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Abstract The paper investigates gains ifiop@ance of density forecasts from models
using disaggregate data when forecasting aggregaies. The problem is considered within
a restricted VAR framework with alternative seteg€lusion restrictions. Empirical analysis

of Polish CPI m-o-m inflation rate (using its 14bstategories for disaggregate modelling) is
presented. Exclusion restrictions are shown to awprdensity forecasting performance (as
evaluated using log-score and CRPS criteria) reltitee aggregate and also disaggregate
unrestricted models.
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Introduction

The paper focuses on the question whether pothtraparticular density
forecasts of univariate series can be improvedgusiisaggregate infor-
mation (assuming that it is available) — or moreegally, whether economic
fluctuations are more accurately modeled at theezgde or at the disaggre-
gate level. The crucial assumption being relevame hs that a multivariate
model for disaggregate data is used only as aftoadbtaining the implied
univariate forecast of the aggregate series. Tigeeggting weights are as-
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sumed to be known and fixed. There is no direct rrewkssary relationship
between forecasting power in the disaggregate (vaulate) context and the
validity of the implied univariate (aggregate) foast. Therefore the usual
statistical procedures used for forecast evaluatiomodel comparison ap-
plied at the disaggregate level have to be adjustedder to take the context
into account.

The probabilistic approach to inference have kggning popularity in
the systematic manner over time. In particular &véke the recent econom-
ic crisis have made it evident that uncertaintyrdifigation is an inherent
part of the forecasting process. Some problemsséen to be uncomplicat-
ed when point forecast perspective is taken begoore complex when one
has the density forecasting perspective in minag péper investigates con-
sequences of the aggregation for uncertainty ohjggegate forecast. How-
ever, an alternative perspective on the problemthés general question
whether economic fluctuations are better modelethataggregate or the
disaggregate level, given some specific model ekass

A framework for formal investigation of the probie mentioned above
builds on a Gaussian VAR specification with resimics. Usage of such
relatively simple models is dictated by complexihat increases rapidly
with the dimension (i.e. disaggregation level). Brer, as the problem
considered here can be interpreted in the confesdrable selection (result-
ing in a very large number of possible exclusiostrietions), numerical
complexity becomes quite considerable even withia telatively simple
model class consisting of Gaussian VARs.

The objective of the paper is to investigate eiogirevidence support-
ing the use of disaggregate data for aggregatedsteg. The application
under consideration deals with forecasting Polismtimy CPI inflation rate
(relative to the previous month) using 164 obséowaton growth rates of
14 price sub-indices. A pseudo real-time forecgstxperiment is per-
formed and out-of-sample predictive performanceaihpeting specifica-
tions is evaluated over a verification window catigag of the last 44 obser-
vations. All the criteria (those relevant for pofotecast and density fore-
casts) show the evidence of substantial gains ronsidering a large menu
of competing specifications at the disaggregatellddowever, as the total
number of alternative restricted specificationseimormous, a stochastic
search algorithm was used to explore the modelespac

The results suggest that the problem of aggregatdisaggregate mod-
eling for the sake of aggregate forecasting istrigial and illustrates a po-
tential for gains in predictive performance, bustrequires some form of
promoting parametric parsimony — as attributing -aero probability to
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models with zero restrictions might be interpredsdntroducing some form
of shrinkage within the overall (unrestricted) mode

The rest of the paper is organized in the follguwway: firstly, the gen-
eral problem of forecasting of the aggregate sdsgaresented in a more
detailed way. Secondly, a formal model framewor&dukere is described,
with the relevant forecasting methodology. Thirdiyethods for evaluation
of density forecasts are outlined. Fourthly, thepieital illustration is pro-
vided. A summary and some remarks about possibéetiins for further
developments conclude.

1. Aggregate vs. Disaggregate Approach to Forecasting

A natural approach to forecasting is to use a mimdeulated directly in
terms of the quantity of interest itself. Howeviégne considers the context
of e.g. inflation forecasting, an approach thatfien taken by practitioners
IS to obtain the aggregate forecast using indiVidlisaggregate inflation
forecasts for a number of sub-categories.

