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Abstract The aim of this paper is to investigate the predictive properties of the MSF-Scalar
BEKK(1,1) model in context of portfolio optimization. The MSF-SBEKK model has been pro-
posed as a feasible tool for analyzing multidimensional financial data (large n), but this research
examines forecasting abilities of this model for n = 2, since for bivariate data we can obtain and
compare predictive distributions of the portfolio in many other multivariate SV specifications.
Also, approximate posterior results in the MSF-SBEKK model (based on preliminary estimates of
nuisance matrix parameters) are compared with the exact ones.
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Introduction

It is well known that in portfolio selection (computing the weights of the
assets in the portfolio) correlations among the assets are essential. The weights
of the minimum variance portfolio depend on the conditional covariance matrix
(see Aguilar, West, 2000, Pajor, 2009). Thus for active portfolio management
multivariate time series forecasts should be applied.

The aim of the paper is to examine the predictive properties of the MSF-
SBEKK model (being the hybrid of the Multiplicative Stochastic Factor and
scalar BEKK specifications; hence the model is called MSF-SBEKK; see
Osiewalski, Pajor, 2009) in context of the optimal portfolio selection problem.
The multi-period minimum conditional variance portfolio is considered (as in
Pajor, 2009). In the optimization process we use the predictive distributions of
future returns and the predictive conditional covariance matrices obtained from
the Bayesian MSF-SBEKK and other multivariate stochastic volatility (MSV)
models. In order to compare predictive results in the MSF-SBEKK model with
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those obtained in other MSV specifications, we consider only bivariate portfoli-
os. The bivariate stochastic volatility models are used to describe the daily ex-
change rate of the euro against the Polish zloty and the daily exchange rate of
the US dollar against the Polish zloty. Based on these two currencies we con-
sider the Bayesian portfolio selection problem. In the next section we briefly
present the MSF-SBEKK model. Section 3 is devoted to the optimal portfolio
construction. In section 4 we present and discuss the empirical results. Some
concluding remarks are presented in the last section.

1. Bayesian MSF-SBEKK Model

Let x;, denote the price of asset j (or the exchange rate as in our application)
at time ¢ for j = 1,2, ..., n and t = 1, 2, ..., T+s. The vector of growth rates
Y: =16 YVour oo Yuo)'s Where y;, = 100 In (x;/x;.1), is modelled using the basic
VAR(1) framework:

y,=0+Ry,  +¢§,,t=1,2,... T, T+1, ..., T+s, (1)

where {&, } is a process with time-varying volatility, 7 denotes the number of
the observations used in estimation, and s is the forecast horizon, o is
a n-dimensional vector, R is a nxn matrix of parameters.

Following Osiewalski and Pajor (2009), for &, we assume the so-called type
I MSF-SBEKK(1,1) hybrid specification:

gt :\/g_tH:/zst’ )
lngt :¢lngt—l +O-g771’ {(St'> 77:)'} NiiN(O[(nJrl)xl]’InH):l (3)
Ht = (1 _ﬂ_y)A—i_ﬂ(at—lgz—l ')+7/H1—1 . (4)

That is, &, is conditionally normal with mean vector 0 and covariance matrix
gH,, where g, is a latent process and H, is a square matrix of order # that has the
scalar BEKK(1,1) structure . Thus, the conditional distribution of y,, given its
past and latent variables, is normal with mean y, =&+ Ry, , and covariance
matrix g;H,. The model defined by (2)-(4) includes as special cases two simple
basic structures. When o, — 0 and ¢= 0 we have the scalar BEKK(1,1) mod-

el, while £ =0 and y =0 lead to the MSF model (see Osiewalski, Pajor, 2009).
Note that the model has one latent process which helps in explaining outlying
observations, and time-varying conditional correlations as in the scalar
BEKK(1,1) structure.

