Avifaunal Diversity in Managed Urban Ecosystem: A Case Study of Banaras Hindu University, Varanasi

Rinku Singh, Amit Kumar Tiwari, Sudhanshu Kumar, Gopal Shankar Singh*

Institute of Environment and Sustainable Development Banaras Hindu University, Varanasi-221005, India

* Corresponding author email: gopalsingh.bhu@gmail.com

Received: 5 February 2022 / Accepted: 12 February 2024

Abstract. University campuses are becoming important places for conducting a large number of studies on plant and animal taxa including avian diversity. However, a systematic study on the avian diversity in the Banaras Hindu University (BHU) campus (Asia's largest residential university campus) of Varanasi is still lacking. The present study deals with the species abundance, diversity and species richness of avian communities in the BHU campus. We conducted a bird survey in the BHU campus between 2019 and 2020. Employing line-transect method, a total of 141 bird species under 62 families were recorded from the study area. A rich diversity of species recorded indicates the importance of the university campuses in urbanized region to serve as a critical habitat for birds. To conserve this rich bird diversity of the campus, we suggest sustainable management of habitats through restoration of degraded habitats, reduction in habitat destruction, conservation awareness programmes and increased research on assessment of diversity.

Keywords: Avian diversity, Banaras Hindu University, Biodiversity, Campus birds, Conservation status, Urban landscape, Varanasi.

1. Introduction

Worldwide, urban areas are growing both in size and number (Melles et al., 2003). Today, over half of the world's population lives in cities. The rapid urbanization is degrading wildlife habitats and reducing biodiversity (McKinney, 2002; Gupta et al., 2009; Goddard et al., 2010; Banville et al., 2017). The biodiversity in the urban ecosystems can be conserved through maintaining urban green spaces (Shaffer, 2018) such as greenways, avenues, parks, defence premises and university campuses (Rajashekara & Venkatesha, 2017; Sohil & Sharma, 2020). This need paved the way for biodiversity research in urban parks (McFrederick & LeBuhn, 2006; Palliwoda et al., 2017), and university campuses (Gupta et al., 2009; Liu et al., 2017) which harbours a considerable biological diversity (Liu et al., 2021).

University campuses including college campuses are important component of green cover in urban landscapes that provide opportunities for biodiversity conservation (Vallejo et al., 2009; Zhang et al., 2018). These campuses are more important in developing countries where private green spaces are often scarce (Goddard et al., 2010; Liu et al., 2021). University campuses provide habitats for plants, and animals including insects and birds (Wheeler, 2008; Liu et al., 2017; Zhang et al., 2018). These areas attract both local and migratory species of birds and thus are ideal locations for avifaunal surveys (Grimmett & Inskipp, 2007; Fischer & Islam, 2020; Guthula et al., 2022). Bird population, abundance and diversity are important indicators to know the biological richness and overall health of an ecosystem (Adang et al., 2015; Dendup et al., 2021).

Bird species of various campuses of universities and institutes in India and across the world have been recorded. In India studies on bird diversity can be traced from Kurukshetra University (395.369 acre: Total:92 species; migrants:21 and residents:71) (Gupta et al., 2009), Govind Ballabh Pant Institute of Himalayan Environment and Development (Total:61 species; migrants:1 and residents:60) (Palita et al., 2011), Sálim Ali Centre for Ornithology and Natural History (55 acre; Total:145 species; 72 migrants; 73 residents) (Ali et al., 2013), and Bangalore University (1099.98 acre; Total:106 species; migrants:7; resident migrants:20; and residents:79) (Rajashekara & Venkatesha, 2017). University campuses across the world have also been assessed for avian diversity including University of the Philippines, Philippines (1218.23 acre; 36 species) (Vallejo Jr et al., 2008), Hokkaido University, Japan (494.21 acre; 88 species) (Namba et al., 2010), Sabaragamuwa University, Sri Lanka (125 acre; 145 species) (Surasinghe & Alwis, 2010), and Dhaka University, Bangladesh (275.083 acre; 78 species) (Chowdhury et al., 2014). The composition, abundance and diversity of birds have not been recorded in the Banaras Hindu University (BHU) campus despite covering an extensive geographical area (over 1300 acre) and comprising a rich diversity of habitats and plant species.

This study aims to fill this important research gap by surveying avian diversity in BHU campus located in Varanasi district of Uttar Pradesh, India. The objective of the study is to provide a primary survey database for environmental monitoring, conservation, management, and sustainability along with providing basic avifauna information for campus biodiversity studies. BHU campus is a managed urban ecosystem in Varanasi city, which provides important habitats to the bird. Hence the campus should be wisely used and developed without disturbing the activity of the birds and their habitats. Understanding the diversity of birds in the BHU campus can be

useful to conservation managers and planners to formulate conservation strategies in an urban landscape.

2. Materials and methods 2.1. Study area

The present study of avifaunal diversity was conducted in the campus of Banaras Hindu University (BHU, 25° 15' 52" N & 82° 59' 41" E) located on the western bank of the Ganga River in the Varanasi district of Uttar Pradesh, India (Fig. 1).

Figure 1. Map of the study area showing the location of Banaras Hindu University campus

BHU is the largest residential university in Asia and covers an area over 1,300 acres (5.3 km²) (Nayak and Ghosh, 2020). This university campus is a managed urban ecosystem and is known for its green cover and extensive space in urbanized Varanasi. The BHU campus enjoys humid sub-tropical climate with three distinct seasons: summer (March to June), monsoon (July to October) and winter (November to February).

