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Abstract This paper presents a fractal analysis application to the verification of assump-
tions of Fractal Market Hypothesis and the presence of fractal properties in financial time
series. In this research, the box-counting dimension and pointwise Holder exponents are used.
Achieved results lead to interesting observations related to nonrandomness of price series and
occurrence of relationships binding fractal properties and variability measures with the pres-
ence of trends and influence of the economic situation on financial instruments’ prices.
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Introduction

Ever since Mandelbrot had published his works on the application of R/S
analysis to long-memory dependencies in time series (Mandelbrot, Wallis,
1969; Mandelbrot, 1972) and since Peters had presented his Fractal Market
Hypothesis (Peters, 1991) as an alternative to commonly acknowledged Ef-
ficient Market Hypothesis, this approach is being explored with regard to
financial time series. Mulligan examined the use of Lo’s modified rescaled
range analysis on foreign exchange markets (Mulligan, 2000), proving the
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presence of long memory dependencies and fractal structure of analysed
price series. Another published research assumed Hurst exponent estimation
using geometrical interpretation (Granero, Segovia, Pérez, 2008) applied to
stock market indices or the search for periodic and nonperiodic components
in S&P 500 time series (Bohdalova, Gregus, 2010). Another group of studies
focused on the analysis of variation of Hurst exponent over time, showing
the possible impact of capital flow and trading volume on the decrease of
Hurst exponent values (Cajueiro, Tabak, 2004), the influence that the end of
Bretton Woods System had on efficiency of US stock markets (Alvarez-
Ramirez, Alvarez, Rodriguez, Fernandez-Anaya, 2008), or the relationship
between local Hurst exponent and stock market crashes with example of the
Warsaw Stock Exchange Index (Grech, Pamuta, 2008). Due to certain limi-
tations of classical R/S analysis approach and Hurst exponent itself, some of
the authors explored Holderian pointwise regularity of some major stock
market indices (Bianchi, Pantanella, 2010) and usage of multifractal spectra
analysis in order to discover patterns of change in price series before the
1987 market crash and other significant market drawdowns (Los, Yalamova,
2004).

In the presented paper, the initial assumption is that the markets are not
efficient, but are fractal in their nature. Despite the fact that Efficient Market
Hypothesis (EMH) has been commonly accepted as a default theory explain-
ing the fundamentals of financial markets’ behavior, plenty of criticism and
doubts have been adressed towards it. The critical remarks are mainly related
to too strong assumptions underlying this hypothesis, vastly mangling the
real world behavior of the markets. In terms of real market behavior, a chaos
theory based Fractal Market Hypothesis (FMH) seems to be much more
appriopriate. It assumes — on the contrary to EMH, which uses linear differ-
ential equation — that the market is a nonlinear dynamic system, which al-
lows to suppose that ,;real feedback systems involve long-term correlations
and trends, because memories of long-past events can still affect the deci-
sions made in the present” (Peters, 1997, p. 6). Actions of market partici-
pants usually generate nonlinear behavior of financial processes. Functions
describing investors’ attitute towards risk, their expectations towards stock
market returns or financial instruments pricing formulae are nonlinear as
well (Osinska, 2006, p. 118). The most characteristic property of FMH is
acknowledgement that stock market returns time series have fractal (self-
similar) structure. FMH also allows chaotic behavior of the market during
particular periods and under certain conditions (Peters, 1994, pp. 46—48).

FMH was described by Peters based on the results of long studies con-
ducted by Hurst in the first half of the 20th century (Peters, 1991). The main
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conclusion was that most of natural systems do not follow the random walk
model, but are subject to fractional Brownian motion. Such theory is in line
with Peters’ assumption about the markets, which says that globally (in the
long-term) the market is deterministic, while locally (in the short-term), due
to randomly occuring information and emotional reactions of market partici-
pants, the market is random (Peters, 1997, pp. 45, 64). Empirical confirma-
tion of this hypothesis is presented in the section 4 of this paper.

1. Fractal Dimension

One of the most substantial characteristics of geometric object is its di-
mension. However, an attempt to analyse this matter is nontrivial due to the
fact that so far the scientists provided many different definitions of dimen-
sion, namely: the topological dimension, the Hausdorff dimension, the frac-
tional dimension, the box-counting dimension, the self-similarity dimension
etc. The reasoning behind using particular types of dimension depends on
certain conditions and while sometimes using different types of dimensions
can lead to similar results, it might as well show varying results for the same
object (Peitgen, Jiirgens, Saupe, 2002, p. 274).