The aggregate approach seems to be conceptualhesiand more ele-
gant. Moreover, due to the lack of the dimensidygdroblem, at the aggre-
gate level it is possible to make use of more simaited models. Aggrega-
tion could have a regularizing impact as well. Esample, one could expect
that in certain cases the assumption of say hordaste Gaussian errors is
more likely to hold at the aggregate level.

On the contrary, at the disaggregate level ongdagal with increased
heterogeneity. Another issue is that of modelingetelencies across the
variables in a multivariate process which mightdballenging. However,
there is more information available, and sometiaregxpert knowledge can
be utilized at the disaggregate level only.

In the specific context considered here, the obigctive of the analysis
is the aggregate forecast. It is not obvious thatefforts made to deal with
heterogeneity and dependence modeling that impgoweeness of fit at the
disaggregate level would lead to an improved fastieg performance of the
aggregate series. This is even more true when agerhmind the density
forecasting context.

In general it is possible to obtain a point fostaaf the aggregate series
using disaggregate point forecasts obtained frouiivigual, unrelated
univariate models for the sub-aggregates. Howefrene makes an attempt
to generate a density forecast in the same wayortigted dependence be-
tween sub-aggregates might result in uncertaintyspacification for the
aggregate forecast, resulting in poor density piedi performance. The
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tradeoffs between various aspects of heterogeaeitlydependence model-
ling and possible gains in the aggregate densigcasting performance are
among the points of interest in the paper. Thergisdempirical issue under
consideration is whether there exist potential gdiom working at the dis-

aggregate level in terms of the aggregate densidigtive performance.

Moreover, one might be interested in verifying tbatvextent the aggregate
predictive performance deteriorates as one negkgtsthe stochastic de-
pendence among the series in the model for suteggtgs.

The problems of disaggregate vs. aggregate madelnd forecasting
(also with focus on inflation forecasting) has beensidered by many au-
thors. In particular Hubrich (2005) considers samilnflation forecasting
problem, but does not deal with density forecastsa more general level,
the question was addressed by Hendry and Hubri@hl{2 Some theoretical
developments are related to the work of Giacommd &ranger (2004);
Litkepohl (2009) considers aggregation within ateresting class of dis-
aggregate DGPs. Contributions involving also eroplrapplications, espe-
cially on inflation forecasting, include Aron anduellbauer (2013), Castle
and Hendry (2010) and Faust and Wright (2013) anathgrs. The distinc-
tive features of the approach taken here inclugeftlous on density fore-
casting and the role of exclusion restrictionshatdisaggregate level.

2. Model Framework

In order to establish the notation used below,estairly standard results
concerning estimation of multivariate linear modate recalled. Consider
a Gaussian VARY) model form variables:

Y, :as+yt—1A1+-"+yt—pAp+£t’ t=1..7T, 1)

where:
Y, is m-dimensional row vector (corresponding to petipd

a°is mvector of seasonal intercept terms (consistinm8iunknown pa-
rameters in total, whei@is the number of different seasons)

A LA p aremxm matrices of parameters, with b including at least

one non-zero element,
{st} is a Gaussian vector white noise process withreavee matrixx .

Assumingm = 1 leads to a Gaussian autoregressive procesp)AR(
However, if one assumes that,,...,A ; and X are diagonal, (1) describes

a set ofmunrelated Gaussian AR{type processes.
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Assuming X to be positive definite and otherwise unrestricéedlA |
,....A, to be unrestricted (i.e. containing no zero restms) results in

a standard VAR formulation, where OLS estimateghaf parameters are
also MLEs and thus are asymptotically effectivewdwaer, for unrestricted

X if A;,...,A, include zero restrictions (i.e. the set of exptanavaria-

bles is not the same in all the equations), OLBnesés are no longer equiv-
alent to ML estimates (and are not asymptoticdilicient anymore). Issues
of non-stationarity (existence of unit or explosia®ts in the characteristic
polynomial of (1)) are not considered here, th@@gressive parameters are
assumed to be unrestricted for the sake of sinyplidihe initial conditions

