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Abstract. In the context of growing global urbanization and climate fluctuations, understanding the 

development of forest ecosystems in terms of their ability to remove atmospheric carbon is of 

increasing interest. Its content in the atmosphere continues to increase due to the burning of fossil 

fuels and deforestation. Airborne laser scanning technology has become widely used in assessing 

the biomass of trees by remotely registering such taxation indicators of trees, such as the width of 

the crown and the height of the tree. There are many allometric biomass models of different tree 

species in different climatic conditions, but allometric models for estimating biomass by remote 

methods are presented by single works. 

The authors use the base of harvest data of 138 sample trees of larch (Larix spp.) and 93 

ones of stone pines (Pinus L. subsection Cembrae Loud.) growing on Eurasia with measured 

indicators of tree height, crown width, as well as the biomass of the trunk, foliage, branches and 

roots. For all components of aboveground biomass, a positive relationship with the crown width and 

the tree height was established. 

The results obtained give an vision of how the structure of the biomass of equal-sized trees 

of such species as larch and stone pine can differ, whether this structure can change in the climatic 

gradients of Eurasia, what can be the contribution of climate variables to the explanation of the 

variability of tree biomass, and what are the potential possibilities of laser technology for 

recognizing tree species at the level of individual trees. 
 

Keywords: hydrothermal gradients, biomass components; laser sensing of trees, allometric models, 

average January temperature, annual precipitation. 

 
 

1. Introduction 

 

In the context of growing global urbanization and climate fluctuations, understanding 

the development of forest ecosystems in terms of their ability to absorb atmospheric 

carbon is of increasing interest. Carbon content in the atmosphere continues to 

increase due to the burning of fossil fuels and deforestation (Colombo, 2008). Due to 

the complexity of the morphometric structure of forest communities, predictive 

models that reflect their response to climate change need to take into account not only 

environmental factors, but also the structural parameters of trees and stands (Grote et 

al., 2011). With the current extremely rapid changes in the technical and software 

support of remote sensing methods for forest ecosystems, the assessment of their 

biomass and carbon deposition capacity is becoming quite feasible. The possibility of 
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such estimates largely depends on the rapid and fairly correct assessment of the 

structural parameters of the tree canopy, and first of all, the crown sizes and the tree 

height. 

In recent years, significant advances have been made in the field of individual 

tree detection and recording of crown shape and structure (crown width, crown 

projection area and volume, tree height) based on new high-performance algorithms 

and the use of unmanned aerial vehicles (UAVs, or drones) (Lefsky et al., 2003; 

Hyyppä et al., 2008; Dalponte, 2018; Goodwin et al., 2006; Jing et al., 2012; Neuville 

et al., 2021). The airborne laser sensor measures the distance to the structural 

elements of a tree and to the ground, recording the time interval between the emission 

and the return of laser pulses (Lefsky et al., 2003). In recent years, a fundamentally 

new laser-location method for shooting the forest canopy has appeared, which allows 

processing huge amounts of laser sensing data in real time, almost simultaneously 

with making measurements, not only of the total forest cover, but also of the totality 

of individual trees (Næsset & Økland, 2002; Danilin et al., 2005; Ørka et al., 2009; 

Hayashi, 2014). Thus, significant progress in assessing the biomass and carbon-

depositing capacity of forest ecosystems today can be achieved by laser registration 

from UAVs, primarily, such structural elements of a tree as the crown width and the 

tree height, which determine the structure of the tree biomass. 

As early as the end of the XIX century, R. Hartig, using 52-year-old spruce 

trees, showed that with a change in the crown width in the range from 1.5 to 3.0 m, 

the biomass of the green shoots increases from 15 to 119 kg (Hartig, 1896). A similar 

pattern was later shown by A. Dengler on the example of Scots pine at the age of 

150-160 years: with a change in the crown projection area in the range from 10 to 71 

m
2
, the needle biomass of a tree increases from 8.0 to 51.4 kg (Dengler, 1937). 