In brief, a dimension describes the way in which a geometric object (or
time series) fills the space. A common characteristic of all fractal objects is
presence of self-similarity, which means that there is a relation between the
reduction coefficient (a scale of similarity) and the amount of reduced frag-
ments similar to the original object. While analyzing zigzag-shaped financial
instrument time series chart in terms of dimension, it is easy to conclude that

its dimension falls into range (1, 2). As zigzag is not a straight line, it has

dimension which is definitely distinct from 1, but it is not two-dimensional
as it does not fill the entire plane.

There are several kinds of fractal dimensions. One of them is the box-
counting dimension, which — in view of its use as a research tool — is worth
presenting. Below description of the box-counting dimension was written
based on: Peitgen, Jirgens, Saupe (2002), Mastalerz-Kodzis (2003),
Kudrewicz (2007) and Borys (2011).

Let F' be a certain geometric object embedded in 7 -dimensional Eu-

clidean space R", covered with a set of small cubes (boxes called
hypercubes) which sides are equal toe (e.g., for n=1 it will be segments,

for n=2 squares, for n =3 cubes). Theoretically these cubes can be discre-
tionary oriented with respect to the axes of a coordinate system, but they can

be as well spheres or other convex solids with a diameter ¢. Let N (F ,8) be
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a minimum amount of cubes that can completely cover the entire object F.
Having satisfied this, below relations are true:
- N (F ,8) ~ 1/¢ —for F being a segment of a smooth line (amount of
cubes is approximately inversely proportional to the length of cube side),

- N (F ,8) ~ (1/&)* —for F being a piece of smooth plane,

— N(F,S) ~ (1/8)3— for F being an area contained in R>.

With respect to the above, a generalization can be made that there are
such geometric objects, for which — assuming small values of & (which is
a scale of similarity, so that the smaller the values of g, the better the approx-
imation) — below commensurateness is approximately met:

N(F,e) ~ (1/¢)°, (1)

whereas — while in majority of cases there is only an approximation of com-
mensurateness between the two sides of the equation — in case of strictly
self-similar objects an equality sign can be placed so that:

N(F,e)=(1/¢)", 2)

where D (not necessarily being an integer number) can be treated as a di-
mension of the object F. Then the limit:

D, (F)=lim2EV\F-¢) (F.c)
‘ =0 log(l/¢)

if it exists, is called a fractal dimension (in this case, a box-counting dimen-
sion)'.

It is easy to conclude from (3), which is applicable to exact fractals, that
a dimension of such objects is defined by:

Df(F)z logN(F,g)_
log(l/ )
A possibility to apply the box-counting dimension led to creation of al-

gorithms capable of estimating the dimension of time series. In this method,
the analyzed structure is placed on a regular grid with a size of g, followed by

3)

“4)

" If a given unit gets reduced & times, the measured line will approximately contain &
times more units than in the previous iteration step (approximation is in this case a result of
a possible presence of small curves disturbing the existing commensurateness). Given com-
mensurateness is exact only in the limit, because after reducing the length of the sunit it is
possible to achieve a infinitely small unit only in the limit (Tempczyk, 1995, p. 135).
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counting all the cubes (boxes), which contain the fragments of analyzed
structure. The amount of fragments is obviously dependent on the value of
£. In the next stage it is necessary to repeat the calculations for smaller val-
ues of ¢ and plot the obtained values on the logarithmic chart (marking

log N (F ,8) with respect to log(l / 5) ). The slope of the straight line fitted

to the points marked on the plot determines the box-counting dimension of
the time series (Daros, 2010, p. 13).

2. Measures of Variability of the Graph of the Function

One of the most popular and useful measures of variability (irregularity)
are Hurst exponent and Holder exponents. The Hurst exponent is a numeri-
cal characteristic of the entire price series, whereas Holder exponents can be
used to analyze the complexity of the function and the trajectory of some
stochastic processes in the vicinity of any point of the graph of the function
(Mastalerz-Kodzis, 2003, p. 37).