Landscape of the study area is characterized by a flat topography with fertile alluvial soil. The campus exhibits a rich diversity of habitats including parks, home gardens, botanical and herbal gardens, sacred natural sites of temples, ponds, wetlands, crop fields, grasslands, bushes, and road side vegetation corridors (Singh et al., 2019; Nayak & Ghosh, 2020). The total length of roads planted with trees on both sides is 30.8 km in the campus of BHU (Singh et al., 2019). The flora of BHU campus comprises 574 species belonging to 426 genera and 111 families of angiosperm (Dubey, 2004; Singh et al., 2019). The important tree species of the BHU campus include *Mangifera indica, Syzygium cumini, Tectona grandis, Terminalia arjuna, Delonix regia, Madhuca longifolia* and *Tamarindus indica*. These tree species provide food and shelter to a variety of bird species.

2.2. Bird survey

The bird survey was carried out in the BHU campus for one year between March 2019 and February 2020 using fixed-distance line transect method (Hostetler & Main, 2001; Hovick et al., 2015; Raynor et al., 2017). In line transect method, observer continually walks and records all birds either side of the track (Bibby et al., 1998). Nineteen transects were placed in the BHU campus and each transect was of 400 m long, and 20 m wide, on either side. Distance between two transect was at least 200 m. Along each 400 m long transect, all the birds seen or heard were recorded within 20 m from either side of the transects were walked down at a uniform pace of about 1-1.5 km h⁻¹ (Rajashekara & Venkatesha, 2017). Birds were surveyed on mornings (06.00-10.00 h) when the birds sing most actively and exhibit more flights under the conditions of low human activity (Bibby et al., 1998; Das et al., 2010). Opportunistic observations were done at least once a month so as not to miss any species during the survey period.

Birds were not surveyed during raining or windy days. Birds which flew high overhead from the upper canopies of trees and buildings in the campus or have occurred outside the transect boundary were omitted in the counts. Regular fortnightly surveys between March, 2019 and February, 2020 were done by walk on fixed transects laid in the campus. Thus a cumulative total of 24 surveys were done for each transect during the entire study period. All bird surveys were conducted by the first author (RS). During survey, the observer wore light color clothes to minimize the attraction of birds. Olympus (10*50x) binocular for close observation of the birds was used. The photographs of the birds were taken with a CANON digital camera (EOS 200D II)

with 250mm zooming lens. Standard field guides (Ali, 2002; Grimmett et al., 2016) were used for identification of the birds in the field. The checklist of the birds was prepared using the standardized common and scientific names of the birds of the Indian subcontinent by Gill et al. (2020). During the survey, the feeding habit of bird species and the type of habitat they are found were also observed. We also noted anthropogenic activities that potentially pose threats to the birds of the campus.

2.3. Data analysis

We tested the bird data sets for normality using the Shapiro-Wilk test. Species richness was presented as the total number of species in the study area. The relative diversity (RDi) of families was estimated using the following formula (La Torre-Cuadros et al., 2007):

 $RD_i = [(Number of bird species in a family)/(Total number of species)].100$ Bird species were classified into six major feeding guilds: insectivore (IV), carnivore (CV), grainivore (GV), nectivore (NV), frugivore (FV) or omnivore (OV) (Ali and Ripley, 1987; Barth et al., 2015). We followed the IUCN Red List (2021) to compile the global population trend (decreasing, increasing, stable, and unknown) of the recorded species. Following Devi et al. (2012) and Ali et al. (2013) residential status of the recorded birds was categorized into three categories as: (1) Residents (RS) (species found in the study area throughout the year), Winter Migrants (WM) (species migrants from outside India during winter) and Local Migrants (LM) (species migrate locally within the area but are residents of India). Depending on the frequency of sightings during the field visits birds were classified (Ali et al., 2013) as abundant (A) (birds sighted in more than 80% of the visits), common (C) (sighted in 60-<80 %), uncommon (U) (sighted in 40-<60%), occasional (O) (sighted in 20-<40%) and rare (R) (sighted in <20%).

3. Results and discussion

3.1. Results

The Banaras Hindu University campus houses a good number of avifauna as it has a rich and varied vegetation pattern and possesses a diversity of habitats including water bodies, agricultural fields, gardens and parks, vegetated roads, home gardens. A total of 141 species of birds belonging to 62 families were recorded from the study area (Table 1). The Shapiro-Wilk test showed that bird data sets had a significant departure from normality, W (141) = 0.92, p < 0.001.

Table 1. Checklist of the birds recorded in Banaras Hindu University campus of Varanasi, India.

	Family/Common name	Zoological name	Feeding status	Residential status	Abundance status	Conservation status	Global status
	Accipitridae (3)						
1	Black kite	Milvus migrans (Boddaert, 1783)	CV	RS	0	LC	\rightarrow
2	Indian Spotted Eagle	Clanga hastata (Lesson, R, 1831)	CV	RS	0	VU	Ļ
3	Oriental Honey-buzzard	Pernis ptilorhynchus orientalis Taczanowski, 1891	CV	RS	U	LC	\rightarrow
	Acrocephalidae (3)						
4	Blyth's Reed Warbler	Acrocephalus dumetorum Blyth, 1849	OV	WM	R	LC	Î
5	Booted Warbler	<i>Iduna caligata</i> (Lichtenstein, MHK, 1823)	IV	WM	С	LC	¢
6	Sykes's Warbler	Iduna rama (Sykes, 1832)	IV	WM	U	LC	\rightarrow
	Aegithinidae (1)						
7	Common Iora	Aegithina tiphia (Linnaeus, 1758)	OV	RS	С	LC	?
	Alaudidae (5)	idae (5)					
8	Ashy-crowned Sparrow Lark	<i>Eremopterix</i> griseus (Scopoli, 1786)	OV	RS	U	LC	\rightarrow
9	Bengal Bush Lark	Mirafra assamica Horsfield 1840	OV	RS	С	LC	\rightarrow
10	Crested Lark	Galerida cristata lynesi Whistler, 1928	OV	RS	U	LC	Ļ
11	Indian Bush Lark	<i>Mirafra erythroptera</i> Blyth, 1845	OV	RS	U	LC	\rightarrow
12	Oriental Skylark	Alauda gulgula Franklin, 1831	OV	RS	U	LC	Ļ
	Alcedinidae (3)						
13	Common Kingfisher	Alcedo atthis (Linnaeus, 1758)	CV	RS	U	LC	?
14	Pied Kingfisher	<i>Ceryle rudis insignis</i> Hartert, 1910	CV	RS	U	LC	?
15	White-throated Kingfisher	Halcyon smyrnensis (Linnaeus, 1758)	CV	RS	U	LC	1
	Apodidae (2)						
16	Asian Palm Swift	Cypsiurus balasiensis (Gray, JE, 1829)	IV	RS	С	LC	\rightarrow
17	Little Swift	Apus affinis (Gray, JE, 1829)	IV	RS	U	LC	¢

