Deshapran has continuously increased since 

1991, suggesting that although large areas of CBA patches are fragmented, they have not 

disappeared. An opposite condition has been noticed in the other two CD Blocks with a steady 

fall in CBA patches since 2001. FRAC_MN values have depicted a very minute growth which 

could possibly lead to the development of shape complexity over time. The patch complexity 

has also been analyzed with the PARA_MN metric and it showcased falling values for the three 

CD Blocks from 1991-2023 demonstrating the presence of less dispersive patches. Regarding 

the metrics of agglomeration, LSI statistics depicted the emergence of amorphous patches from 

2001 to 2023 in Deshapran and Ramnagar-II. In the case of Contai-I, disaggregation was 

initiated in 1991 (7.17) and continued up to 2021 (41.13), post which there was a direction 

towards aggregation with values falling to 36.39 in 2023. High PLADJ values reveal maximum 

agglomeration, however decreasing values in Contai-I (85.93 in 1991 to 70.10 in 2023) and 

Ramnagar-II (92.77 in 1991 to 78.93 in 2023) reveal a discontinuous pattern of CBA 

development. Nevertheless, ever-increasing values in the last 30 years (1991-2021) from 38.33 

to 83.73 indicate continuous CBA patches with the commencement of relative disaggregation 

in 2023. Overall, the changing trend of landscape indices mirrors the loss, fragmented, and 

complicated nature of CBA across the study area under consideration.  
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Table 4A. Comparison of landscape metrics at patch level from 1991 to 2023. 

CD Block Year 
Patch metric 

Area (ha) PERIM (m) SHAPE 
Min Max Mean Min Max Mean Min Max Mean 

Contai-I 

1991 0.09 162.99 5.25 120 15060 984 1.00 5.19 1.33 
2001 0.09 202.23 2.22 120 20100 524.88 1.00 3.53 1.21 
2011 0.09 271.53 1.45 120 26340 430.79 1.00 3.99 1.17 
2021 0.09 332.55 1.65 120 42600 519.64 1.00 5.82 1.20 
2023 0.09 40.05 2.97 120 8580 840.00 1.00 3.33 1.30 

Deshapran 

1991 0.09 8.46 0.33 120 3660 267.50 1.00 3.05 1.16 
2001 0.09 99.99 1.47 120 22680 505.40 1.00 8.04 1.19 
2011 0.09 205.11 1.59 120 44520 570.76 1.00 8.73 1.24 
2021 0.09 3517.83 4.68 120 527820 1015.69 1.00 22.21 1.24 
2023 0.09 1528.29 3.10 120 397080 1141.16 1.00 25.36 1.40 

Ramnagar-II 

1991 0.09 1854.72 11.24 120 112440 1082.71 1.00 6.51 1.23 
2001 0.09 2522.43 13.48 120 139980 1056.31 1.00 6.96 1.21 
2011 0.09 2936.97 8.79 120 146100 870.53 1.00 6.73 1.26 
2021 0.09 3708.45 8.91 120 151920 795.37 1.00 6.24 1.19 
2023 0.09 435.15 3.75 120 108720 1052.62 1.00 12.76 1.34 

AREA: patch area; PERIM: patch perimeter; SHAPE: shape index 
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Table 4B. Comparison of landscape metrics at class level from 1991 to 2023. 

CD Block Year Class metric 
CA PLAND NP AREA_MN LPI FRAC_MN PARA_MN PD LSI PLADJ 

Contai-I 

1991 236.07 1.20 45.00 5.25 0.83 1.05 1045.72 0.23 7.17 85.93 
2001 536.04 2.73 242.00 2.22 1.03 1.04 1060.91 1.23 13.66 82.23 
2011 1021.23 5.19 706.00 1.45 1.38 1.04 1039.64 3.59 23.69 77.66 
2021 2741.49 13.94 1662.00 1.65 1.69 1.04 976.78 8.45 41.13 76.37 
2023 1336.50 6.80 813.00 1.64 1.00 1.05 941.70 4.14 36.39 70.10 