The most important turning point in the subject of long-term dependency
analysis of time series was without any doubt the creation of rescaled range
analysis(R/S ), method (Hurst, 1951). A starting point of his analysis was

Einstein’s work on Brownian motion (Einstein, 1908), which presented an
equation for the distance R that a particle travels in time 7', which is defined

by R =c+/T, where ¢ is a nonnegative constant. This equation was applica-

ble when the series of increments of the distance travelled by the particle in
time was a random walk, characterised by the independency of normally
distributed random variables (Weron, Weron, 1998, p. 323). However, dur-
ing almost fourty years of research, Hurst has reached a conclusion that the
majority of natural phenomena is not subject to Gaussian random walk, but
rather to processes with ,,Jlong memory”, later called by the name of fraction-
al Brownian motion, which is a combination of a trend and noise (Peters,
1997, p. 64; Mastalerz-Kodzis, 2003, pp. 37-38).

Derivation of a formula for rescaled range allowed the comparison of
different types of time series. Creation of this dimensionless indicator, which
should increase over time, allowed to formulate the following equation being
an extension of Brownian motion model proposed by Einstein.

(R/S), =c-n", (6]

where (R/S) — rescaled range, n — number of observations, ¢ — positive
constant, 4 — Hurst exponent.
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In order to calculate Hurst exponent, one has to calculate the average
value of (R/S), for different n and then solve the following equation us-
ing linear regression:

logE(R/S), = Hlog(n) +log(c), (6)

where E(R/S), — expected value of rescaled range.

In above equation, the Hurst exponent can be treated as the regression
coefficient and estimated using the least squares method (Jajuga, Papla,
1997).

The Hurst exponent is strictly linked to the fractal dimension of time
series, therefore the search for the Hurst exponent is in fact a search for the
fractal properties of the series. This relation is described by the following
equation (Grech, 2012, p. 10):

D, =2-H. (7)

This equation has a huge practical importance as it can be used to classi-
fy the type of a time series depending on the fractal dimension of a given
object.

Following cases can be distinguished based on Hurst exponent values
(Peters, 1997, p. 76-77):

— if 0< H <0.5, then 1.5< D <2 (antipersistent time series),
— if H=0.5, then D=1.5 (random walk),
— if 0.5<H <1, then 1< D <1.5 (persistent time series).

First case (0< H <0.5) applies to antipersistent (ergodic) time series.
Such a series has a mean reversion tendency. If in a given period the value of
the series increased, then in the following period it will most probably de-
crease and vice versa. The closer the value of H to 0,the more ergodic the
behavior of the system and the time series graph has more jagged line, which
is a result of a frequent trend reversion. In such case the fractal dimension of
the series D, — 2 as the series fills the plane more and more. The lower the

H value, the more noise can be observed in the system. Speaking in the
probability language, if e.g. H =0.2,then there is 80% probability that in
the future the market will change the direction, which will be equal to trend
reversion (Stawicki, Janiak, Miiller-Fraczek, 1997, p. 37). Despite the fact
that mean reversion plays a dominant role in economic and financial litera-
ture, so far only a few antipersistent time series have been observed.

The second case applies to a situation, when with n >0 H =0.5,
which corresponds to a random walk (the consecutive elements of the series

DYNAMIC ECONOMETRIC MODELS 13 (2013) 107-125



Fractal Analysis of Financial Time Series Using Fractal Dimension... 113

are independent). The fractal dimension of the series equals D =1.5,the
series itself is unpredictable, the present does not influence the future, and
the past did not influence the present. The probability distribution function
can be Gaussian, but not necessarily. Both in natural and economic phenom-
ena the H exponent’s value usually differs from 0.5, and the natural pro-
cesses most often have a long-term data dependency.

When 0.5 < H <1, the time series are persistent, which means that they
bolster the trend. It is caused by the presence of long-term data dependency.
When H — 1, the trend gets stronger. As Hurst exponent defines the proba-
bility of consecutive rises or drops of the prices, with H — 1, there are more
consecutive rises or drops and the level of noise becomes smaller. For exam-
ple, if H =0.8, then there is 80% probability that a given trend will be sus-

tained in the future. The fractal dimension D e (1,1.5) as the more persistent

the time series, the less it fills the plane and the smoother are the curves cre-
ated by a given system. Fractal time series is obviously not purely determi-
nistic, it is rather an intermediate form between a completely random time
series and a deterministic system. Persistent time series are fractional
Brownian motions, which means that their important feature is a biased ran-
dom walk, and the strength of bias increases when H —1, so when the
Hurst exponent value recedes from 0.5.