Y, are assumed to be fixed and the values are takemthe data, as the
further analysis is conditional ol,. In order to consider asymptotically
efficient estimation of the model parameters inci&decases (with exclusion
restrictions), the following SUR-type form of (¥) ¢considered:

y=Xp+&, 2

y= (y1 Y, .Y ) is aTmdimensional column vector,
B is ak-dimensional column vector consisting of unrestdcelements of

A,...A, anda’,...,0°,

X is Tmxk matrix consisting of rows and columns arranged iway
that matches the convention assumedyfor

€= (sl €, .87 ) is Tmdimensional column vector of Gaussian error

terms with zero mean and covariance matrix of tenfl [1 X .
Asymptotically efficient estimation ofp can be achieved by means of

a Zellner-type estimator of the form:
B, =[X( o= )X[*X( o2y, 3)
with X replaced by its consistent estimaﬁp, based on residuals (e.qg.

obtained in the previous iteration of the procedarethe procedure could be
iterated):

S, =T'E'E, (4)
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where E is T x m-dimensional matrix of residuals. In order to ialitze the

procedure, the first estimate §f can be obtained aﬁOLS = ()~(')~()_1)~('37.
The procedure is assumed to stop once some estifatds considered the
final one, here denoted bﬁl , With ﬁz being the final estimate @§ (being
also an approximation of MLEs fd).

3. Forecasting Methodology

For the purpose of one-period-ahead predictioins @issumed that the
point forecast ofy'T+1 (its estimated conditional expectation) is given b

Y =X"B;, (5)

where:

X" is anmxk matrix consisting of known constants and laggedes

of the dependent variables (all these are readifylable for one-
step-ahead forecast), preserving the structupg of
For the sake of density forecasting, the predictiistribution ofy'T+1

considered here igtrdimensional Gaussian, with mean given by (5) and
variance-covariance matrix given as:

~ ~ e ~ \~|-1-

VTV+1=):+xf[X'(I Ox l)x] X', (6)

Consequently, a Gaussian distribution with meah @variance matrix
given by (5) and (6) respectively is perceived asapproximation to the
Bayesian predictive distribution obtained with dgé priors. The approxi-
mation can be quite a satisfactory one, espediathye number of observa-
tions is not very small and the prior information parameters is not very
strong.

A motivation for the use of the approximation ewt of the exact
Bayesian results is twofold. Firstly, the recursbfeut-of-sample prediction
experiment with extensive specification search isgsoa considerable nu-
merical burden, which requires some simplificatiémsthe feasibility rea-
sons. Secondly, one of the reasons often statéa/or of the Bayesian ap-
proach in VAR forecasting (e.g. with continuous Kksota-type priors) is
that the approach introduces some form of shrinkatpéch is beneficial for
the forecasting performance. In the paper the evpatt of shrinkage is the
specification search described below. It could be@ived as analogous to
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so-called Stochastic Search Variable Selectionagmbr, which in turn im-
poses very strong (“hard”) shrinkage by means séréite-continuous prior
distributions. The paper focuses on the resultaioétl using the exclusion
restrictions (similar to “hard” shrinkage) withoirhposing any “soft” re-

strictions (which usually imply reduction of theigar variance for certain
parameters). The question whether imposing additideoft” shrinkage

could improve forecasting performance even mordefis for further re-

search.

It is assumed here that the variable of interkedie(ed z,) is a linear
combination of variables iy, with known, fixed weight<, :

Z =CY,, ()
where C, is am-dimensional row vector of weights. Predictive disition
of z;,, is therefore univariate Gaussian with mean given b

~ _ ~f5
ZT+1 - CT+1X Bﬁ;’ (8)

and variance of the form:
~ 2 ~ils ~ 1\~
var?,, =¢;,,XCp,,"+C; X' [X'(I ox l)X] X'"'c, (9)

The above formulas simplify in certain cases, intipalar whenX is as-
sumed to be diagonal. The restriction leads torasiderable reduction of the
numerical burden. Empirical verification of its gigtive consequences is
therefore of great practical importance.