Ty (g,',m,)" } is a sequence of independent and identically distributed normal random vectors

with mean vector zero and covariance matrix ;.
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In (4) A is a free symmetric positive definite matrix of order n; for A" we as-
sume the Wishart prior with n degrees of freedom and mean /,; § and y are free
scalar parameters, jointly uniformly distributed over the unit simplex. As re-
gards initial conditions for H,, we take H, = A4l,, and treat 4, > 0 as an additional
parameter, a priori exponentially distributed with mean 1. For the parameters of
the latent process we use the same priors as Osiewalski, Pajor (2009); for ¢ :

normal with mean 0 and variance 100, truncated to (-1, 1), for (7;2 : exponential

with mean 200; g, is equal 1. The n(n+1) elements of 8, = (8 vec(R)')' are
assumed to be a priori independent of remaining parameters, with the
N0, L,+1y) prior truncated by the restriction that all eigenvalues of R lie inside
the unit circle.

In this paper we also want to check how the approximation proposed and ex-
plained in Osiewalski, Pajor (2009) influences the predictive distribution of
future logarithmic returns and, in consequence, the optimal portfolio composi-
tion. Therefore we apply this approximation. That is, we use Ordinary Least
Squares (OLS) for the VAR(1) parameters and replace A by the empirical co-
variance matrix of the OLS residuals from the VAR(1) part. The Bayesian anal-
ysis for the remaining parameters and future return rates is based on the condi-
tional posterior and predictive distributions given the particular values of vector
0 and matrix A.

All distributions are sampled using the Gibbs scheme with Metropolis-Hastings
steps, as shown in detail in Osiewalski, Pajor (2009).

2. Portfolio Selection Problem in the MSF-SBEKK Model

We denote by @, the latent variable vector at time #, by 0 the parameter
vector, and we assume that:

a) &, = Z}/zst,where {e,} ~iN(0,I,),

b) X, is a function of the latent variables ®, for 7 <7, and of the past of §, ,
ie. X, =X(0,,§,,;7<1),

T—1°

c) the vector §&,, conditional on o(®,,&
c(@,;7>1).

7<t), is independent of

7-1 ;

In Pajor (2009) it was assumed that X, = X(@,;7 <¢). Now we relax the as-

sumption, allowing X, to depend on the past of &, as in the MSF-SBEKK
model. The s-period portfolio at time 7 is defined by a vector
Wrigr = (Wi | Wo, Tty -os Wi T1si7)’ > Where w;rigr is the fraction of wealth
invested in asset i (1 <i<n). The return on the portfolio that places weight
Wi r+r ON asset i at time 7 is approximately a weighted average of the returns on
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the individual assets. The weight applied to each return is the fraction of the
portfolio invested in that asset:

R, T+siT Z Wi resiTZiT+siT = Ru T+s|T 2 ®)

where z; 717 1S the rate of return on the asset i from the period T to T+s, i.e.
T+s

Ziragr = 2 Vi (=1,.,n).1f £, . is the matrix of conditional covariances
t=T+1

of Zri7 = (21,7455 Z2, 74575 --» Zn,7+57)’ then the conditional variance of return on
the portfolio is

Va’”(Rw,rmr 707,07, ) = VTZJrs\T :wT+s\T'ZT+s\TwT+s|T’ (6)
where yr is the oc-algebra generated by € and O, for 7<T, ie.
l//T :0(81"@1; T ST')

The vector of the rates of return at time 7T+k (k > 0, k < s) satisfies:
k=1 k

Yrix ZZRJS"'RICYT +ZRk_jEJT+j- (7

j=0 j=1

Based on equation (7) we have:

N

ZT+S|T _Z ZRJ 6-i-zl{kyT +Z ZRI éTJr/’ (8)

k=1 j=0 j=1 i=0
Since E(€;,&r,;'|¥7:0Or,...,0,,)=0 for i#j, the conditional covariance
matrix of zr 7 in the MSF-SBEKK(1,1) model becomes:

Ly = Z(ZR’)ET+](ZR’ ), )
Jj=1 i=0
where
Z;ﬂ‘ =EQr, 87, 1V7:097,,07,).
Finally, the conditional variance of return on the portfolio is:

Va”(kw,Tﬂ\T V7r,07,..,07,) = Wrgr Z(ZRI )ET-U (ZRI )|WT+3\T

j=1 i=0
It is easy to show that in the MSF-SBEKK(1,1) model:
EC€r&ri' V797, O7, ) =gr Hpyy,
Hy,, =EMH;  |v;,0.,.,0,, )=(0-y—-BA+ 5 & +/H,

and for2 <k<s:
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E(§T+k§T+k'| l//Ta@Ta"W@TH) =
=grul(=y=PA+(Berya +VEMy  |Wr,0Or,...,.07, )],
EMH;y |vr,0r,...07, )=

s T+s
= (1 -7 _ﬂ)A + (IBgT+k—1 + 7)E(HT+k—1 | l//T’@T "“’®T+s )
Consequentlyz:
E(‘%TH{‘%TH{ '| WT ’®T "“’®T+s) =

k=2 i k-1
= gT+k|:1+ZHﬂgT+k—j +7/:|(1_7/_ﬂ)A+gT+k H, H(ﬂgT+k—j +7).

i=1 j=1 j=1

The most popular approach assumes that the investor selects the portfolio with
minimum variance (see Markowitz, 1959, Elton, Gruber, 1991). Here we as-
sume that the conditional variance of the portfolio is minimized and that short
sales are allowed (w; 7147 < O reflects a short selling). Then the problem for the
investor reduces to solving the quadratic programming problem:

b 1 3 J—
min W, ZrrWrigr SUbJect to wi rugr T woregr + o Wy g r = 1
T+s|T

In this way we obtain so-called the minimum conditional variance portfolio (the
portfolio that has the lowest risk of any feasible portfolio):
-1

ZTJrc J
ST
W resr = oo e (10)
J ZT+S\T‘
which has a return:
VI 2
_ TZ7gT
Ryyror =— e > (11)
VEr gt
and the conditional variance at time 7:
1
2
Var(WMV,T+s|T'yT+s ¥7r:097,..,05, )= VMV,T+S\T E— > (12)
VXt

where 1 is an nx1 vector of ones.

Next we consider a s-period portfolio selection problem where the investor min-
imizes the conditional variance of the portfolio with a given level of return
R, rigr2 R:’TH‘T. This problem reduces to solving the quadratic programming

w,

problem:

2 A very similar result was obtained by Piotr De Silva in his unpublished master’s disserta-
tion.
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'y —
bi Wrr =1
vanm Wirgr ErgrWregr Subject to .
Tsit Wrigr ZT+5\T = Rp T\T+s*

*

When R, ;. =R, ;. > the solution for the s-period portfolio is:

(Z;+V\TZT+S‘|T1 ZT+€\T ZT+§\TIZT+3\T T+v\T)(l'RpT+s'\T ZT+v|T) (13)

G ZT+S\T 1)(z T+s|T Z‘T+s|TZ T+s|T )—('E; T+s\TZT+s\T )

WMVR; T+sT

It is important to stress that the classic portfolio choice scheme assumes the
covariance matrix and expected returns at time 7 to be known. In our Bayesian
models the minimum conditional variance portfolio (w . . ), and the mini-

mum conditional variance portfolio with a given level of return,

(w MVR;,T+S\T) are random vectors as measurable functions of zr.r, and £, ;.

Hence, the predictive distributions of w,; ;. ., and w (also, of

MVR, T+s|T

and V, ) are induced by the distribution of zz. 7, and X

VMV,T+s|T H MVR T+s|T T+s|T *

In practice, to compute the weights of the assets in the portfolio we must use
some characteristic of these predictive distributions. As the predictive mean (for

W rigr OF W ) may not exist, we consider the predictive medians of

MVR,, T+s|T
op _ op op '
Wy i TslT and WMVR;,i,TJrS\T , denoted by Wy resit = (WMV,I,T+s\T""’ WMV,n,T+s\T)

w? )", and defined respectively by

T+sT """ " MVR, n.T+s|T

and w®

MVR, T+s|T =(w, MVR[,,

conditions:
op op
Priwyy iresr 2 Wiy iregr | V0.5 and Préwyy, ;7 Swify s 7ogr [ 71 20.5,

Pr{w 2w |y} <0.5 and Pr{w <w” [¥}20.5,
MVR 0, T+s|T MVR L0, T+s|T MVR g, T+s|T MVR g, T+s|T
fori=1, .., n-1,and
n—l1 n—l1
op

op _
w? =1- E w? w =1- E w? | .
MV n,T+s|T - MVITH\T > "MVR, .n.T+sT ~ MVR, i, T+s|T
i= i=