Deshapran 

1991 31.23 0.17 96.00 0.33 0.05 1.03 1166.14 0.52 11.26 38.33 
2001 928.08 5.04 633.00 1.47 0.54 1.04 1021.38 3.44 26.14 74.15 
2011 2893.95 15.73 1818.00 1.59 1.11 1.04 990.03 9.88 48.17 73.11 
2021 7622.10 41.43 1628.00 4.68 19.12 1.04 1021.22 8.85 47.27 83.73 
2023 4659.21 25.32 1503.00 3.10 8.31 1.06 996.88 8.17 62.69 72.39 

Ramnagar-II 

1991 2235.96 13.78 199.00 11.24 11.43 1.04 1105.12 1.23 11.36 92.77 
2001 2628.09 16.19 195.00 13.48 15.54 1.04 1030.89 1.20 10.04 94.12 
2011 3278.79 20.20 373.00 8.79 18.09 1.04 1014.73 2.30 14.17 92.57 
2021 4313.25 26.57 484.00 8.91 22.84 1.04 965.50 2.98 14.65 93.31 
2023 2102.40 12.95 561.00 3.75 2.79 1.05 981.84 3.46 32.16 78.93 

CA: total class area; PLAND: percentage of landscape; NP: number of patches; AREA_MN: mean patch area; LPI: largest patch index; 
FRAC_MN: mean fractal dimension index; PARA_MN: mean perimeter-area ratio; PD: patch density; LSI: landscape shape index; PLADJ: 
percentage of similar adjacency 
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3.4. Modelled CBA spread pattern in 2025 

The LULC scenario of the study region had been predicted using a multi-parameter-based 

model (Fig. 2f). The simulations have directed towards a steady growth in all the LULC classes 

barring aquaculture, cropland, and bare earth and sand. A notable loss of area in CBA has been 

projected at 75.20 km2, representing a reduction of 4.01% (~ loss of 21.74 km2 area) from the 

2023 context. The greatest decline has been observed in the southern section of Ramnagar-II 

followed by the northeastern portion of Deshapran. This loss can be attributed to the predicted 

rise of abandoned aquaculture by 3.81% and other water bodies by 2.12% (Table 5). 

Furthermore, the model denotes that there has been a maximum conversion of CBA to 

abandoned aquaculture which could probably be due to a multitude of reasons, including 

recurrent bouts of diseases, swelling production costs, and a sharp drop-in market rate. Contai-

I, on the other hand, also portrays plummeting in the CBA area, but not as much as the other 

two CD Blocks under consideration. This showcased that the diminution of the CBA area 

would be foreseeable in the long run; other waterbodies along with expansion in abandoned 

aquaculture would be expected to continue for the next few years at the expense of other LULC 

classes (cropland, mangroves, and other vegetation). 

 

                            Table 5. LULC statistics for the predicted scenario of 2025. 
LULC class Area (km2) Area (%) 
Abandoned aquaculture 60.72 11.19 
Cropland 197.14 36.38 
Aquaculture 75.20 13.86 
Bare earth and sand   4.23   0.78 
Built-up 57.97 10.69 
Mangrove vegetation   0.07   0.01 
Other vegetation      109.05 20.10 
Other waterbody  37.92   6.99 

 

4. Discussion 
4.1. Consequences of CBA growth 

The global demand for shrimp, especially in the USA, Japan, and the EU, has led to a surge in 

cultured shrimp aquaculture in tropical coastal areas (Stonich & Bailey, 2000; Hossain et al., 

2013; Galappaththi & Nayak, 2017). This has resulted in a 34% increase in global production 

between 2002 and 2008, benefiting marginal farmers in infertile coastal lands with high salinity 

(Hossain et al., 2013; Salunke et al, 2020). CBA growth in developing countries attracted 

national and international investors (Béné, 2005). 
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Despite its commendable contribution to social and economic well-being, the development of 