	Ardeidae (4)						
18	Western Cattle Egret	Bubulcus ibis (Linnaeus, 1758)	CV	RS	С	LC	Î
19	Great Egret	Ardea alba Linnaeus, 1758	CV	RS	U	LC	?
20	Indian Pond-heron	Ardeola grayii (Sykes, 1832)	CV	RS	U	LC	?
21	Intermediate Egret	Ardea intermedia Wagler, 1829	CV	RS	U	LC	Ļ
	Bucerotidae (2)						
22	Indian Grey Hornbill	Ocyceros birostris (Scopoli, 1786)	OV	RS	0	LC	\rightarrow
23	Oriental Pied Hornbill	Anthracoceros albirostris (Shaw 1808)	OV	RS	0	LC	\rightarrow
	Burhinidae (2)						
24	Eurasian Stone-curlew	Burhinus oedicnemus harterti Vaurie, 1963	CV	RS	R	LC	Ļ
25	Great Stone-curlew	<i>Esacus recurvirostris</i> (Cuvier, 1829)	CV	RS	R	NT	Ļ
	Campephagidae (3)						
26	Indian Cuckooshrike	Coracina macei (Lesson, R, 1831)	OV	RS	С	LC	Ļ
27	Long-tailed Minivet	Pericrocotus ethologus Bangs & Phillips, JC, 1914	IV	RS	U	LC	Ļ
28	Small Minivet	Pericrocotus cinnamomeus (Linnaeus, 1766)	IV	RS	С	LC	\rightarrow
	Caprimulgidae (3)						
29	Indian Nightjar	Caprimulgus asiaticus Latham, 1790	IV	RS	U	LC	\rightarrow
30	Large-tailed Nightjar	Caprimulgus macrurus albonotatus Tickell, 1833	IV	RS	U	LC	\rightarrow
31	Savanna Nightjar	Caprimulgus affinis monticolus Franklin, 1831	IV	RS	U	LC	\rightarrow
	Charadriidae (2)						
32	Red-wattled Lapwing	Vanellus indicus (Boddaert, 1783)	OV	RS	С	LC	?
33	River Lapwing	Vanellus duvaucelii (Lesson, R, 1826)	IV	RS	С	NT	Ļ
	Ciconiidae (2)						
34	Painted Stork	Mycteria leucocephala (Pennant, 1769)	CV	RS	U	NT	Ļ

35	Woolly-necked Stork	Ciconia episcopus (Boddaert, 1783)	CV	RS	U	NT	Ļ
	Cisticolidae (5)						
36	Ashy Prinia	Prinia socialis Sykes, 1832	IV	RS	С	LC	\rightarrow
37	Common Tailorbird	Orthotomus sutorius guzuratus (Latham, 1790)	IV	RS	С	LC	\rightarrow
38	Grey-breasted Prinia	Prinia hodgsonii Blyth, 1844	IV	RS	U	LC	\rightarrow
39	Plain Prinia	Prinia inornata Sykes, 1832	IV	RS	U	LC	\rightarrow
40	Zitting Cisticola	Cisticola juncidis cursitans (Franklin, 1831)	IV	RS	U	LC	↑ (
	Columbidae (4)						
41	Eurasian Collared Dove	Streptopelia decaocto (Frivaldszky, 1838)	GV	RS	A	LC	↑ 1
42	Orange-breasted Green- Pigeon	<i>Treron bicinctus</i> (Jerdon, 1840)	FV	RS	C	LC	Ļ
43	Rock Dove	<i>Columba livia gaddi</i> Zarudny & Loudon, 1906	GV	RS	А	LC	Ļ
44	Eastern Spotted Dove	Streptopelia chinensis (Scopoli, 1786)	GV	RS	С	LC	↑ (
	Coraciidae (1)						
45	Indian Roller	Coracias benghalensis (Linnaeus, 1758)	CV	RS	U	LC	↑ (
	Corvidae (3)						
46	House Crow	Corvus splendens Vieillot, 1817	OV	RS	А	LC	\rightarrow
47	Large-billed Crow	Corvus macrorhynchos tibetosinensis Kleinschmidt, O & Weigold, 1922	OV	RS	U	LC	\rightarrow
48	Rufous Treepie	Dendrocitta vagabunda (Latham, 1790)	OV	RS	0	LC	Ļ
	Cuculidae (4)						
49	Banded Bay Cuckoo	Cacomantis sonneratii (Latham, 1790)	IV	RS	U	LC	\rightarrow
50	Asian Koel	Eudynamys scolopaceus (Linnaeus, 1758)	OV	RS	С	LC	\rightarrow
51	Greater Coucal	Centropus sinensis (Stephens, 1815)	OV	RS	U	LC	\rightarrow
52	Grey-bellied Cuckoo	<i>Cacomantis</i> passerinus (Vahl, 1797)	IV	RS	0	LC	\rightarrow
	Dicaeidae (2)						