Already the first attempts of correlation analysis of the mass of spruce and fir needles 

of different ages and the projection area of the tree crown showed the presence of a 

close relationship between these indicators, while the correlation coefficient varied 

from 0.91 to 0.97 (Kern, 1962). Having analyzed the relationship between the foliage 

biomass and various parameters of the crown on the example of 26 hinoki 

(Chamaecyparis obtusa) trees aged from 9 to 76 years, M. Kajihara (1981) found that 

this relationship with the area of the crown projection is less close than with the 

volume of the crown mantle (its foliaged part) (0.849<0.906). He obtained a similar 

conclusion for sugi (Cryptomeria japonica) (Kajihara, 1980). Attempts were also 

made to relate the crown biomass to its volume (Burger, 1939; Kern, 1962; Westman 

& Whittaker, 1975), but due to the complexity and lack of accuracy in determining 

the crown volume, they were not developed. For three climatic zones of Siberia, 

using extensive harvest data, the dependence of the crown biomass of Scots pine on 

the crown width was proposed (Pozdnyakov et al., 1969). 

Unfortunately, subsequent studies under the International Biological Program 

and other environmental programs did not pay sufficient attention to the assessment 

of crown parameters as predictors of tree biomass. When processing model trees on 

the sample plots, the researchers usually took into account tree age, height, and stem 

diameter at breast height (DBH), since their totality explained 90-99% of the 

variability of a particular component of the biomass in ground-based taxation. 
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Sometimes the distance from the stem base to the crown base was also measured, but 

rarely the crown width was measured. In addition, due to the irregular shape of the 

crown projection, the accuracy of measuring crown width was questionable, in any 

case, much lower than the accuracy of measuring the DBH. It was believed that the 

crown width does not significantly contribute to the explanation of the variability of 

the tree's biomass, and the main contribution is provided by the DBH. Today, the 

proportion of model trees with measured crown width and tree height in their total 

number is from 10 to 30 % in different tree species. For example, for alder in Eurasia, 

there are definitions of aboveground biomass in relation to the DBH - 62, in relation 

to DBH, tree height and crown width – only 23, and the root biomass of alder is 

determined only in 4 trees (Kapustinskaite & Rusečkas, 1982; Usoltsev, 2016). 

Currently, the basis for estimating forest biomass is its allometric dependences 

on DBH and, more rarely, on DBH and tree height, and thousands of such models 

have been published for hundreds of tree species. For example, about 6,000 such 

allometric models of tree biomass have been published for China alone (Luo et al., 

2020). As far as we know, similar allometric models designed to determine the 

biomass by remote registration of the crown width and height of trees are rare and 

extremely insufficient in the literature (Goodman et al., 2014; Jucker et al., 2017; Lau 

et al., 2019; Usoltsev et al., 2019a; Machimura et al., 2021). This vacuum should be 

filled as soon as possible due to the obvious prospects for assessing forest biomass 

using laser sensing techniques. 

Since trees of different species have a specific crown configuration, this 

specificity is now successfully recognized using airborne and ground-based laser 

sensors (Puttonen et al., 2011; Zhen et al., 2016; Åkerblom et al., 2017; Calders et al., 

2020; Van Den Berge et al., 2021). With multiple registration of reflected laser 

pulses, it is possible to successfully distinguish plant species by the pattern of 

grouping of point clouds of the crown profile and its outline (Næsset et al., 2004; 

Puttonen et al., 2010; Zhang & Hu, 2012). 

An effective method of vegetation remote sensing is the laser identification of 

tree species based on measurements of spectral brightness and reflection coefficients 

(Belov & Artsybashev, 1957; Jaaskelainen et al., 1994; Atkinson et al., 1997; Martin 

et al., 1998; Knight et al., 2004; Sobhan, 2007). Forests are usually represented by 

combinations of different species of different ages, and different physiological 

conditions. This results in significant intraspecific spectral variability (Jensen, 2005). 

The solution is provided by artificial intelligence methods, such as the logic of fuzzy 

sets and neural networks. They are widely used in multispectral analysis of laser 

images  (Mas & Flores, 2008; Hyyppä et al., 2008; Voss & Sugumaran, 2008; 

Dalponte et al., 2008).  

A neural network approach has been developed to identify tree species at the 

level of individual trees from lidar and hyperspectral images. It is shown that lidar 

data combined with hyperspectral images can not only detect individual trees and 

determine the size of tree crowns, but also simultaneously identify several tree 

species using the developed algorithm. The consequence of integrating these two data 

sources is that they can replace traditional field measurements (Oki et al., 2006; 

Zhang & Qiu, 2012; Hennessy et al., 2020). In addition, the labor-consumed 
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traditional technology of ground-based assessment of stand biomass on sample plots 

using allometric models is now being successfully replaced by ground-based laser 

scanning technology (Campbell & Borden, 2005; Blanchette et al., 2015) and 

spherical image technology. Of these, the latter is characterized by increased 

accuracy, significant time and cost savings (Dai, 2021). 