In multivariate stochastic variance models there is no analytical solution for the
optimal portfolio selection problem even for n = 2 assets. To evaluate the quan-

tiles of the predictive distributions of w,,, . and W MVR sl and then find

the portfolio, we use Markov chain Monte Carlo methods — the Gibbs sampler
with the Metropolis-Hastings algorithm.
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3. Empirical Results

As the dataset we use the same daily exchange rates as in Pajor (2009).
Thus, we consider the daily exchange rate of the euro against the Polish zloty
and the daily exchange rate of the US dollar against the Polish zloty from Janu-
ary 2, 2002 to June 29, 2007. The data were downloaded from the website of
the National Bank of Poland. The dataset of the percentage daily logarithmic
growth (return) rates, y,, consists of 1388 observations (for each series). As the
first growth rates are used as initial conditions, 7= 1387 remaining observations
on y, are modelled.

3.1. Bayesian Model Comparison

In Table 1 we rank the models by the increasing value of the decimal loga-
rithm of the Bayes factor of VAR(1)-SJSV against the alternative models.
We see that for our dataset the models with three latent processes describe the
time-varying conditional covariance matrix much better than the models with
one or two latent processes. The VAR(1)-SJSV model wins our model compari-
son, being about 8.5 orders of magnitude better than the VAR(1)-TSVgur usp
model. The decimal log of the Bayes factor of the VAR(1)-MSF-SBEKK model
relative to the VAR(1)-SJSV model is 27.32. The presence of more latent pro-
cesses improves fit enormously, but seems infeasible for highly dimensional
time series. Assuming equal prior model probabilities, the VAR(1)-MSF-
SBEKK model is about 20.73 orders of magnitude more probable a posterior
than the VAR(1)-MSF model (with the constant conditional correlations), and
about 32 orders of magnitude better than the VAR(1)-SBEKK model. Note that
the VAR(1)-MSF-SBEKK model is about 6.6 orders of magnitude better than
another hybrid model — the VAR(1)-MSF-DCC model, proposed by Osiewalski,
Pajor (2007).

Table 1. Logs of Bayes factors in favour of VAR(1)-SJISV model

Model Number of latent processes  Number of parameters  Log1o (Bsssv,) Rank
VAR(1)-SJSV 3 18 0 1
VAR(1)-TSVeur_usb 3 18 8.51 2
VAR(1)-TSVusp_eur 3 18 11.10 3
VAR(1)-JSV 2 15 19.60 4
VAR(1)-MSF-SBEKK 1 14 27.32 5
VAR(L)-MSF-SBEKK 1 14 29.30 6
with the approximation
VAR(1)-MSF-IDCC 1 18 32.00 7
VAR(1)-MSF-DCC 1 20 33.88 8
VAR(1)-MSF(SDF) 1 12 48.05 9
VAR(1)-SBEKK 0 12 59.70 10
VAR(1)-BMSV 2 14 158.51 11

Note: the decimal logarithm of the Bayes factors were calculated using the Newton and Raftery method (see
Newton, Raftery, 1994). Only the results for the VAR(1)-MSF-SBEKK, VAR(1)-MSF and VAR(1)-SBEKK
models are new; the remaining ones were obtained by Pajor (2009).
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In the bivariate case considered here it is possible to compare exact and approx-
imate Bayesian results relate to estimation of the VAR(1)-MSF-SBEKK model.
Thus, in Tables 1 we present the decimal logarithm of the Bayes factor for both
cases. Using the approximate Bayesian approach proposed by Osiewalski, Pajor
(2009) leads to smaller values of the data density, but it seems that the fit does
not significantly change.

Of course, our model comparison relies on the prior distributions for the param-
eters of the models, but these prior distributions are not very informative.

3.1. Predictive Properties of the MSF-SBEKK Models in Portfolio
Selection

It is important to investigate the predictive properties of the MSF-SBEKK
model in portfolio selection. In addition, we can examine how the exact and
approximate posterior results may differ. Thus, in this section we report the
results of building the optimal portfolios using the MSF-SBEKK model.
We consider the hypothetical portfolios, which consist of two currencies: the
US dollar and euro. We assume that there are no transaction costs and that we
may reallocate zloty to long as well as to short positions across the currencies.
Allocation decisions are made at time 7 based on the predictive distribution for
yr+ and X, for k=1, ..., 60.