53	Pale-billed Flowerpecker	Dicaeum erythrorhynchos (Latham, 1790)	NV	RS	U	LC	\rightarrow
54	Thick-billed Flowerpecker	Dicaeum agile (Tickell, 1833)	NV	RS	0	LC	\rightarrow
	Dicruridae (2)						
55	Ashy Drongo	Dicrurus leucophaeus longicaudatus Jerdon, 1862	IV	RS	U	LC	?
56	Black Drongo	Dicrurus macrocercus Vieillot, 1817	IV	RS	С	LC	?
	Emberizidae (1)						
57	Red-headed Bunting	Emberiza bruniceps Brandt, JF, 1841	IV	WM	0	LC	\rightarrow
	Estrildidae (3)						
58	Tricolored Munia	Lonchura malacca (Linnaeus, 1766)	GV	RS	U	LC	\rightarrow
59	Indian Silverbill	Euodice malabarica (Linnaeus, 1758)	GV	RS	0	LC	\rightarrow
60	Scaly-breasted Munia	Lonchura punctulata (Linnaeus, 1758)	GV	RS	R	LC	\rightarrow
	Falconidae (2)						
61	Common Kestrel	Falco tinnunculus Linnaeus, 1758	CV	RS	R	LC	→
62	Laggar Falcon	Falco jugger Gray, JE, 1834	CV	RS	0	NT	\downarrow
	Fringillidae (1)						
63	Common Rosefinch	<i>Carpodacus erythrinus</i> (Pallas, 1770)	GV	LM (W)	R	LC	↓
	Glareolidae (1)						
64	Indian Courser	Cursorius coromandelicus (Gmelin, JF, 1789)	IV	RS	R	LC	\rightarrow
	Hemiprocnidae (1)						
65	Crested Treeswift	Hemiprocne coronata (Tickell, 1833)	IV	RS	С	LC	↓
	Hirundinidae (4)						
66	Asian House Martin	Delichon dasypus cashmeriense (Gould, 1858)	IV	LM (W)	С	LC	ſ
67	African Plain Martin	<i>Riparia paludicola</i> (Vieillot, 1817)	IV	RS	R	LC	Ļ
68	Pale Martin	<i>Riparia diluta</i> (Sharpe & Wyatt, 1893)	IV	RS	R	LC	?
69	Streak-throated Swallow	Petrochelidon fluvicola (Blyth, 1855)	IV	RS	0	LC	¢

	Irenidae (1)						
70	Jerdon's Leafbird	Chloropsis jerdoni (Blyth, 1844)	IV	RS	0	LC	\rightarrow
	Laniidae (3)						
71	Bay-backed Shrike	Lanius vittatus Valenciennes, 1826	CV	RS	С	LC	\rightarrow
72	Brown Shrike	Lanius cristatus Linnaeus, 1758	CV	WM	R	LC	Ļ
73	Long-tailed Shrike	Lanius schach erythronotus (Vigors, 1831)	CV	RS	0	LC	?
	Leiothrichidae (3)						
74	Common Babbler	Argya caudata (Dumont, 1823)	OV	RS	С	LC	\rightarrow
75	Jungle Babbler	Argya striata (Dumont, 1823)	OV	RS	А	LC	\rightarrow
76	Striated Babbler	Argya earlei (Blyth, 1844)	OV	RS	U	LC	\downarrow
	Locustellidae (1)						
77	Striated Grassbird	Megalurus palustris toklao (Blyth, 1843)	OV	RS	С	LC	?
	Meropidae (2)						
78	Green Bee-eater	Merops orientalis Latham, 1801	IV	RS	С	LC	↑
79	Blue-tailed Bee-eater	<i>Merops philippinus</i> Linnaeus, 1767	IV	RS	0	LC	\rightarrow
	Monarchidae (1)						
80	Indian Paradise-flycatcher	Hypothymis paradisi (Linnaeus, 1758)	IV	RS	R	LC	\rightarrow
	Motacillidae (6)						
81	Paddyfield Pipit	Anthus rufulus Vieillot, 1818	IV	RS	U	LC	\rightarrow
82	Richard's Pipit	Anthus richardi Vieillot, 1818	IV	WM	0	LC	\rightarrow
83	Tawny Pipit	Anthus campestris (Linnaeus, 1758)	IV	WM	U	LC	\rightarrow
84	Tree Pipit	Anthus trivialis (Linnaeus, 1758)	IV	LM (W)	U	LC	Ļ
85	White-browed Wagtail	Motacilla maderaspatensis Gmelin, JF, 1789	IV	RS	R	LC	\rightarrow
86	White Wagtail	Motacilla alba Linnaeus, 1758	IV	WM	0	LC	\rightarrow
	Musicapidae (8)						

87	Black Redstart	Phoenicurus ochruros phoenicuroides (Moore, F, 1854)	IV	LM (W)	R	LC	Ţ
88	Bluethroat	Luscinia svecica (Linnaeus, 1758)	IV	LM (W)	U	LC	\rightarrow
89	Indian Robin	Copsychus fulicatus (Linnaeus, 1766)	IV	RS	С	LC	\rightarrow
90	Isabelline Wheatear	Oenanthe isabellina (Temminck, 1829)	IV	WM	0	LC	\rightarrow
91	Oriental Magpie-Robin	Copsychus saularis (Linnaeus, 1758)	OV	RS	С	LC	\rightarrow
92	Pied Bush Chat	Saxicola caprata burmanicus Baker, ECS, 1922	IV	RS	С	LC	\rightarrow
93	Siberian Rubythroat	<i>Calliope calliope</i> (Pallas, 1776)	IV	WM	0	LC	\rightarrow
94	Tickell's Blue Flycatcher	Cyornis tickelliae Blyth, 1843	IV	RS	U	LC	\rightarrow
	Nectariniidae (2)						
95	Crimson Sunbird	Aethopyga siparaja seheriae (Tickell, 1833)	NV	RS	0	LC	\rightarrow
96	Purple Sunbird	Cinnyris asiaticus (Latham, 1790)	NV	RS	С	LC	\rightarrow
	Oriolidae (2)						
97	Black-hooded Oriole	Oriolus xanthornus (Linnaeus, 1758)	OV	RS	0	LC	\rightarrow
98	Indian Golden Oriole	Oriolus kundoo Sykes, 1832	OV	RS	U	LC	?
	Paridae (1)						
99	Great Tit	Parus major Linnaeus, 1758	IV	RS	0	LC	1
	Passeridae (2)						
100	House Sparrow	Passer domesticus indicus Jardine & Selby, 1831	OV	RS	С	LC	Ļ
101	Yellow-throated Sparrow	<i>Gymnoris</i> xanthocollis (Burton, 1838)	OV	RS	U	LC	\rightarrow
	Phalacrocoracidae (1)						
102	Little Cormorant	Microcarbo niger (Vieillot, 1817)	CV	RS	0	LC	?
	Phasianidae (4)						
103	Black Francolin	Francolinus francolinus (Linnaeus, 1766)	OV	RS	R	LC	\rightarrow
104	Common Quail	Coturnix coturnix (Linnaeus, 1758)	OV	LM (W)	R	LC	Ļ

