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Abstract: A Dynamics model of a nonlife insurance company is developed. Goodwill re-
presenting the awareness of the company by the public and the perceived quality of its 
services, and the technical capability representing the ability of the company to calcu-
late the risk premium of the risks it considers to accept, are two state variables. The le-
vel of investment in advertising and quality improvement, and investments in technical 
capability are determined optimally to maximize the discounted profits of the compa-
ny over an infinite horizon. The technical capability elasticity of number of customers 
and the claim ratio are shown to be determining parameters affecting the optimal pa-
ths of investments. The stability of equilibrium points are also shown to be dependent 
on these parameters.

 Introduction

Nonlife insurance sector is an important part of financial sector which fuels 
economic growth. It grew by 2.9% in 2014 when the advanced economies grew 
by less than this rate (Sigma 2015). Liberalization of the sector has resulted in 
intense price competition (Borscherd, Haueter 2012). Therefore, the compa-
nies in that sector have to compete by investing in other factors such as quality 



Mustafa Akan10

of service, advertising, and technical capability to better evaluate risks to de-
crease the claims. Nair and Narasimhan (2006) have shown that quality is an 
important determinant of goodwill. Another study has shown that perceived 
quality of the service provided and name familiarity are important factors 
which affect the choice company by the customers (Arora and Stoner 1996). 
Hanson (2001) states that “quality is seen in the context of the essential trans-
formation problem which may exists between the suppliers and the custom-
ers”. Promotional activities, image of the company, customer convenience, and 
procedures are shown to be important factors that determine the company 
choice by life insurance customers (Sunega, Sharma 2008). The factors that de-
termine customer choice are not same in all countries. Computerization, online 
production of policies, connection to the banks, speed and efficiency of trans-
actions, and clear communication with the customers are considered as im-
portant in a city in India (Mathur, Tripathi 2014). In another study by Gangwar 
(2011) procedural efficiency, accessibility, advertising, redressal of complaints, 
and efficiency of claim settlement are shown to be important for life insur-
ance customers. Chowdhury, Raahman, and Afra (2007) have studied the same 
problem in Pakistan and shown that foreign ownership, quality of service, rep-
utation of the company, and quality of personnel are the most important fac-
tors determining customer choice of insurance company. Yet in another similar 
study, Akan (2013) has shown that the confidence in the company that it will 
pay claims, quality of claim service, and price are most important competition 
variables. Price was not even mentioned in another study (İDE 2012:56). Other 
studies conducted in Turkey have also similar conclusions (Karaali ve Özçelik 
2008 and Kaya et. all 2008).

However, goodwill is built up slowly. It is built up by slowly offering a matrix 
of very good services (advertising for name familiarity, computerization, speed 
of policy production and distribution, claim payment procedures, good com-
munication with the customers etc.) over time and it is costly to do so. Hence, 
in optimal control theory terminology, goodwill is a state variable and it is de-
noted as G in this paper.

Pricing risks correctly (determining the risk premium) and underwriting 
these risks is a core function of an insurance company and this function is of-
ten called underwriting or technical department. A high technical capability 
will result in lower incurred claims. A high technical capability will also help 
increase the number of customers since the customers will be more aware of 
the risks that they face and hence they will insure them. However, underwrit-
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ing or technical capability, like goodwill, can only be built up in time by invest-
ing in it. Thus it is also a state variable and it will be denoted as T in this paper.

A nonlife insurance company tries to insure many homogenous risks by cor-
rectly calculating their risk premium (formation of underwriting portfolio) and 
price, collecting the premiums from the sellers of policies, paying commissions, 
claims, general expenses out of its financial portfolio, and optimally investing 
the remaining funds in financial portfolio. Therefore there are two actual port-
folios (underwriting and financial) and one important but immeasurable port-
folio (goodwill) that it has to manage optimally. However how exactly goodwill 
affects the company is not clear. The effect of technical capability on the portfo-
lio of the company is evident but the exact functional form is not known. The ef-
fect of financial portfolio is also evident and is not taken into account here since 
it is assumed to be optimally managed.

The objective of this paper is to develop and solve a dynamic model of an in-
surance company to maximize its profits over an infinite horizon by optimally 
deciding on investments in goodwill and technical capability portfolio.