P(WMV,LT+:\T ly)

SISV TSVeur usp MSF-SBEKK
-

° 0\_’_,_'_'_’_,_’_’_,_,_,_,r o
HIHHHIR IR HTHINH]
RRREBERERRERERE RERRRREREEERERE REREREREREREREREGR
MSF-SBEKK with app. MSF SBEKK

[0 R —— o L) R ——
sfifiigdaiais 1880083332388 g3iild3388333
SEREEREBEREREER EHERRERREREERE REERRBEEERERERERR

Figure 1. Quantiles of the predictive distributions of the minimum conditional vari-
ance portfolios (the fractions of wealth invested in the US dollar). The cen-
tral black lines represent the medians, and the grey lines represent the quan-
tiles of order 0.05, 0.25, 0.75, 0.95, respectively
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In Figure 1 we show the quantiles of the predictive distributions of the mini-
mum conditional variance portfolio w,, | 7, (the fraction of wealth invested

in the US dollar). If the medians of the marginal predictive distributions are
treated as point forecasts, in model with time-varying conditional correlation
coefficient the optimum weights to invest in the USD/PLN are negative, indi-
cating the short sale of the US dollar (the median of the marginal predictive

distribution of Wy, | 7, is equal to about -0.4 in the most probable a posterior

model, and about -0.22 in the VAR(1)-MSF-SBEKK model). The short position
on the US dollar is connected with corresponding long position on the euro.
We see that in VAR(1)-MSV models with more than one latent process the
predictive distributions are very widely dispersed and fat-tailed, thus leaving us
with considerable uncertainty about the future returns of these portfolios. Sur-
prisingly, in the VAR(1)-MSV models with one latent process or in the
VAR(1)-SBEKK model the minimum conditional variance portfolios are esti-
mated more precisely — the inter-quartile ranges are relatively small. It seams
that the VAR(1)-MSF-SBEKK and VAR(1)-SBEKK models produce portfolios
with lowest risk measured by the conditional variance (see Figure 2). Note that

the predictive distributions of Wy, 7, for s=1,.., 60 produced by the

VAR(1)-MSF-SBEKK model are located in areas of high predictive densities
obtained in the best model (i.e. VAR(1)-SJSV).

PV sz 1Y)

SISV TSVeur usp MSF-SBEKK

S BERBBEARBAG & B ERBBEALRBAG & 05433?“@83“3“85‘5&’
EESELBBEEEEEE SESELBBESEEEE PeEbE885889809
EEEEEHEEOHEEE  BBEHEGRGEHEREBRR RRRREERRERGERE
MSF-SBEKK with app. MSF SBEKK

f8E508488388%84 Tiiliigiigdisd Peilliiiiigsd
REREEBEERERERE BEEBEEREERBERSE EEEBBERERREES

Figure 2. Quantiles of the predictive distributions of the conditional standard deviation
of the minimum conditional variance portfolios. The central black lines rep-
resent the medians, and the grey lines represent the quantiles of order 0.05,
0.25, 0.75, 0.95, respectively
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As in Pajor (2009) we can see that the predictive distributions related to the
portfolio with bound on return are more diffuse — the inter-quartile ranges are
higher (see Figure 3 and 4). Comparing the minimum conditional variance port-
folio and the minimum conditional variance portfolio with the return equal to at

least 5%, we can see that the distributions of the forecasted value of w__ .
MVR,, T(T+s

and VMVR* rire, AT€ more dispersed and have very thick tails. Thus uncertainty
P> s

connected with the optimal portfolio with return at least 5% on annual base is
huge. In all models the quantiles of the conditional standard deviation of the
optimal portfolios (see Figure 4) indicate increasing volatility with the forecast
horizon.

p(wMVR;,l,T+s\T 'y)