105	Indian Peafowl	Pavo cristatus Linnaeus, 1758	OV	RS	С	LC	\rightarrow
106	Rain Quail	Coturnix coromandelica (Gmelin, JF, 1789)	OV	RS	R	LC	\rightarrow
	Phylloscopidae (3)						
107	Common Chiffchaff	Phylloscopus collybita tristis Blyth, 1843	IV	WM	0	LC	1
108	Greenish Warbler	Phylloscopus trochiloides (Sundevall, 1837)	IV	LM (W)	0	LC	1
109	Hume's Leaf Warbler	Phylloscopus humei (Brooks, WE, 1878)	IV	LM (W)	R	LC	\rightarrow
	Picidae (2)						
110	Black-rumped Flameback	Dinopium benghalense (Linnaeus, 1758)	OV	RS	С	LC	\rightarrow
111	Yellow-crowned Woodpecker	Leiopicus mahrattensis (Latham, 1801)	IV	RS	R	LC	\rightarrow
	Pittidae (1)						
112	Indian Pitta	Pitta brachyura (Linnaeus, 1766)	IV	LM (S)	0	LC	Ļ
	Ploceidae (2)						
113	Baya Weaver	Ploceus philippinus (Linnaeus, 1766)	OV	RS	0	LC	\rightarrow
114	Black-breasted Weaver	Ploceus benghalensis (Linnaeus, 1758)	OV	RS	0	LC	\rightarrow
	Psittaculidae (2)						
115	Plum-headed Parakeet	Psittacula cyanocephala (Linnaeus, 1766)	FV	RS	U	LC	Ļ
116	Rose-ringed Parakeet	Psittacula krameri borealis (Neumann, 1915)	FV	RS	U	LC	↑
	Pteroclidae (1)						
117	Chestnut-bellied Sandgrouse	Pterocles exustus hindustan Meinertzhagen, R, 1923	GV	RS	R	LC	\rightarrow
	Pycnonotidae (3)						
118	Himalayan Bulbul	Pycnonotus leucogenys (Gray, JE, 1835)	OV	RS	0	LC	↑
119	Red-vented Bulbul	Pycnonotus cafer (Linnaeus, 1766)	OV	RS	С	LC	↑
120	White-eared Bulbul	Pycnonotus leucotis (Gould, 1836)	OV	RS	0	LC	Ļ
	Rallidae (2)						

121	Brown Crake	Amaurornis akool (Sykes, 1832)	OV	RS	R	LC	?
122	Eurasian Coot	Fulica atra Linnaeus, 1758	OV	RS	R	LC	¢
	Ramphastidae (2)						
123	Brown-headed Barbet	Psilopogon zeylanicus (Gmelin, JF, 1788)	OV	RS	0	LC	\rightarrow
124	Coppersmith Barbet	Psilopogon haemacephalus indicus (Latham, 1790)	FV	RS	U	LC	¢
	Rhipiduridae (1)						
125	White-browed Fantail	Rhipidura aureola Lesson, R, 1831	IV	RS	0	LC	\rightarrow
	Sittidae (2)						
126	Indian Nuthatch	Sitta castanea Lesson, R, 1830	OV	RS	С	LC	?
127	Indian Spotted Creeper	Salpornis spilonota (Franklin, 1831)	IV	RS	R	LC	Ļ
	Stenostiridae (1)						
128	Grey-headed Canary- flycatcher	Culicicapa ceylonensis (Swainson, 1820)	IV	LM (W)	R	LC	\rightarrow
	Strigidae (2)						
129	Jungle Owlet	<i>Glaucidium</i> radiatum (Tickell, 1833)	CV	RS	R	LC	\rightarrow
130	Spotted Owlet	Athene brama (Temminck, 1821)	CV	RS	0	LC	\rightarrow
	Sturnidae (2)						
131	Pied Myna	Gracupica contra (Linnaeus, 1758)	OV	RS	С	LC	↑
132	Common Myna	Acridotheres tristis (Linnaeus, 1766)	OV	RS	A	LC	¢
	Sylviidae (2)						
133	Eastern Orphean Warbler	Sylvia crassirostris Cretzschmar,1827	OV	WM	0	LC	↑
134	Yellow-eyed Babbler	Chrysomma sinense (Gmelin, JF, 1789)	OV	RS	0	LC	\rightarrow
	Timaliidae (1)						
135	Tawny-bellied Babbler	Dumetia hyperythra (Franklin, 1831)	OV	RS	U	LC	Ļ
	Turdidae (2)						
136	Scaly Thrush	Zoothera dauma (Latham, 1790)	OV	RS	0	LC	Ļ