It is obvious thaex posft(point) forecast error ot , is given by:

5 — 1 Sfop — St
Zry = Zryg = CrygYra ~CruX By = CT+1(yT+1 X B ), (10)

so itis a linear combination of forecasts errdryo,, .
Minimization of ex anteforecast error does not necessarily require the
forecast error ofy;,, to be minimized (in ‘mean squared’ sense for in-

stance). In particular, it is possible that theadgregate forecast errors just
cancel out in the aggregate. Moreover, within agimodel class, the fore-

cast error resulting from application of the modekctly to z could be
higher compared to the one obtained for impliciet@ast based on the anal-
ogous model for the disaggregate dgta
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As density forecasts are considered, it is of sewrucial to provide
adequate description of uncertainty: formulas (&) ) take into account
potential stochastic dependence between the mapeltiens (represented
by estimatedX ) and correlations within the joint distribution thfe estima-
tor for whole p in all the model equations (or a joint posterior &ll the

structural parameters). Therefore in general moitéd information’ approx-
imation is used, unless it follows directly fronetimodel structure (e.g. as
a special case in which a full information methedequivalent to a limited
information one). Another advantage of taking tlemeyal perspective of
multivariate modeling is that it provides a framelwin which the “naive”
disaggregate forecast strategy, based on sepatatecdels, can be evalu-
ated against more complicated alternatives.

The crucial issue is that of model choice (or carigpn) at the dis-
aggregate level. The approach used here is basddmibasic premises.
Firstly, importance of the exclusion restrictiosmphasized. This amounts
to recognizing the fact that applying some reaskenaériable selection or
model selection procedures can lead to huge gaipsedictive performance
compared to a basic, unrestricted Gaussian VAR matie related idea of
Stochastic Search Variable Selection (see e.g.vHriihSchnatter and
Wagner, 2010) can be interpreted in terms of apprating the results of
a Bayesian inference pooling experiment, dealindp wie problem of find-
ing the relevant model reducing restrictions. Ildtrcoing some form of par-
simony is particularly important in the case of VAkddels that are poten-
tially heavily overparametrized.

Secondly, having in mind the model pooling or mMademparison con-
text, it seems to be reasonable to consider therierithat measure predictive

performance with respect tg. Consequently, though individual models are

estimated on the disaggregate data, meaning teaggtimation procedure
itself aims at optimizing goodness of fit at theadjgregate level, the model
comparison (or model selection) is undertaken basepredictive criteria at

the aggregate level.

Similar issues to the ones presented above aneaflyr considered by
Litkepohl (2009) within a broader model class (tifolLiitkepohl does not
attempt to introduce parsimony and does not consielesity forecasts).

In order to describe the above procedure in dedailoverview of some
criteria for density forecast evaluation is proddeelow.
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4. Density Forecast Evaluation

The awareness of the necessity of more carefelsiiyation of the fore-
cast uncertainty has become widespread in the ewstnic literature (see
e.g. Clark and Ravazzolo, 2015). The discussiomxoantepredictability of
the recent economic crisis has also contributethéorecognition of im-
portance of the probabilistic approach to forecastiTasks such as evalua-
tion of probability of extreme events are no longensidered non-standard.
However, the strand of research is deeply rooteuistory of the statistical
inference methods and some of the ideas can bedtrbaack to classical
texts. However, for the purpose of the paper justief review of the select-
ed techniques is presented.

Standard ways of reportingx postforecasting performance for point
forecasts include considering mean forecast emman absolute forecast
error or root mean squared forecast error (RMSHB)vever, the concept of
absolute forecast error can be generalized interaity context, leading to
so-called continuous ranked probability score (CRH8e generalization is
based on the fact that the CRPS formula simpltfiebat of absolute error if
the predictive distribution is represented by paimdss. The definition of
CRPS, together with a closed-form analytical forantdr the cases where
predictive distribution is Gaussian is given by @&ng and Raftery (2007,
p. 367). Here the negatively-oriented version of PSRis used (labeled
CRPS* by the authors), which takes positive valued directly generalizes
absolute error. For two predictive distributionghwiocation parameter cor-
responding exactly to the actual outturn, CRPSuifintly, ‘a density fore-
cast error’) will be higher for the density thani®re dispersed. For the sake
of ex postpredictive performance analysis, the averaged CGRRported.