CBA in the coastal areas of the tropics remained fraught with controversies owing to the 

perpetual degradation it has wrought on the environment and society (Béné, 2005). Coastal 

brackishwater aquaculture, particularly commercial shrimp farms, has caused water and soil 

contamination due to excessive use of chemical pesticides and poor feed quality. Effluents 

released from these farms also cause high pollutant and silt loads in estuaries, causing severe 

damage to ecosystems. The expansion of CBA has led to the annihilation of mangroves in 

countries like Thailand, the Philippines, Indonesia, Honduras, Bangladesh, and India (Hall, 

2003; Pokrant, 2009; Hossain et al., 2013). Lax management, including high stocking density, 

overuse of chemical fertilizers, and pesticides, and irrational use of antibiotics, makes 

commercial shrimp farming susceptible to frequent disease outbreaks. The shrimp cultured in 

Third World countries were aimed at exporting to the developed world, unable to address the 

food security issue of native dwellers (Stonich and Bailey, 2000; Hall, 2003; Hossain et al., 

2013). Most of the revenue from the farms was added to urban capital, depriving rural areas. 

The practice has also challenged the availability of common property resources, introduced 

food insecurity, exposed the rural community to global market fluctuation, altered social 

structures, and propagated marginalization of the native rural community (Stonich and Bailey, 

2000; Hall, 2003; Hossain et al., 2013; Bush & Marschke, 2017). Similar environmental and 

social threats have been found in the states of South and South East coastal regions of India 

including the study area (Pradhan & Flaherty, 2007; Dutta et al., 2016; Rajesh et al., 2016). 

Major landscape transformation had taken place in the coastal areas of Purba Medinipur district 

owing to the brisk growth of CBA (Dutta et al., 2016; Ojha & Chakrabarty, 2018). In the study 

area, between 1991 and 2021 the proportion of land under CBA had grown at an exponential 

rate at the cost of cropland, coastal mangroves, other vegetation, waterbodies, and fallow lands. 

This rampant growth has also brought about considerable damage to the existing natural 

resources and the ecology of the surrounding region in general. A notable increase in soil 

salinity and soil pH in the areas encompassing the CBA ponds had a debilitating impact on rice 

productivity (Ojha & Chakrabarty, 2018; Roy et al., 2020) which has further provoked the crop 

farmers either convert their lands to CBA farms or to lease out their lands to the CBA farmers. 

This has adversely impacted the food security of the otherwise crop-culture-based marginal 

rural community. Since pond management was a major challenge for the shrimp farmers, small 

ponds were preferred over larger ones instead of high demand. To reap higher profits from the 

small ponds, farmers preferred high stocking density (Islam et al., 2005). However, this trend 

of highly intensive culture and unhygienic practice of culture has led to water pollution Direct 
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disposal of this polluted water without treatment to the rivers, creeks, and canals has induced 

water pollution in natural waterbodies (Salunke et al., 2020).  The same scenario has been 

observed in the present study region as well (Roy et al., 2021a). 

 

4.2. Recent trend of decline in CBA practice 

Various global surveys indicated that the commercial shrimp production in 2023 was 0.04 

percent less than the normal production. In southeast Asia, there was a 3 percent reduction 

(Jory, 2023). In India, the considerable decrease of land under CBA and their transformation 

to abandoned land in 2023 can be validated by the 3% reduction in the national shrimp 

production rate between 2022 and 2023. This had happened due to multiple causes including 

climate vagaries eliciting multiple virus infestations like white spot syndrome virus (WSSV), 

Enterocytozoon hepatopenaei (EHP), white feces syndrome (WFS), infectious myonecrosis 

virus (IMNV), etc., the increasing cost of production, and a sharp decline in market rate in 2022 

(Aqua Culture Asia Pacific, 2023).  Since 2021 (post Covid-19 pandemic), a sharp decline in 

market rate has been caused due to lower demand from the United States, and European Union 

as well as China which were the three major shrimp exporting countries of India. Furthermore, 

Ecuador has become a major competitor for India in China’s shrimp import market which 

flooded the international market with shrimp at a much cheaper rate than India. Thus, India’s 

seafood export market has been facing a dual crisis of a 20-30 % decline in international market 

demand and a 20-25% fall in global price rate. Additionally, global inflation and multiple 

economic aftermaths of the Russia-Ukraine war including a sharp increase in energy prices 

caused an increase in production costs and a decrease in market price (Dao, 2022; Pijl, 2022; 