At the current rate of development of laser and IT-tools, it is possible to 

distinguish between such coniferous species as deciduous larch and evergreen stone 

pine. Lidar from a flying drone will be able to distinguish them in the summer by 

different spectral brightness (Belov & Artsybashev, 1957; Masaitis et al., 2013; 

Tolkach & Sayevich, 2016; Neuville et al., 2021). In winter, the monopodial structure 

of the larch crown is distinguished from the sympodial structures of deciduous leaved 

species by the specific grouping of laser pulses in the tree crown profile (Shlyakhter 

et al., 2001; Huang & Mayer, 2007).  

The crown width indicator was used to estimate the aboveground biomass of 

multi-stemmed trees and shrubs instead of the DBH, since in such cases the DBH was 

difficult to measure and not informative enough (Leontiev, 1950; Ohmann et al., 

1976). In particular, two-factor allometric models relating aboveground biomass to 

the tree (bush) height and the crown width were developed for saxaul (Haloxylon 

Bunge) growing in the deserts of Central Asia (Veyisov & Kaplin, 1976): 

 

                                  lnPa = a0 + a1 lnDcr + a2 lnH,                               (1) 
    

where Pa is aboveground biomass, kg; Dcr is crown width, m; Н is brush height, m.  

The involving temperature and precipitation as additional independent 

variables in allometric models of biomass significantly improved the accuracy of 

estimates and made it possible to predict changes in biomass during climate shifts (Fu 

et al., 2017; Zeng et al., 2017). However, the models were developed for the 

aboveground biomass of trees as a whole, without dividing it into components, 

without taking into account the crown width, and did not take into account the 

contribution of climate variables to the explanation of biomass variability. 

In the proposed study, we intend to: (1) determine whether there are 

statistically significant differences in the biomass structure determined by the crown 

width and tree height between deciduous larches and evergreen five-needled (stone) 

pine, (2) find out how the components of biomass relate not only to the taxation 

indicators of trees, but also to temperature and precipitation fluctuations in Eurasia, 

and (3) what contribution to the explanation of the variability of the components of 

biomass is made by the taxation indicators of trees, species affiliation and climate 

variables. 

 

2. Materials and methods 

 

To solve these problems, we used the author's base of harvest data on the biomass of 

trees of forest-forming species of Eurasia in the amount of 15,200 trees (Usoltsev, 

2020). From it, 138 and 93 model trees were selected, respectively, larches (Larix 

spp.) and five-needled (stone) pines (Pinus L. subsection Cembrae Loud.) with 
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measured taxation and biomass indicators (Table 1). The genus Larix spp. is 

represented by the species L. decidua Mill., L. sibirica L., L. cajanderi Mayr., L. 

gmelinii (Rupr.) Rupr., L. leptolepis Gord. Five-needled (stone) pines are represented 

by two species: mainly Pinus sibirica Du Tour. and to a lesser extent P. koraiensis S. 

et Z. The experimental material was processed using the Statgraphics sofrware 

(http://www.statgraphics.com/). 

 
Table 1. Statistics of database samples for larches and stone pines in Eurasia 

Statistic 

designation* 

Indices analyzed(**)
 

H Dcr Ps Pb Pf Pa Pr Pr/Pa 

Larch (Larix spp.) 

Mean 12.8 3.2 114.0 16.6 2.8 133.45 69.5 0.32 

Min 1.4 0.3 0.01 0.004 0.004 0.02 1.66 0.08 

Max 34.0 13.0 1964.6 448.3 35.1 2447.9 768.4 0.78 

SD 6.6 2.0 230.7 42.9 4.3 274.3 131.6 0.15 

CV,% 51.5 61.0 202.3 258.3 152.6 205.5 189.2 45.9 

n 138.0 138.0 138.0 138.0 138.0 138.0 66.0 66.0 

Stone pine (Pinus L. subsection Cembrae Loud.) 