137	Tickell's Thrush	<i>Turdus unicolor</i> Tickell, 1833	OV	LM (W)	0	LC	?
	Turnicidae (1)						
138	Common Buttonquail	Turnix sylvaticus dussumier (Temminck, 1828)	OV	RS	R	LC	Ļ
	Upupidae (1)						
139	Eurasian Hoopoe	Upupa epops Linnaeus, 1758	OV	RS	U	LC	Ļ
	Vangidae (1)						
140	Common Woodshrike	Tephrodornis pondicerianus (Gmelin, JF, 1789)	IV	RS	U	LC	\rightarrow
	Zosteropidae (1)						
141	Indian White-eye	Zosterops palpebrosus (Temminck, 1824)	OV	RS	С	LC	Ļ

Note: RS: Residents, WM: Winter Migrants, LM: Local Migrants; LC: Least Concern; NT: Near Threatened; VU: Vulnerable; CV: Carnivorous; OV: Omnivorous; IV: Insectivorous; FV: Frugivorous; GV: Granivorous; NV: Nectarivorous; ?: Unknown; \rightarrow : Stable; \uparrow : Increasing; \downarrow : Decreasing; A: Abundant; C: Common; O: Ocassional; R: Rare; and U: Uncommon.

Among 62 bird families, Musicapidae was most diverse family (8 species; $RD_i=5.67$) (Table 2). Motacillidae (6 species; $RD_i = 4.25$) was second most diverse bird family.

Table 2.	Relative	diversity	(RD _i)	of	various	avian	families	in	the	Banaras	Hindu	University
campus o	f Varanas	i, India.										

Bird families	Number of bird species	Relative diversity (RD _i)
Accipitridae	3	2.12
Acrocephalidae	3	2.12
Aegithinidae	1	0.70
Alaudidae	5	3.54
Alcedinidae	3	2.12
Apodidae	2	1.41
Ardeidae	4	2.83
Bucerotidae	2	1.41
Burhinidae	2	1.41
Campephagidae	3	2.12
Caprimulgidae	3	2.12

Charadriidae	2	1.41
Ciconiidae	2	1.41
Cisticolidae	5	3.54
Columbidae	4	2.83
Coraciidae	1	0.70
Corvidae	3	2.12
Cuculidae	4	2.83
Dicaeidae	2	1.41
Dicruridae	2	1.41
Emberizidae	1	0.70
Estrildidae	3	2.12
Falconidae	2	1.41
Fringillidae	1	0.70
Glareolidae	1	0.70
Hemiprocnidae	1	0.70
Hirundinidae	4	2.83
Irenidae	1	0.70
Laniidae	3	2.12
Leiothrichidae	3	2.12
Locustellidae	1	0.70
Meropidae	2	1.41
Monarchidae	1	0.70
Motacillidae	6	4.25
Musicapidae	8	5.67
Nectariniidae	2	1.41
Oriolidae	2	1.41
Paridae	1	0.70
Passeridae	2	1.41
Phalacrocoracidae	1	0.70

Phasianidae	4	2.83
Phylloscopidae	3	2.12
Picidae	2	1.41
Pittidae	1	0.70
Ploceidae	2	1.41
Psittaculidae	2	1.41
Pteroclidae	1	0.70
Pycnonotidae	3	2.12
Rallidae	2	1.41
Ramphastidae	2	1.41
Rhipiduridae	1	0.70
Sittidae	2	1.41
Stenostiridae	1	0.70
Strigidae	2	1.41
Sturnidae	2	1.41
Sylviidae	2	1.41
Timaliidae	1	0.70
Turdidae	2	1.41
Turnicidae	1	0.70
Upupidae	1	0.70
Vangidae	1	0.70
Zosteropidae	1	0.70

Six foraging guilds were found in the study area. The campus avifauna is composed of insectivorous (53 bird species, 37.59%) followed by omnivorous (49 species, 34.75%), carnivorous (23 species, 16.31%), granivorous (8 species, 5.67%), frugivorous (4 species, 2.84%), and nectarivorous (4 species, 2.87%) (Fig. 2).

Figure 2. Feeding Guilds of avian species recorded in Banaras Hindu University campus of Varanasi, India.

According to the residential status of the birds, 118 bird species (83.69%) were residents, 12 bird species (8.51%) were winter migrants and 11 bird species (7.80%) were local migrants (Fig. 3).

Figure 3. Residential status of avian species recorded in Banaras Hindu University campus of Varanasi, India

Among the total species recorded in the campus, 43 (30.50%) species were uncommon, 36 (25.53%) species were occasional, 32 (22.69%) species were common, 25 (17.53%) species were abundant (Fig. 4).

Figure 4. Abundance status of avian species recorded in Banaras Hindu University campus of Varanasi, India

The pictures of some commonly found birds in the Banaras Hindu University campus are given the Figure 5.

Figure 5. Commonly found birds in the Banaras Hindu University campus, Varanasi, India

According to the IUCN Red List, out of the 141 species recorded, 135 species (95.74%) were Least Concern, five species (3.55%) and one species (0.71%) was vulnerable (Fig. 6).

Least Concern (LC) Near Threatened (NT) Vulnerable (VU)

According to the global population trend, the campus of Banaras Hindu University houses 68 globally stable bird species (48.22%), 33 globally decreasing species (23.40%), 24 globally increasing species (17.02%) and 16 species (11.35%) whose global population trend was unknown (Fig. 7).