Another popular measure is so-called log scoraghest a logarithm of
the value of probability density function corresgimgy to the predictive
distribution at the point being the actual outturng-score has a Bayesian
interpretation, because a sum of the one-periodéilmy-scores in a recur-
sive predictive experiment on expanding samplebmperceived as related
to so-called Predictive Bayes Factor, being a mcatibn of the Bayes Fac-
tor, which in turn is a basic method of formal Bsig® model comparison.
Relative to the CRPS measure, log-score (and tlyesBRactor) is consid-
ered to be sensitive to tail outcomes. Differenoetsveen (log of) values of
Gaussian pdf say two, three or four standard dewisitaway from the mean
do not increase proportionally, therefore in catangs-predicted outturn
log-score will discriminate models stronger complatiee CRPS. Details and
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more elaborate theoretical justifications of thevabmeasures are summa-
rized by Gneiting and Raftery (2007).

As the analysis conducted here is intended toigeeoan approximation
to the results of Bayesian inference, the log-sedgtiebe used as the main
criterion used for the model choice.

5. Model Comparison Framework

The model framework used here has the advantagesting a simple
“practitioner’s approach” of the following form. @sider the problem of
inflation forecasting. A simple practitioner’'s stn would be to use dis-
aggregate data on sub-indices and apply saypARfecasting models to
each of the individual series. The total CPI fostamould be then obtained
making use of the fact that weights of the sub-eggtes in the total index
are usually known. Such an approach accounts fardgeneity to some
extent, but neglects possible dependence. Indivigredictive models are
chosen based on say goodness of fit for the indalideries. However, an
advantage of the framework provided here is thhighlights the fact that
the collection of such individual processes capdéreeived as a single mod-
el for total CPI forecasting. From such a perspecthe models for sub-
aggregates should be evaluated jointly rather siegrarately. Consequently,
neither of the sub-models should be evaluated witkaking actual combi-
nation of the remaining ones into account. Thicafirse results in a big
increase in the number of specifications being ickemed.

The approach makes some generalizations of timepfsi practitioner’s
approach” readily available. For instance it isyg@simpose stochastic link-
ages between equations by allowing the contempotenevariance-
covariance matrix to be non-diagonal. Another aptiecould be to include
lags of the other sub aggregates into the indiViggaations. The frame-
work allows for considering of a broad menu of nmedeat differ substan-
tially. One end of the model spectrum would be gimplistic approach us-
ing individual processes (which is likely to be tastrictive), whereas the
other end would correspond to an unrestricted VA&RIeh (which is very far
from being parsimonious). A solution proposed hisréo explore options
that are somewhere in between, meaning that threskess restrictive than
the simple approach, but introduce “hard” shrink§garsimony by exclu-
sion restrictions) compared to full, unrestrictefiR6. This would corre-
spond to including only some lags of some variabiethe equations at the
disaggregate level.
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Alternative models (or sets of restrictions) sldobke compared by the
predictive accuracy of the aggregate, here measwitd log-score. The
number of possible combinations of the restrictisnsay too large to allow
for any systematic specification search. Insteadin@om-search algorithm
is applied. Even if it is not capable of achieviig global optimum, it is
interesting to check whether it can find a comboratof restrictions that
results in a model with predictive performance diedominating the simple
special cases already mentioned. If such a spatidit can be found within
reasonable computational time, the strategy woeletopirically attractive
and the issue should be investigated in more detail

The objective of the paper is to present a styatbgt is feasible for
more than ten disaggregate variables. For each Infadget of exclusion

restriction that actually corresponds to some paldir form of X ) a predic-
tive experiment is conducted, with recursive madelktimation and one step
ahead prediction (with the number of repetitionaaled by N , being also
a number of one-step-ahead forecasts obtained drnspecification). Re-
sults of the repeated out-of-sample predictive @gerare summarized (here
by a sum of log-score values) and the best spatiific is retained. A modi-
fication of the algorithm that aims at inferenceollng instead of model
selection could be also considered, though theilgbigsis not explored
here.