Despite (R/S), analysis is a very useful tool, it poses a major disad-

vantage — it does not take into consideration the changes in particular
subperiods. For example, if a particular stock is subject to rapid price chang-
es, whereas the prices of other stocks show only minor price changes, it is
not possible to detect this periodical changes using Hurst exponent. There-
fore, a good measure of variability of the graph of a function over time is
a Holder function?, which values in particular points are equal to pointwise
Holder exponents (Mastalerz-Kodzis, 2003, p. 115).

In order to further discuss pointwise Holder exponents, let us first define
the Holder function®. Let (X,d, ) and (Y,d, ) be metric spaces, then func-

tion f - X —> Y is called a Holder function with exponent o, where >0, if

2 Although pointwise Holder exponents are considered to be the best measure of function
regularity in the vicinity of a certain point, other measures used include: local box-counting
dimension, local Hausdorff dimension, the degree of fractional differentiability.

3 The definition of Holder function and pointwise Holder exponents was written based on:
Mastalerz-Kodzis 2003, pp. 49-51; Kuperin, Schastlivtsev, 2008, pp. 4—6.
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for each x,y € X such that d,(x,y) <1 the function satisfies the following
inequality:

dY [f(x)af(y)] < CdX (X, y)a b (8)

where ¢ — a positive constant.

Assuming that function f : D — R and that parameter « €(0,1), func-
tion f isa C* class (f € C") Holder function, if such ¢>0 and A, >0
constants exist that for every xand every he (0, ho) the following inequality
is satisfied:

|f(x+h)-f(x)<ch®. )
Assuming that x, is an arbitrary point from the domain of function f,
so that x,e Dc R, function f:D—R isa C; class (feC]) Holder

function in x,, if such ¢>0 and €>0 constant exist that for every

xe(x,—¢,x,+¢) the following inequality is satisfied:

()= f(xg )| S e —x,|". (10)

By definition Holder function is continous in its entire domain and when
this assumption is satisfied, the graph of the function has fractal nature
(Gabrys, 2005, p. 24). If the Holder function is not continuous, it is called
generalized Holder function. It is worth noting that thanks to its time-varying
values, Holder function can take different types of random walks in different
ranges (Kutner, 2009, p. 36).

After providing a Holder function definition it is possible to define
a pointwise Holder exponent of function f in x,. By definition it is a num-

ber a ,(x,) given by the following equation:

ocf(xo)zsup{oc:fecg)}. (11)

Approximated pointwise Holder exponent is not a flawless measure,
however its major advantage is the ability to accomodate the stationarity of
the series. Interpretation of pointwise Holder exponent is the same as for
Hurst exponent with a difference that pointwise Holder exponent estimates
local, not global value. It is also worth mentioning that Holder functions are
not constant as they are time-varying (Mastalerz-Kodzis, 2003, p. 121).
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3. Tools and Analysis Methodology

3.1. Data

All monthly and daily price series were downloaded from http://stooq.pl.
Table 1 presents the list of stock market indices and forex currency pairs
used in this research.

Table 1. Financial instruments chosen for the analysis

Symbol Available Data Period Market Type
DJIA 1896.05-2012.12 Mature market
S&P 500 1923.01-2012.12 Mature market
DAX 1959.10-2012.12 Mature market
Nikkei225 1949.05-2012.12 Mature market
Hang Seng 1969.11-2012.12 Mature market
WIG20 1991.04-2012.12 Emerging market
Bovespa 1992.01-2012.12 Emerging market
RTS 1995.09-2012.12 Emerging market
SENSEX30 1979.04-2012.12 Emerging market
SCI 1990.12-2012.12 Emerging market
XU100 1990.01-2012.12 Emerging market
EUR/USD 1980.01-2012.12 Major currency pair
GBP/USD 1971.01-2012.12 Major currency pair
USDIJPY 1971.01-2012.12 Major currency pair
CHF/PLN 1990.01-2012.12 Exotic currency pair
EUR/PLN 1990.01-2012.12 Exotic currency pair
USD/BRL 1995.01-2012.12 Exotic currency pair
USD/RUB 1995.10-2012.12 Exotic currency pair
USD/INR 1973.01-2012.12 Exotic currency pair
USD/CNY 1984.01-2012.12 Exotic currency pair
USD/TRY 1984.01-2012.12 Exotic currency pair

The above selection is reasoned by analysis of both mature and emerging
markets and the associated currency pairs in order to check if any relation-
ships interesting from the fractal analysis point of view are present.