SISV TSVEur_usp MSF-SBEKK
EEEEEEEEEEEEE EEEEE R EE R R ‘yBehpbaRfBacLE
f8di088098388 o8odfiddfisgags puosovoscoogds
REEEEREEEHENE BHOHEHEGREGREREE RRRRRRERRERGRE
MSF-SBEKK with app. MSF SBEKK
§ e - M.
77883@88%3“39'@&' :gseﬁmsamanaaz& -ssaﬁmagmezzsaz&
EEgbpeeesscds SEicietsdgase EEicide8edede
FEREREERERERRE EEEEBEEBERBEEREER EEERRRERREREREERR

Figure 3. Quantiles of the predictive distributions of the minimum conditional vari-
ance portfolios with the return equal to at least 5% on annual base (the frac-
tion of wealth invested in the US dollar). The central black lines represent
the medians, and the grey lines represent the quantiles of order 0.05, 0.25,
0.75, 0.95, respectively

Finally, as in Pajor (2009) we use the medians of w to construct hy-

MVR, 1,T+s|T
pothetical portfolios for s = 1, 2, .., 60. Let Wy = 10000 PLN be the initial
wealth of the investor at time 7 (on June 29, 2007). If we assume that there are
no transaction costs and the investor uses the median of the predictive distribu-

(denoted by w?” ) to construct optimal portfolio, then

tion of w MVR, LT +sT

MVR, T+s|T

the investor’s wealth at time 7+s is given by:
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— op op
WMVR;,TJrs|T - WT [WMVR;,l,TmT (xl,”s /xl’T) + WMVR;,Z,TJrs\T (x2,T+s /xz,T )1,
s=1,2,..,60.
p(I/MVR:,,Tﬁ\T 'v)
SISV TSVeur usp MSF-SBEKK
3: 32 35
3 3 3
25 25 25
2 2 2
s s -
ol o S BaRBBAALB AN R
cRr7iEEEiiay perfrerEiEaat fRipiiiiiiild
RERREEERERERE RERRERERBERERE
MSF-SBEKK with app MSF SBEKK
8838880858353 ‘S B ERB8AALBARE S BB RBEBARBELG
Ehbpp88888888 EE5sE 888888838 EEE5588888888
REREEEERERRER FRRERRRRRERESR RRERREREREEERR
Figure 4. Quantiles of the predictive distributions of the conditional standard deviation

of the minimum conditional variance portfolio with the return equal to at
least 5% on annual base. The central black lines represent the medians, and
the grey lines represent the quantiles of order 0.05, 0.25, 0.75, 0.95, respec-
tively

Figure 5.

Wealth of the investor at time 7+s for s =1, ..., 60 (the optimal portfolio is

constructed on the medians of w

MVR;,,T+3\T
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In Figure 5, we present the plot of W

VR TasiT for s =1, 2, ..., 60, and compare

them with a bank deposit with the interest rate equal to 4.7% on annual base
(the quotation of the 3-month Warsaw Interbank Offered Rate on June, 29
2007). The best results we obtain in the VAR(1)-JSV model — at a 2-month
horizon the average return of the optimal portfolios is equal to 0.098%, which
represents annual return of 24.58%. In the best model (i.e. VAR(1) — SJISV) the
average return of the optimal portfolios is equal to 0.065%, which represents
annual return of 16.34%, whereas in the VAR(1)-MSF-SBEKK and VAR(1)-
SBEKK models we have 0.048% and 0.044%, respectively (i.e. 12.02% and
11.05% per annum, respectively). It is important to stress that in the VAR(1)-
MSF-SBEKK model the returns of the hypothetical investments are higher than
those of the bank deposit, indicating good forecasting properties of the model.
In the VAR(1)-MSF model (with constant conditional correlation) the average
return of the portfolio is negative (we obtained -0.006% i.e. -0.16% per annum).
Thus the SBEKK structure is very important in forecasting. In the approximated
VAR(1)-MSF-SBEKK model the average return is equal to 0.04% (i.e. 9.43%
per annum). Thus using approximation in the VAR(1)-MSF-SBEKK leads to
worse predictive results. After two months the return of the optimal portfolio is
lower than the interest rate of the bank deposit, but still it is positive. Note that
the average return of equally-weighted portfolio is equal to -0.047, i.e. -11.80%
per annum.