Mean 7.9 2.4 49.2 10.3 4.9 64.5 - - 

Min 1.5 0.35 0.24 0.09 0.03 0.73 - - 

Max 26.8 7.7 724.5 135.5 47.7 904.2 - - 

SD 6.4 1.5 129.9 23.9 9.4 162.2 - - 

CV,% 80.7 60.9 263.8 231.7 191.6 251.6 - - 

n 93.0 93.0 93.0 93.0 93.0 93.0 1.0 1.0 

*Min=minimum, Max=maximum, SD=standard deviation, CV=coefficient of variation, n= 

number of observations. 
(**)

Ps, Pb, Pf, Pa, Pr  = stem over bark, branches, foliage, aboveground, root biomass in a completely dry 

condition correspondingly, kg. 

 

3. Results and discussion 

 

Based on the analysis of published data (Ohmann et al., 1976; Veyisov & Kaplin, 

1976; Fu & Wu, 2011; Lines et al., 2012; Goodman et al., 2014; Usoltsev et al., 

2019a), we concluded that the most informative independent variables in estimating 

tree biomass by remote sensing are the crown width and tree height according to 

model (1), and it is possible to do without measuring the DBH (Jucker et al., 2017).   

The structure of the two-factor allometric model is adopted: 

 

                                      lnPi =a0+a1(lnDcr) +a2(lnН) +a3X ,                                (2) 

 

where Pi = biomass i-th tree component. In order to reveal the difference between 

larch and stone pine in tree biomass (or its absence), the binary variable X is 

introduced in the model (2) as an additional independent variable, which encodes data 

for larch (X = 0) and stone pine (X = 1). The results of calculating the model (2) are 

shown in Table 2.  

 

http://www.statgraphics.com/
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Table 2. Results of calculation of the model (2)  
 Dependent variables 

lnPs lnPf lnPb lnPa 
a0

*
 -3.0209 -2.9697 -2.7930 -2.1092 

lnDcr 0.9126 1.7579 1.8346 1.1370 

lnН 2.3268 0.6608 1.1064 1.9513 

X 0.1028 1.1570 0.4516 0.2477 

adjR
2
 0.962 0.838 0.905 0.950 

SE 0.43 0.64 0.59 0.46 

*The intercept hereafter is adjusted according to Baskerville’s (1972) logarithmic 

transformation; adjR 
2
= the coefficient of determination, adjusted for the number of variables; SE = 

the standard error of the equation. 

 

The binary variable X in model (2) is significant at the level of p < 0.001. The 

exception is the binary variable of the model for stem biomass (t = 1.60 < t95 = 1.96). 

The binary variable for all components of the biomass has a plus sign, which means 

that for the same values of tree height and crown width, the biomass of all 

aboveground components in stone pines is significantly greater than in larches.  

To answer the second question of our study, the available data of the 

geographical coordinates of the model trees are plotted on the maps of the average 

January temperature 

(https://store.mapsofworld.com/image/cache/data/map_2014/currents-and-

temperature-jan-enlarge-900x700.jpg) and average annual precipitation 

(http://www.mapmost.com/world-precipitation-map/free-world-precipitation-map/) 

(World Weather Maps, 2007) (Figs 1 and 2) and were simultaneously combined with 

the taxation and biomass indicators of trees in one common matrix (Usoltsev et al., 

2020a), which was then included in the regression analysis procedure (Usoltsev et al., 

2019b). The rejection of the use of the average annual temperature in favor of the 

average January temperature was justified earlier (Usoltsev et al., 2019b; 2020a). 

Based on the fulfilled analysis, the structure of the model is proposed, which 

includes both morphometric characteristics of trees and climatic indicators as 

independent variables:  
      
 lnPi =a0+a1(lnDcr) +a2(lnН)+a3X +a4[ln(T+40)]+a5(lnPR)+a6[ln(T+40)]·(lnPR),   (3) 

 

where Т is average January temperature, °C; PR is average annual precipitation, mm; 

[ln(T+40)]·(lnPR) is a combined variable that characterizes the joint effect of 

temperature and precipitation. Since the average temperature of January in high 

latitudes has a negative value, for its logarithm transforming in the model (3), it is 

modified to the form (T+40). 
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Figure 1. Allocation of the harvest biomass data of 138 и 93 larch (red circles) and stone pine (yellow 

circles) sample trees, respectively, on the map of January isotherms, °C (World Weather Maps, 

2007) 
 

  
Figure 2. Allocation of the harvest biomass data of 138 и 93 larch (red circles) and stone pine (yellow 

circles) sample trees, respectively, on the map of annual precipitation, mm  (World Weather Maps, 

2007). 