3.2. Tools

During the analysis, Microsoft Excel was used to calculate the common
logarithms of price values and plot the charts of logarithmic price series and
pointwise Holder exponents. For the purposes of box-counting dimension
estimation and pointwise Holder exponents calculation, FracLab 2.0 was
used. As quoted from FracLab homepage (http://fraclab.saclay.inria.fr/):
,FracLab is a general purpose signal and image processing toolbox based on
fractal and multifractal methods. (...) A large number of procedures allow to
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compute various fractal quantities associated with 1D or 2D signals, such as
dimensions, Holder exponents or multifractal spectra. (...) FracLab is a free
software developed in the Regularity team at Inria Saclay/Ecole Centrale de
Paris.”

3.3. Analysis Methodology

Of the fractal analysis methods described in sections 1 and 2, in this re-
search the box-counting dimension, Hurst exponent and pointwise Holder
exponents were used for long-term dependency analysis of chosen financial
time series.

Table 2. Values of fractal dimension D and Hurst exponent H calculated on the
entire data range of monthly and daily price series of chosen financial in-

struments
. Monthly data Daily data

Symbol Period D m i) m
DJIA 1896.05-2012.12 1.44 0.56 1.43 0.57
S&P 500 1923.01-2012.12 1.40 0.60 1.40 0.60
DAX 1959.10-2012.12 1.50 0.50 147 0.53
Nikkei225 1949.05-2012.12 1.36 0.64 1.44 0.56
Hang Seng 1969.11-2012.12 1.47 0.53 1.50 0.50
WIG20 1991.04-2012.12 1.43 0.53 1.48 0.52
Bovespa 1992.01-2012.12 122 0.78 1.48 0.52
RTS 1995.09-2012.12 147 0.53 1.44 0.56
SENSEX30 1979.04-2012.12 1.37 0.63 1.46 0.54
SCI 1990.12-2012.12 1.50 0.50 1.46 0.54
XU100 1990.01-2012.12 131 0.69 1.46 0.54
EUR/USD 1980.01-2012.12 1.49 0.51 147 0.53
GBP/USD 1971.01-2012.12 1.56 0.44 1.44 0.56
USDIIPY 1971.01-2012.12 1.49 0.51 1.42 0.58
CHF/PLN 1990.01-2012.12 1.32 0.68 1.44 0.56
EUR/PLN 1990.01-2012.12 1.35 0.65 1.43 0.57
USD/BRL 1995.01-2012.12 134 0.66 1.40 0.60
USD/RUB 1995.10-2012.12 1.20 0.80 1.36 0.64
USD/INR 1973.01-2012.12 1.23 0.77 132 0.68
USD/CNY 1984.01-2012.12 1.16 0.84 1.36 0.64
USD/TRY 1984.01-2012.12 1.08 0.92 1.39 0.61
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4. Fractal Analysis Using Fractal Dimension and Pointwise
Holder Exponents

4 1. Presentation of Results

The research was divided into two parts. In the first part, the dimensions
of chosen price series were estimated and equation (7) was used to derive
Hurst exponent from the estimated dimension. First, the dimensions of price
series were calculated for the entire historical data range (see Table 2).

Table 3. Values of fractal dimension D and Hurst exponent H calculated on the Oct
1995 to Dec 2012 data range of monthly and daily price series of chosen
financial instruments