Cliff White, 2023, Rajani & Balasubramanian, 2023).  As a result, a huge number of farmers 

faced massive economic loss which made them get into the vicious cycle of indebtedness, 

which has waned the eagerness of the farmers to initiate the production cycle in 2023 (Salunke 

et al., 2020). This has resulted in the abandonment of a considerable amount of CBA farms in 

India (Dao, 2022; Datta et al., 2022). India's leading shrimp-producing states, Andhra Pradesh 

and West Bengal, have experienced a sharp decrease in area under CBA and production since 

2021 (Dao, 2022; Chu Se Pepper, 2022; Rajani & Balasubramanian, 2022; Rajani & 

Balasubramanian, 2023). This is mainly due to a decrease in market demand, lower prices, and 

increased production costs, leading to crop failures and abandonment of CBA farms (Murali, 

2023; Rajani & Balasubramanian, 2023). About 50% of farmers stopped stocking their farms 

in anticipation of loss and fear of indebtedness. To make CBA economically more viable and 

ecologically sustainable, policy guidelines need to be developed, addressing place-specific 
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uncertainty and regulatory barriers. This includes fostering policies at the state level to address 

water pollution, habitat degradation, biodiversity loss, and climate mitigation. Policy mandates 

for restorative aquafarming should be facilitated, and green licensing systems should be 

implemented. Additionally, emission reduction, treatment management, and locally-led 

adaptations are recommended. 

 

5. Conclusions 

This study was chiefly based on the assessment of the growth trajectory of the CBA in the 

Purba Medinipur coastal plain, India. The novelty of the research lies in the fact that the work 

was conducted by the integration of geostatistics and landscape metrics along with geospatial 

technology in the Indian context which in turn provided a comprehensive and systematic 

approach to understanding the spatial patterns and dynamics of CBA expansion and/or 

reduction. The incorporation of this landscape metric approach furnished the analysis with a 

spatial perspective, going beyond the simple area-based assessments. The major finding was 

that the area under CBA was continuously growing throughout the entire region in the last three 

decades. However, an extreme alteration in the scenario could be noticed in the present year, 

wherein the land under CBA was reduced substantially and a notable portion of CBA farms 

became abandoned. Significant clusters with greater CBA concentrations along shorelines 

gradually shifted to built-up areas, demonstrating the havoc landscape modification caused by 

farm fragmentation. Farmers and the nearby towns that depend on this industry have suffered 

financial losses as a result of the amplified degree of landscape alteration and subsequent drop 

in the CBA area. Farmers' incomes have declined as a result of this deterioration, and the 

overall economic growth of the region has slowed down. The mammoth conversion of the CBA 

farms to abandoned aquaculture farms has led to an upsurge of unproductive land. Owing to 

the already existing high saline conditions, these lands can also not be converted to croplands, 

thereby affecting the food security of the local populace. In this context, it was apprehended 

that realistic paths need to be explored to make CBA farming both ecologically sustainable and 

economically feasible. Aquaponics (coupling of aquaculture and hydroponic farming) can be 

introduced which in turn could contribute to food security, diversification, and resource 

efficiency. Additionally, the initiation of crab fattening in abandoned aquaculture farms could 

offer opportunities for income generation and diversification in the aquaculture sector. The 

local government should encourage the residents of coastal areas to manage resources 

sustainably. In a nutshell, to follow the path of sustainable land management in this vulnerable 

coastal environment, both stakeholders and governing bodies need to be more aware of the 
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environmental carrying capacity by maintaining anthropogenic modification up to its optimal 

limit and by introducing holistic management strategies. In this regard, the present study tried 

to abridge the persisting research gap in empirical data availability, especially regarding 

changing coastal landscapes and related socio-economic and environmental impacts which will 

be crucial in national to regional level policy planning and sustainable coastal management. 

However, it needs to be validated across contrasting socio-ecology in a global perspective to 

understand the dimensions of problems through comprehensive research.  
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