As the stochastic specification search requireagands of model speci-
fications to be checked, the computational burdesubstantial. The compu-
tational limitations are the reason for which thtemtion here is restricted to
simple Gaussian VAR models only (instead of say WhRclass members),
for analogous applications see George, Sun ang(0ig).

One more thing should be kept in mind:Nfis not large, the specifica-
tion search might result in overfitting issues. sThiight show a spurious
predictive gains that are not necessarily obseougebf-sample, resulting
from using the statistical noise to obtain perf@etdiction in the verification
period. In order to consider possible empirical smmuences in depth, it
would be necessary to add another data window whéh performance is
not maximized but just analyzed. However, for Holisacroeconomic time
series the number of available observations idarge enough to do so. In
order to avoid overfitting problems one might waempromote specification
parsimony (imposing e.g. a limit on the number oh4zero autoregressive
parameters, or using some penalty function).
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6. Empirical Analysis: Nowcasting Polish CPI Inflation Rate

In order to illustrate practical applicability tie approach and possible
gains in terms of forecast performance an empiacalysis of Polish infla-
tion is provided

The analysis makes use of month-over-month CRitiof rate in Polish
economy for the period 2002M01-2015M08, witl= 164, (see Figure 1.).
The last N = 44 observations are treated as a verificatiomdaw/. It is
important to notice that the verification periodgusite challenging, as it in-
cludes a period of deflation unprecedented in Raionomy.

2

1,5

0; 1] ﬁl '\\ | Ifw

A
o L PN
VIV T

05

'1 T T
2000 2002

2004 2006 2008 2010 2012 2014

Figure 1. CPI m-o-m inflation rate [%] in Polar2l00—-2015

As for the data at the disaggregate level, Pdistiistical Office (GUS)
reports disaggregation into 10 main price groupswéier, as two of the
components include both energy and non-energy qriae effort has been
made to separate the price indices. Moreover, hguskpenditures and al-
coholic beverages with tobacco are also separated food, resulting in
a total of 14 categories. The unrestricted modallditherefore correspond
to a VAR for 14 variables, having extra 196 pararsefor each additional
lag in the unrestricted version.

! Other studies examining similar problems includarkl(2006), Dees and Giintner
(2014), Huwiler and Kaufmann (2013) and Ibarra @0Q%ee also Stock and Watson (2015).

2 All the calculations were conducted using own ireeg written in Ox (see Doornik and
Ooms, 2003), details of the specification searatgdure are available from author by re-
quest.
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The predictive exercise is pseudo-real time, whigmans that no revi-
sions are taken into account (though for inflattbe revisions are rather
minor, occurring once a year only). It is assuntfeat there are no aggrega-
tion errors (that is that the percentage m-o-m ghaif the total CPI is equal
to weighted sum of changes of the sub-aggregatgaades), which is in
accordance with (7). Moreover, the weights aremmssuto be known, which
is not always the case in real time, as the weigttsa calendar year are
published in March. The disaggregate categoriedisted in Table 1, to-
gether with average weights in the sample period.

Table 1. Disaggregate CPI sub-categories usdtkiempirical analysis

No. Code Category label Average weight
1 1a Food and non-alcoholic beverages 0.258
2 1b Alcoholic beverages, tobacco 0.060
3 2 Clothing and footwear 0.052
4 3a Dwelling: housing, water (excluding energy) 0.116
5 3b Dwelling: electricity, gas and other fuels 0.089
6 3c Dwelling: Furnishings, household equipment and 0.049

routine maintenance of the house
7 4 Health 0.050
8 5a Transport: fuels for personal transport equipment 0.045
9 5b Transport: excluding fuels 0.044

10 6 Communication 0.049
11 7 Recreation and culture 0.070
12 8 Education 0.013
13 9 Restaurants and hotels 0.052
14 10 Miscellaneous goods and services 0.053

Note: The average weight is computed as average oveyeldus included in the sample (as the sample
end does not correspond to December).