. Monthly data Daily data

Symbol Period ) m ) m
DJIA 1995.10-2012.12 141 0.59 1.48 0.52
S&P 500 1995.10-2012.12 1.36 0.64 1.45 0.55
DAX 1995.10-2012.12 1.39 0.61 1.44 0.56
Nikkei225 1995.10-2012.12 1.50 0.50 1.48 0.52
Hang Seng 1995.10-2012.12 1.60 0.40 151 0.49
WIG20 1995.10-2012.12 1.52 0.48 1.48 0.52
Bovespa 1995.10-2012.12 1.46 0.54 1.49 051
RTS 1995.10-2012.12 1.46 0.54 1.44 0.56
SENSEX30 1995.10-2012.12 151 0.49 1.47 0.53
SCI 1995.10-2012.12 1.53 0.47 1.44 0.56
XU100 1995.10-2012.12 1.37 0.63 1.45 0.55
EUR/USD 1995.10-2012.12 1.53 0.47 1.49 051
GBP/USD 1995.10-2012.12 1.52 0.48 1.52 0.48
USD/JPY 1995.10-2012.12 1.50 0.50 1.49 0.51
CHF/PLN 1995.10-2012.12 151 0.49 1.50 0.50
EUR/PLN 1995.10-2012.12 157 043 1.49 0.51
USD/BRL 1995.10-2012.12 1.36 0.64 1.40 0.60
USD/RUB 1995.10-2012.12 1.20 0.80 1.36 0.64
USD/INR 1995.10-2012.12 1..40 0.60 1.39 0.61
USD/CNY 1995.10-2012.12 1.26 0.74 1.56 0.44
USDITRY 1995.10-2012.12 121 0.79 1.40 0.60

In the second part, pointwise Holder exponents were calculated for six cho-
sen markets. Figures 1-6 present pointwise Holder exponents plotted togeth-
er with common logarithms of time series values. The range of values taken
by pointwise Holder exponents’ values is presented on the right of each
graph.
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4.2. Analysis of Results

The interpretation of the results leads to some interesting observations,
especially in the light of fractal analysis and fractal market hypothesis.

The part of research based on fractal dimension provided interesting
evidence supporting the fractal nature of financial time series. First of all,
majority of the investigated markets (16 out of 21) revealed the presence of
long-term trends during entire available history of the price series, with 12
out of 21 markets having significantly nonrandom nature, denoted by
H >0.6.0nly 4 out of 21 markets displayed a random or close to random
nature, having 0.5 < H <0.51, and just in a single case the antiperistent time
series was detected (GBP/USD with H =0.44), which is in line with Peters’
remark about rare occurrence of antipersistent time series in nature and
economy. Such results seem to prove Peters’ concept of financial markets
not being a random walk, but rather a combination of trend and noise —
a fractional Brownian motion.

3,5 0,85
0,8

3
- 0,75
2.5 - 0,7
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Figure 1. S&P500 price series and pointwise Holder exponents

Another interesting evidence was gained based on the comparison of the
fractional dimension and Hurst exponent values for monthly and daily data.
Whereas the research carried out for monthly price series resulted in a wide
variety of values (0.44 < H <0.92 for the entire history of price series), in
case of daily data for 16 out of 21 examined markets it turned out that Hurst
exponent values are usually considerably lower than respective results for
monthly data and fall into a narrow range (0.5 < H < 0.6 for the entire histo-
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Figure 2. DAX price series and pointwise Holder exponents
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Figure 3. Nikkei225 price series and pointwise Holder exponents

ry of price series and 0.48 < H <0.57 for October 1995-December 2012
data range). This might mean that another Peters’ assumption related to
Fractal Market Hypothesis, saying that globally (in the long-term) the market
is deterministic, while locally (in the short-term) it is random, can be posi-
tively verified. Moreover, it seems that during recent years the growing pop-
ularity of electronic trading, larger trading volumes and introduction of au-
tomated algorithmic trading and high frequency trading systems, might have
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increased the efficiency of the markets in the short-term (especially that the
biggest increase of efficiency is visible for the world’s biggest markets like
US and Japan stock market indices or major forex currency pairs). Interest-
ingly, one group of investigated markets is an exception to this rule. All of
the exotic currency pairs linked to emerging markets examined in this paper
(USD/BRL, USD/CNY, USD/INR, USD/RUB, USD/TRY) show a presence
of significant trends on the daily data interval indicated by H > 0.6, which
suggests that the underlying economic phenomena are substantially different
for this group of markets. Nevertheless, further research on such hypothesis
is out of scope of this paper and might require more studies including not
only fractal analysis, but also economic factors, e.g. capital flows.
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Figure 4. XU100 price series and pointwise Holder exponents