Conclusions

The paper investigates the predictive abilities of the VAR(1)-MSF-SBEKK
model in portfolio selection. The predictive distributions of the optimal portfo-
lios produced by the VAR(1)-MSF-SBEKK model are compared with those
obtained in unparsimonious (but more probable a posterior) MSV specifica-
tions. The predictive distributions of the weights of the optimal portfolios pro-
duced by the VAR(1)-MSF-SBEKK model are located in areas of high predic-
tive densities obtained in the best MSV model (i.e. VAR(1)-SJSV). Unfortu-
nately, in all models the predictive distributions of the optimal portfolio are very
spread and have heavy tails. Our main finding is that the VAR(1)-MSF-SBEKK
model is useful (but not very impressive) for building the multi-period optimal
minimum conditional variance portfolio. It seems that the approximation pro-
posed by Osiewalski, Pajor (2009) results in worse predictive properties of the
VAR(1)-MSF-BEKK model, but for large portfolios this approximation
is necessary.



Bayesian Optimal Portfolio Selection in the MSF-SBEKK Model 53

References

Aguilar, O., West, M. (2000), Bayesian Dynamic Factor Models and Portfolio Allocation, Journal
of Business and Economic Statistics, 18, 338-357.

Elton, J.E., Gruber, M.J. (1991), Modern Portfolio Theory and Investment Analysis, John Wiley
& Sons, Inc, New York.

Markowitz, H.M. (1959), Portfolio Selection: Efficient Diversification of Investments, New York,
John Wiely & Sons, Inc.

Newton, M.A., Raftery, A.E. (1994), Approximate Bayesian Inference by the Weighted Likeli-
hood Bootstrap [with discussion], Journal of the Royal Statistical Society B, 56(1), 3-48

Osiewalski, J. (2009), New Hybrid Models of Multivariate Volatility (a Bayesian Perspective),
Przeglgd Statystyczny (Statistical Review), 56, z. 1, 15-22.

Osiewalski, J., Pajor, A. (2007), Flexibility and Parsimony in Multivariate Financial Modelling:
a Hybrid Bivariate DCC—SV Model, [in:] Financial Markets. Principles of Modeling,
Forecasting and Decision-Making (FindEcon Monograph Series No.3), [ed.:] W. Milo, P.
Wdowinski, £.6dz University Press, £6dz, 11-26.

Osiewalski, J., Pajor, A. (2009), Bayesian Analysis for Hybrid MSF-SBEKK Models of Multi-
variate Volatility, Central European Journal of Economic Modelling and Econometrics,
1(2), 179-202.

Pajor, A. (2009), Bayesian Portfolio Selection with MSV Models, Przeglqd Statystyczny (Statisti-
cal Review), 56, z. 1, 40-55.

Bayesowska optymalizacja portfela w modelu MSF-SBEKK

Zarys tre$ci. Celem artykulu jest analiza prognostycznych wiasnosci bayesowskiego mode-
lu MSF-SBEKK w konteks$cie wyboru optymalnego portfela inwestycyjnego. Wykorzystywany
w artykule wielowymiarowy proces MSF-SBEKK posiada elementy struktury skalarnego procesu
BEKK oraz procesu MSF. Obecnos¢, w jego definicji, odrgbnego czynnika losowego pozwala
lepiej opisywac zjawisko grubych ogonow, za§ w strukturze SBEKK uzaleznia si¢ warunkowe
wariancje oraz warunkowe korelacje od przesztych wartosci procesu. Proces MSF-SBEKK posia-
da zatem nietrywialng struktur¢ i moze by¢ wykorzystany do opisu zaleznoéci miedzy stopami
zwrotu kilkudziesigciu (a nawet kilkuset) instrumentow finansowych. W artykule dokonane zosta-
to poréwnanie prognoz uzyskanych w dwuwymiarowym modelu MSF-SBEKK oraz w innych
modelach z klasy MSV na przyktadzie portfela walutowego, ztozonego z kursu dolara amerykan-
skiego oraz euro. Uzyskane wyniki wskazuja na dobre wilasnosci prognostyczne modelu MSF-
SBEKK, cho¢ uproszczenia w sposobie jego estymacji moga je pogarszac.

Stowa kluczowe: model MSF-SBEKK, modele MSV, analiza portfelowa, prognoza.