The benchmark models considered in the compasdserstationary and
include unrestricted VAR models with one and twgslaas well as AR(1)
process applied at the aggregate level, and a i&fsthle specification search
applied to ARp) process for the aggregate data (resulting in siotisof
certain own lags of inflation). For the stochastpecification search algo-
rithm, the maximum number of autoregressive pararset limited to 42
(which reflects the idea that on average there3grarameters per equation,
though these need not be uniformly allocated) dedraximum lag order is
set to be equal to 13. Additional parameters (noluded in the parameter
count mentioned here) are the seasonal dummy Vesiathough the sto-
chastic algorithm also switches between inclusiod exclusion of the sea-
sonal dummies in each equation. Moreover, as fer dbntemporaneous
covariance matrix two options are separately camsil In the first version,
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the £ matrix is assumed to be unrestricted (being ofrsmipositive-
definite), in the other version it is assumed tallagonal.

The results are reported in Table 2., including namber of parameters
(with sub-total for intercept/seasonal terms). Thieria of forecasting per-
formance include RMSFE and average CRPS (the ldherbetter) and
summed up (decimal) log-score (the higher the Dettdl the criteria show
consistent results (neither is contradicting theepbnes).

Table 2. Comparison of the results from alterratpecifications: predictive per-
formance for aggregate inflation based on aggrédjatggregate data

Log- No. of parameters
Model Y. st.dev. RMSFE CRPS
score total Intercepts
AR(1) for total CPI - 0.248 0250 0.142 -0.726 14 12
AR(2) for total CPI - 0.249 0249  0.142 -0.657 15 12
AR with variable selection -
total CPI 0.294 0224 0129 0.306 7 1
VAR(1) nd 0.268 0280 0.156 -2.283 455 168
VAR(2) nd 0.280 0.348  0.180 -4.949 651 168
VAR with variable selection d 0.228 0.174  0.100 5.058 147 91
VAR with variable selection  nd 0.247 0187 0.107  3.668 224 102

Note: Full estimation results are available from the authy request. Verification period: 2012M01—
2015M08; the forecasts are one-period-ahead (wdmcbunts to nowcasting due to the publication lag).
CRPS (Continuous Ranked Probability Score) is ajeetaover the realized forecasts, for log-score the
sum of decimal logs is taken. For AR(1), AR(2), VARVAR(2) seasonal dummies are included. The
second column indicates assumptions regarding dh&emporaneous variance-covariance matrix (rele-
vant for disaggregate models only), with ‘d’ dengtia diagonal matrix, whereas ‘nd’ denotes non-
diagonal one; ‘st. dev.’ denotex anteforecast error (standard deviation of the predéctiistribution)
averaged over all forecasts. The column labelagroepts’ takes into account parameters correspgndi
to seasonality modelling as well.

Unrestricted VARs for disaggregate data show ikeBt poor perfor-
mance, deteriorating with the number of lags. AR{adl AR(2) models are
similar, though AR with variable selection is clgabetter. Poor perfor-
mance of the AR(1), AR(2), VAR(1) and VAR(2) modebsults from re-
strictive assumptions about the highest lag orlewed, though VAR(2) is
much worse than AR(2), so the other aspects seematier as well.

VARs with variable selection are clearly the bastdels, strongly domi-
nating the other specifications by all the critefiéoreover, the model as-
suming diagonal contemporaneous covariance matmgeiting slightly bet-
ter results. In both casex anteerrors are large compared to the RMSFE,
consequently the forecast densities seems to bidispersed.

One caveat should be mentioned here: as the madatdlsion-diagonal
covariance matrix of shocks and exclusion restmdiare computationally
more demanding, the specification search algorithight be less efficient
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there. It is therefore possible that the algorithsed here gets trapped in
a local optimum, which is not the global one, ane tesult could be some-
what improved upon a more intensive specificatiearsh. However, the
practical conclusion would be that it is easiefitol a useful model assum-
ing uncorrelated shocks. Such a simplificationugegimportant from com-
putational point of view as well.