The observations made during the analysis of results for the entire data
range and October 1995-December 2012 data range with respect to market
type lead to a conclusion that fractal dimension and Hurst exponent values
correspond to the underlying economic situation. For example, the increase
of Hurst exponent values for DJIA, S&P500 and DAX during the latter peri-
od reflects the dynamic growth and propitious economic conditions in the
1990s and most of 2000s in the economies of United States and Germany.
Respectively, the decrease of Hurst exponent values for Nikkei225 and Hang
Seng is indicative for the economic slowdown in Japan and South Korea
during last two decades after the preceeding very aggresive growth in 1970s
and 1980s. Another interesting observations include the growth of efficiency
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of major forex currency pairs or the randomness of SCI, which probably
reflects the huge influence that Chinese government has on the country’s
economy.
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Figure 5. EUR/USD price series and pointwise Holder exponents
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Figure 6. USD/JPY price series and pointwise Holder exponents

The second part of the research, focused on the application of pointwise
Holder exponents in fractal analysis, provided additional evidence on non-
random nature of the markets. For all six examined markets, the values of
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the pointwise Holder exponents are significantly higher than 0.5 during
most of the entire data range, which proves the presence of long-term de-
pendencies in the investigated time series. Moreover, the graphs expose the
relationship between the trend strength and Holder exponents’ values as they
tend to considerably decrease and converge to 0.5 during recent years side-
ways price movements (which is especially visible for Nikkei225, DAX or
EUR/USD).

One of the pros of using the box-counting dimension method in this arti-
cle is that due to its nature, it does not require assumption on the
selfsimilarity of the analysed object, which allows to avoid making a possi-
bly false statement even before the beginning of the research. Another con-
siderable advantage of the methods used in this article was their algorithmic
accessibility, thus making it affordable from the calculation complexity point
of view and available even for the users which do not have a high-end pro-
cessor cluster at their disposal. Nevertheless, as the estimation method as-
sumes that the Holder function is constant over each of the intervals, it might
introduce some error of method to the results.

Conclusions

The analysis conducted in this research provides solid empirical evi-
dence in favour of Fractal Market Hypothesis, with the presence of long-
term dependencies in the financial time series and the confirmation of the
global determinism and local randomness of the markets being the most
important ones.

An important observation supporting the nonrandomness of the markets
is a relationship between fractal properties of the investigated time series and
the underlying economic situation. One of the most interesting researches
that could be made in the future based on this would be a repetition of the
calculations at some fixed intervals of time — after ten, twenty or thirty years.
Such approach could possibly verify if the opinions stated by economists
a posteriori major changes in economic conditions are in line with the con-
clusions drawn from the fractal characteristics of analysed markets.

Another study that could be made as a continuation of research conduct-
ed in this article could involve inclusion of additional test data, this time not
limited to market time series. Inclusion of some regularly published econom-
ic indicators like gross domestic product, consumer price index or money
supply could potentially reveal some additional relationships and regularities
and shed more light on the macroeconomic processes.
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Moreover, the analysis of results suggests that fractal analysis can be
a valuable tool for the evaluation of market trends, which might be of practi-
cal use for institutional and individual investors.
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Fraktalna analiza finansowych szeregéw czasowych z wykorzysta-
niem wymiaru fraktalnego oraz punktowych wyktadnikéw Hoéldera

Zarys tre$ci. Artykul przedstawia propozycje zastosowania analizy fraktalnej w celu
weryfikacji niektorych zalozen hipotezy rynku fraktalnego oraz wystgpowania fraktalnych
wlasciwosci w finansowych szeregach czasowych. W celu przeprowadzenia badan wykorzy-
stany zostal wymiar pudetkowy oraz punktowe wyktadniki Holdera. Rezultaty osiagnigte dla
badanych rynkoéw pozwolily dokonaé¢ interesujacych obserwacji dotyczacych nielosowosci
szeregdw cenowych oraz wystgpowania relacji migdzy fraktalnymi wlasciwosciami i miarami
zmienno$ci a obecnos$cia trendow 1 wptywem sytuacji ekonomicznej na ceny instrumentow
finansowych.

Stowa kluczowe: analiza fraktalna, wymiar fraktalny, wymiar pudetkowy, punktowe
wyktadniki Holdera, wyktadnik Hursta.

DyNAMIC ECONOMETRIC MODELS 13 (2013) 107-125