Figure 7. Global status of avian species recorded in Banaras Hindu University campus of Varanasi, India

3.2. Discussion

The diversity of birds indicates the importance of the university campus as a suitable bird habitat. Banaras Hindu University consists of a mosaic of habitats, which house a rich diversity of bird species. Increase in the number of habitats results in increase of species diversity in a landscape (Martínez et al., 2015) due to an expansion in the number of partitionable niche dimensions (Cramer & Willig, 2005). The presence of rich vegetation diversity in the campus provided food, breeding sites and cover for birds. About 8.51% of birds were winter migrants in the campus, which indicated that study area provided food and habitat to visitors also along with resident birds. Avian species serve as potential indicators of integrity and stability of ecosystem structure and functions (Hossain & Aditya, 2016). Bird surveys give useful information for identifying priority areas for conservation. BHU campus is rich in avifauna but problems have arisen recently as the habitats of these birds are threatened and degrading due to increasing construction of buildings, unplanned activities, vehicular pollution, and rising human disturbances. If the destruction of different habitats and human interference is continued at the present rate, the avifauna of the campus will be adversely affected. The university campus calls for more effort in conservation and management of natural habitats and avifauna. The BHU campus is under severe threat of urbanization and anthropogenic impacts including disturbances and rampart rise in buildings and settlements at the cost of green cover. Further, many water bodies and wetlands in the campus are losing their existences. These modifications and disturbances are reducing the habitats for avifauna. Birds are sensitive to the local landscape and modification in vegetation patterns can disturb the avifauna in the area (Jain et al., 2005; Das et al., 2010). Constructions are important for education and development but the university administration needs urgent and sustainable actions for better management of the green cover and natural habitats. BHU is among the greenest landscapes in Varanasi city, which should be managed well to attract more bird species and make the campus habitable for various birds. Habitat heterogeneity should be maintained for the conservation of species richness in habitats (McGarigal & McComb, 1992; Chakdar et al., 2016). Therefore, some areas of the university should be kept out of the developmental activities. The degraded wetlands of the university should be restored to enhance habitat heterogeneity and biodiversity in the campus.

4. Conclusions

Present findings indicate that the availability of a variety of food resources and habitats in BHU campus are key factors for richness and the abundance of bird populations. BHU campus is home to 141 bird species including residents (118), winter migrants (12) and local migrants (11). University campuses are important urban green spaces for biodiversity research particularly avian and plant diversity. To increase human well-being and conserve nature and its services, natural habitats in the Banaras Hindu University campus need sustainable management.

Besides education and research, such large university can be used for conservation of ecosystem and its services in urban landscapes. Campus biodiversity-based educational and research should be promoted. Biodiversity in the university campuses provides a unique chance to link people with nature and its ecosystem services. Local people, students and university employees should be aware about the richness and ecosystem services linked with avian diversity. Specific awareness programme would be helpful in educating the public and people to protect the habitats and birds in university campuses (Rajashekara & Venkatesha, 2017). Management of habitats, periodic monitoring of bird populations and timely awareness play a key role in conservation of bird species in a landscape (Dendup et al., 2021).

Acknowledgements

We wish to thank the Head, the Dean and the Director, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi for the facilities provided for the conduct of the research.

References

- Adang K.L., Nsor C.A. & Tela M., 2015, Survey of avifauna of Gombe State University, Gombe, Nigeria. Int J Bio Bio Sci 4(2): 32-36.
- Ali A.M.S., Shanthakumar S.B., Kumar S.R., Chandran R., Marimuthu S.S. & Arun P.R., 2013, Birds of the Sálim Ali Centre for Ornithology and Natural History Campus, Anaikatty Hills, southern India. Journal of Threatened Taxa 5(17): 5288-5298.
- Ali S., 2002, The Book of Indian Birds (13th Revised Edition). Oxford University Press, New Delhi, 326pp.
- Ali S. & Ripley S.D., 1987, Compact handbook of the birds of India and Pakistan together with those of Bangladesh, Nepal, Bhutan and Sri Lanka. Oxford University Press, Delhi, India, 737pp.
- Banville M.J., Bateman H.L., Earl S.R. & Warren P.S., 2017, Decadal declines in bird abundance and diversity in urban riparian zones. Landscape and Urban Planning 159: 48-61.

Barth B.J., FitzGibbon S.I. & Wilson R.S., 2015, New urban developments that retain more remnant trees have greater bird diversity. Landscape and Urban Planning 136: 122-129.

Bibby C.J., Jones M. & Marsden S., 1998, Bird surveys. London: Expedition Advisory Centre.

- Chakdar B., Choudhury P., & Singha H., 2016, Avifaunal diversity in Assam University Capmus, Silchar, India. Journal of Threatened Taxa 8(1): 8369-8378.
- Chowdhury S., Aich U. & Shahadat O., 2014. Checklist of avian fauna of Dhaka University Campus, Bangladesh. International Journal of Fauna and Biological Studies 1(5): 56-60.
- Cramer M.J. Willig M.R., 2005, Habitat heterogeneity, species diversity and null models. Oikos 108(2): 209-218.
- Das S.K., Dash N., Ahmed R.A. & Debata S., 2010, Birds of North Orissa University Campus at the base of Similipal Biosphere Reserve, Orissa, India. Newsletter for Birdwatchers 50(2): 25-29.
- Dendup P., Wangdi L., Jamtsho Y., Kuenzang P., Gyeltshen D., Tashi T., ... & Tshering B., 2021, Bird diversity and conservation threats in Jigme Dorji National Park, Bhutan. Global Ecology and Conservation 30, e01771.
- Devi O.S., Islam M., Das J. & Saikia P.K., 2012, Avian-fauna of Gauhati University Campus, Jalukbari, Assam. The Ecoscan 6(3&4): 165-170.
- Dubey N.K., 2004, Flora of BHU campus. Banaras Hindu University, Varanasi.
- Fischer S.E. & Islam K., 2020, Identifying Bird-Window Collisions on a University Campus during Spring and Fall Migration. Proceedings of the Indiana Academy of Science 129(1): 47-55.
- Gill F., D. Donsker and P. Rasmussen (eds), 2020, IOC World Bird List (v10.2). URL: https://doi.org/10.14344/IOC.ML.10.2
- Goddard M.A., Dougill A.J. & Benton T.G., 2010, Scaling up from gardens: biodiversity conservation in urban environments. Trends in Ecology & Evolution 25(2): 90-98.
- Grimmett R., Inskipp C. & Inskipp T., 2016, Birds of the Indian Subcontinent: India, Pakistan, Sri Lanka, Nepal, Bhutan, Bangladesh and the Maldives. Bloomsbury Publishing.
- Gupta S.K., Kumar P. & Malik M.K., 2009, Avifaunal diversity in the university campus of Kurukshetra, Haryana. Journal of Threatened Taxa 1(12): 629-632.
- Guthula V.B., Shrotriya S., Nigam P., Goyal S.P., Mohan D. & Habib B., 2022, Biodiversity significance of small habitat patches: More than half of Indian bird species are in academic campuses. Landscape and Urban Planning, 228: 104552.
- Hossain A. & Aditya G., 2016, Avian diversity in agricultural landscape: records from Burdwan, West Bengal, India. Proceedings of the Zoological Society 69 (1): 38-51.
- Hostetler M.E. & Main M.B., 2001, Florida monitoring program: Transect method for surveying birds. Department of Widlife Ecology & Conservation, University of Florida.
- Hovick T.J., Elmore R.D., Fuhlendorf S.D., Engle D.M. & Hamilton R.G., 2015, Spatial heterogeneity increases diversity and stability in grassland bird communities. Ecological Applications 25(3): 662-672.
- IUCN, International Union for Conservation of Nature, 2021, https://www.iucnredlist.org/ [Accessed on November 10, 2021].
- Jain N.K., Patel S.N. & Patel M.V., 2005, Birds of Gujarat University Campus, Ahmedabad. Zoos' Print Journal 20(12): 2111-2113.
- La Torre-Cuadros M.D.L.Á., Herrando-Pérez S. & Young K.R., 2007, Diversity and structural patterns for tropical montane and premontane forests of central Peru, with an assessment of the use of higher-taxon surrogacy. Biodiversity and Conservation 16: 2965-2988.