 

The mentioned database (Usoltsev, 2020) contains 790 and 170 model trees of 

larch and stone pine, respectively, with measured values of the component 

composition of the biomass, as well as the age, height and DBH of trees. As it was 

mentioned above, the harvest data containing the values of biomass and crown width 

are usually significantly less than the biomass and measurements of the tree stem. As 

can be seen in Table 1, we were able to include in our analysis only 138 and 93 

model larch and stone pine trees with crown width values, i.e. 6 and 2 times less, 

respectively, then there are in the database. Of the 138 and 93 model trees with crown 

width measurements, only 66 and 1 tree, respectively, had measured root biomass 

values. A similar disparity of aboveground and underground biomass data is typical 
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for all published databases on tree and stand biomass (Cannell, 1982; Falster et al., 

2015; Schepaschenko et al., 2017). Due to the insufficient representation of data on 

the root biomass, we calculate models (3) for the relative indicator, namely for Pr/Pa, 

and combine both species into one general model, encoding them with the binary 

variable X. 

The results of calculating the models (3) are shown in Table 3. 

 

Table 3. The results of calculating the models (3) 

ln(Y) а0 lnDcr lnH X ln(T+40) lnPR 
[ln(T+40)]

× (lnPR) 
adjR

2
 SE 

ln(Ps) -13.0615 0.9349 2.3019 0.0222 3.1012
(*)

 1.6365
(*)

 -0.5001
(*)

 0.962 0.43 

ln(Pf) 5.8853 1.7812 0.7572 1.3459 -1.6279
(*)

 -1.5105
(*)

 0.2729
(*)

 0.848 0.63 

ln(Pb) -22.7574 1.8804 1.0617 0.2980 6.2132 3.2550 -1.0031 0.907 0.58 

ln(Pa) -16.0726 1.1690 1.9166 0.1362 4.3287 2.2717 -0.6968 0.951 0.45 

ln(Pr/Pa) -0.4742 0.9447 -0,7325 - - - - 0.463 0.35 

 
(*)

Regression coefficients are not significant at p < 0.05. 
 

The regression coefficients of the models presented in Table 3 are significant at 

the level of p < 0.001, with the exception of the variables marked as (*) for the 

biomass of stems and foliage, which are not significant at the level of p < 0.05. The 

geometric interpretation of models (3) (Fig. 3) for larch biomass is obtained by 

substituting in (3) the average H and Dcr values for larch taken from Table 1. Since 

we compare the biomass of two species under the condition of equal tree sizes, these 

sizes should be the same for both species. 

As we can see in Figure 3, the dependence of all the biomass components of 

equal-sized larch trees upon temperature and precipitation is described by a propeller-

shaped 3D surface. In cold regions, as precipitation increases, the biomass increases, 

but as one moves to warm regions, it is characterized by an opposite or neutral trend. 

As the temperature increases in wet regions, the biomass decreases, but as the 

transition to dry conditions, it increases or does not respond to temperature changes, 

as can be observed with respect to the needle biomass. During the transition from wet 

to dry conditions, the biomass of needles increases regardless of the level of annual 

precipitation. For stone pines, Figure 3 is repeated, but the 3D surfaces for the 

biomass of branches, trunks, and aboveground are shifted up along the ordinate axis 

according to models (3) by 35, 2, and 15%, respectively. Equal-sized stone pine trees 

have the needle biomass that is almost three times greater than that of larch. 

In other woody species, in particular, two-needled pines, oak, spruce, and fir, 

the patterns sometimes differ in some components from those shown in Figure 3, and 

sometimes are opposite in all components (Usoltsev et al., 2019b; Usoltsev et al., 

2020a, b). Apparently, this is due to the biological properties of tree species and to 

the peculiarities of the distribution of assimilates of the tree into its various 

components  (Poorter et al., 2015; Zanotelli et al., 2013; Xiong et al., 2021; Liu et al., 

2021; Rehling et al., 2021). 