The predictive gains obtained here are non-ndxégithough the atten-
tion is restricted to one-period-ahead forecastswéVer, the disaggregate
information is likely to be useful in rather shadrizons only. Moreover, it
seems that the dependence between variables indycetcorporation of
lags of other variables into equations is more irtgrd than the dependence
represented by contemporaneous correlations ofsefat least from the
viewpoint of quality of the forecasts of the aggtgseries).

Conclusions

The paper aims at demonstrating potential gairierins of density fore-
casting that can be obtained by allowing for the af disaggregate data.
The analysis of density forecasts reflects the ntgmze of the issue of un-
certainty quantification in current econometriei#ture.

The explicit objective of forecasting of the aggate series only is intro-
duced here. Consequently, from a theoretical pafimew it might be plau-
sible to consider all the models for sub-aggregaetly, as one model
(even if the individual models are fully stochaalig independent). The
comparison of such models (or the corresponding sétexclusion re-
strictions) is based on the predictive performasfdfie aggregate series.

The results obtained for Polish CPI inflation ssrconfirm that consid-
ering multivariate models for the disaggregate chaitght result in substan-
tial improvements in terms of prediction of the agggate inflation. The con-
clusion remains true for various criteria for baint and densityex post
forecast evaluation. However, the result stems fiminoducing parsimony-
oriented exclusion restrictions. Some cross-vagial#pendence matters, as
the best performing models include lags of othetaldes as well. On the
other hand, there is no evidence that allowingcfmtemporaneous correla-
tions of the shocks in disaggregate series isyréalportant for the aggre-
gate predictive performance in the case under dergion.

There are many possibilities to extend the scdpleesanalysis presented
here, in particular by considering more general eh@thsses. Besides that,
two aspects are worth pointing out.
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Firstly, a fully consistent theoretical framewdik statistical inference
in such situations should be developed. It wastpdiout to the author that
such a development could be based on a reparaatemof the observation
space (at the disaggregate level) in such a waythlaaggregate variable is
explicitly considered This opens possibility for considering specificas
taking advantage of concepts like the Bayesian Cut.

Secondly, the stochastic search algorithm useel toeexplore the model
space (or, equivalently, the space containing uarisets of exclusion re-
strictions) was rather simple and heuristic, withtheoretical premises for
its efficiency. Perhaps some solutions used irStioehastic Search Variable
Selection setup could be adopted to match the ft@n search problem
considered here.

The most important conclusion from the empiricadlgsis provided is
that even within quite a simple class of multivegienodels for disaggregate
data a substantial improvement in predictive pentorce (over the standard
unrestricted specifications) is possible. Howeitaequires a thorough spec-
ification search in terms of variable selection,ichhmight be non-trivial
when the dimension is large, which correspondstailbd disaggregation.
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Wiasnosci rozkltadéw predyktywnych z modeli dla danych
zdezagregowanych: prognoza inflacji w Polsce

Zarys tréci. W artykule podjto kweste weryfikacji wystpowania korzyci w zakresie
poprawy jakéci prognostycznej (ocenidj takze trafnd¢ ex postrozkiadéw prognoz)
w przypadku prognozowania agregatu na podstawieetndth danych zdezagregowanych.
Problem ten rozpatrywano w ramach modelu wektorcaugpregresji z restrykcjami, przy
czym alternatywne specyfikacje odpowiadatymgm uktadom restrykcji zerowych. Zapre-
zentowano empirycznanaliz; stopy inflacji CPI m/m w Polsce (rozpatyaj14 podkategorii
dla danych zdezagregowanych). Modele z restrykcimidanych zdezagregowanych pro-
wadzity do lepszych prognoz agregatu w poréwnamiumibdeli dla danych zagregowanych
i modeli dla danych zdezagregowanych bez restrykigjiporownania prognoz wykorzystano
kryteria dla rozktadéw prognoz takie jak CRPS oramlgtm gstasci predyktywnej).

Stowa kluczowe: predykcja, poréwnaniedeli, rozktad predyktywny, inflacja, mo-
dele VAR
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