- Liu J., Yu M., Tomlinson K., & Slik J.F., 2017, Patterns and drivers of plant biodiversity in Chinese university campuses. Landscape and Urban Planning 164: 64-70.
- Liu J., Zhao Y., Si X., Feng G., Slik F. & Zhang J., 2021, University campuses as valuable resources for urban biodiversity research and conservation. Urban Forestry & Urban Greening 64, 127255.
- Martínez E., Rös M., Bonilla M.A. & Dirzo R., 2015, Habitat heterogeneity affects plant and arthropod species diversity and turnover in traditional cornfields. PLoS One 10(7), e0128950.
- McFrederick Q.S. & LeBuhn G., 2006, Are urban parks refuges for bumble bees Bombus spp.(Hymenoptera: Apidae)? Biological Conservation 129(3): 372-382.
- McGarigal K. & McComb W.C., 1992, Streamside versus upslope breeding bird communities in the central Oregon Coast Range. The Journal of Wildlife Management 56 (1): 10-23.
- McKinney M.L., 2002, Urbanization, Biodiversity, and Conservation. The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. BioScience 52(10): 883-890.
- Melles S., Glenn S. & Martin K., 2003, Urban bird diversity and landscape complexity: speciesenvironment associations along a multiscale habitat gradient. Conservation Ecology 7(1), 5.
- Namba T., Yabuhara Y., Yukinari K. & Kurosawa R., 2010, Changes in the avifauna of the Hokkaido University campus, Sapporo, detected by a long-term census. Ornithological Science 9(1): 37-48.
- Nayak A. & Ghosh S., 2020, Moth diversity (Lepidoptera: Heterocera) of Banaras Hindu University, Varanasi, India: a preliminary checklist. Notulae Scientia Biologicae 12(3): 592-607.
- Palita S.K., Ponkshe A.V. & Dhar U., 2011, Habitat enrichment and its impact on avian diversity: a study at GBPIHED, Kosi-Katarmal, Uttarakhand, India. Current Science 100(10): 1681-1689.
- Palliwoda J., Kowarik I. & von der Lippe M., 2017, Human-biodiversity interactions in urban parks: The species level matters. Landscape and Urban Planning 157: 394-406.
- Rajashekara S. & Venkatesha M.G., 2017, Seasonal incidence and diversity pattern of avian communities in the Bangalore University Campus, India. Proceedings of the Zoological Society 70(2): 178-193.
- Raynor E.J., Cable T.T. & Sandercock B.K., 2017, Effects of Tamarix removal on the community dynamics of riparian birds in a semiarid grassland. Restoration Ecology, 25(5): 778-787.
- Shaffer H.B., 2018, Urban biodiversity arks. Nature Sustainability 1(12): 725-727.
- Singh H., Singh A.K., Singh J.S., 2019, Contribution of Street Trees to Carbon Sequestration: A Case Study from Varanasi, India. International journal of plant and environment 5(01): 9-15.
- Sohil A. & Sharma N., 2020, Bird diversity and distribution in mosaic landscapes around Jammu, Jammu & Kashmir. Acta Ecologica Sinica 40(4): 323-338.
- Surasinghe T.D. & De Alwis C., 2010, Birds of Sabaragamuwa University campus, Buttala, Sri Lanka. Journal of Threatened Taxa 2(5): 876-888.
- Vallejo Jr, B.M., Aloy A.B. & Ong P.S., 2009, The distribution, abundance and diversity of birds in Manila's last greenspaces. Landscape and Urban Planning 89(3-4): 75-85.

- Vallejo Jr, B., Aloyab, A., Ong, P., Tamino, A. & Villasper J., 2008, Spatial patterns of bird diversity and abundance in an urban tropical landscape: The University of the Philippines (UP) Diliman Campus. Science Diliman 20(1): 1-10.
- Wheeler Jr, A.G., 2008, College campuses: patches of insect diversity, opportunities for entomological discovery, and means for enhancing ecological literacy. American Entomologist 54(1): 18-35.
- Zhang W., Liang C., Liu J., Si X. & Feng G., 2018, Species richness, phylogenetic and functional structure of bird communities in Chinese university campuses are associated with divergent variables. Urban Ecosystems 21(6): 1213-1225.