In the model for Pr/Pa, only the regression coefficients for lnDcr (t = 7.6 > t999 

=3.29) and for lnH (t = 5.0 > t999 = 3.29) were significant (Fig. 4). 
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Figure 3. Relationships of larch biomass components with average January 

temperature (T) and average precipitation (PR). See Table 1 for the 

designations  

 

 
Figure 4. Dependence of the Pr/Pa ratio of larch and stone pine trees on the crown 

width and tree height 
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The answer to the third question of our study can be obtained from the data in 

Table 4. 

 

Table 4. Contribution of the independent variables of equations (3) to the explanation 

of the variability of the dependent variables, % 

ln(Y) 

Independent variables 

lnDcr  

(I) 

lnH 

(II) 
I+II Х 

ln(Tm+40) 

(III) 

lnPRm  

(IV) 

[ln(Tm+40)] 

× (lnPRm) 

(V) 

III+IV+

V 

ln(Ps) 24.8 63.8 88.6 0.6 3.6 3.5 3.7 10.8 

ln(Pf) 43.5 19.4 62.9 30.6 1.8 2.9 1.6 6.5 

ln(Pb) 46.1 27.2 73.3 6.8 6.7 6.4 6.8 19.9 

ln(Pa) 30.2 51.8 82.0 3.3 5.0 4.7 5.0 14.7 

X ± σ
(*)

 36.2 

±10.3 

40.6 

±20.8 

76.7 

±11.1 

10.3 

±13.8 

4.3 

±2.1 

4.4 

±1.5 

4.3 

±2.2 

13.0 

±5.7 
(*)

X ± σ = mean value ± standard deviation. 

 

We can see in Table 4 that the average contributions of tree taxation indices, 

species affiliation, and climate variables to the explanation of the variability of 

biomass components are 76.7, 10.3, and 13.0%, respectively. The contribution of the 

binary variable to the explanation of the variability of the biomass of the trunk, 

branches and aboveground is small and ranges from about 1 to 7%. The binary 

variable makes the greatest contribution to the explanation of the variability in the 

needle biomass (about 31%), which is consistent with an almost three-fold difference 

in the biomass of larch and stone pine needles of equal trees. 

The results obtained should be considered as preliminary, in particular, due to 

the insufficient representation of harvest data in all temperature and precipitation 

ranges in Eurasia. For example, there are no harvest data on Larix gmelinii var. 

olgensis A. Henry, native to the Far East, and on L. principis-rupprechtii Mayr, L. 

potaninii Batal., L. mastersiana Rehd. et Wils., L. griffithii Hook. f. et Toms., native 

to central and southern China, for which only allometric models have been published 

(Luo et al., 2020). The natural growth area of stone pines is much smaller compared 

to larches, and the mentioned uncertainty about the change in its biomass in climatic 

gradients applies primarily to stone pines. 

Nevertheless, the results provide an idea of how much the biomass structure of 

equal-sized trees of such species as larch and stone pine can differ, whether this 

structure can change in the climatic gradients of Eurasia, and what the contribution of 

climate variables to the explanation of the variability of tree biomass can be. 

 

4. Conclusions 

1. On the basis of the author's database on the biomass of larch and stone pine in 

Eurasia in the amount of 138 and 93 model trees, respectively, it was found that 

the above-ground biomass of trunks and branches of stone pine trees of equal 

crown width and equal tree height is 15, 2, and 35% more than that of larch. 
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According to the biomass of needles of trees, a three-fold excess of stone pine 

over larch was found. 

2. The introduction of temperature and precipitation as additional independent 

variables into the allometric model showed that the biomass of equal-sized trees is 

described by a propeller-shaped 3D dependence. In cold regions, as precipitation 

increases, the biomass increases, but as one moves to warm regions, it is 

characterized by an opposite or neutral trend. As the temperature increases in wet 

regions, the biomass decreases, but as the transition to dry conditions it increases 

or does not respond to temperature changes, as can be observed with respect to the 

needle biomass. During the transition from wet to dry conditions, the biomass of 

needles increases regardless of the level of annual precipitation. 

3. The average contribution of tree taxation indices, species affiliation, and climate 

variables to the explanation of the variability of biomass components is 77, 10, 

and 13%, respectively. 

4. The results obtained can be useful in monitoring forest biomass based on laser 

sensing. 
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