The research methodology and the course of the research process

Model

Revenues of a nonlife insurance company are composed of premiums and fi-
nancial income. Expenses are composed of claims, commissions, and general 
expenses. Financial income is neglected in this paper since the financial port-
folio is assumed to be optimally managed. General expenses are also neglected 
since they are mostly of fixed character over significantly large time periods 
and output levels. Commissions are disregarded since they are generally a fixed 
percentage of premiums.

The instantaneous profit of the company at time t is expressed as:
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p: price (premium) of the policy, a constant since the insurance sector is assumed to perfectly 
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where;
– p: price (premium) of the policy, a constant since the insurance sector is as-

sumed to perfectly competitive.
– N(G(t),T(t)): Number of policies sold at time t is assumed to be a function of 

goodwill G(t) and the level of technical capability T(t). It has the following 
characteristics.
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a(t) is the investment in goodwill with w(a) as the cost of investing in goodwill, 
q(t) is the level of investment in technical capability. Cost of investing in techni-
cal capability is assumed to be linear function of q(t) with a unit cost of 1.

Hence better the technical capabilities of an insurance company lower will 
be its loss ratio since risk premium (expected loss of the company for accept-
ing a certain risk) is a large part of the premium paid by customers. However, 
improving technical capability is possible only by properly investing in it. Em-
ployment of qualified technical underwriting personnel, education of such per-
sonnel, acquisition of hardware and software to analyze relevant data to meas-
ure risks are all important and are expensive. The issue of reinsurance is not 
included in the model since, in the long run, reinsurance is a partnership.

Mathematically dynamics of technical capability is expressed as: 
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Here;
– T(t): denotes the technical capability at time t.
– δ: rate of obsolescence of technical capability (attrition of personnel, obso-

lescence of methodologies used to measure risks, etc.).
Equation (1) states that the technical capability increases by investment in 

it (q) and decreases exponentially at a rate δ due to obsolescence and deprecia-
tion of this capability (loss of experienced underwriters, obsolescence of both 
software and hardware used by underwriters, etc.).

Another important portfolio which affects the company is the goodwill 
portfolio. Akan (2013), Karaali and Özçelik (2008) and Kaya, Akın and Nalan 
(2008) have shown that confidence in a company and the quality of service are 
very important factors in the choice of insurance company by the customers. 
Hence the perception of customers about an insurance company is important. 
It is of paramount importance for company to have optimal product quality, 
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service quality, company awareness (all elements of goodwill) and to be able to 
keep these at optimal levels. However, the development of this portfolio is very 
difficult since the investments in all elements of goodwill are expensive (cost of 
investment in goodwill is assumed to be a convex function). 

The dynamics of this portfolio is expressed as: 
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assumed to be constant.  
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the same time meet the constraints represented by equation(1) and (2). Mathematically; 
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Here;
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The term e-rt in the integral represents the present value factor. The dis-
count rate r is assumed to be constant since time-dependent discount rate 
would complicate the solution of the model even though it is more realistic.

Solution

Optimal Control Theory will be employed to solve this problem (Kamien and 
Schwartz 2012, L.S, Pontrayagin 1962 among others).

The current Value Hamiltonian is:
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From equation (3),
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Then, using equation (9), we can express T as a function of G, as 
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Using equations (4) and (9) in equation (6), we have
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Equations (11) and (2) represents a homogeneous, first order differential 
equation system in (G, a) space. It is not possible to solve the system since M(G) 
and (a) are not linear. Phase Diagrammatic analysis will be conducted to char-
acterize the optimal solution (Kaplan 1958). However before this analysis, 
equation (9) has to be analyzed. The parameters  will be important since their 
relative size will affect the solution. There are two cases:

A. If 
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In this case equation (9) is represented in Figure 1 below. 

Figure 1. Graphic representation of Equation (9) 

First the loci of points where both a’ = 0 and G’ = 0 needs to be determined (equations 2 

and 11) in (G, a) space.  

a’=0 curve, using equation(11) can be written as: 
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This relationship between a and T is represented in Figure 2 below. 

Figure 2. Graphic representation of Equation (12) 
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   (technical capability elasticity of claim ratio is greater than the 
technical capability elasticity of number of customers)

 In this case equation (9) is represented in Figure 1 below.
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Figure 1. Graphic representation of Equation (9)
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This curve, however, is in (T, a) space. We need to translate it to (G, a) space using equa-

tion (9) and Figure (1). 

G*is the value of G in equation (9) when  in equation (9). Therefore, a’=0 

locus can be represented in (G, a) space as in Figure 3 using Figures 1, 2, and equation (9). It 

can be shown that above the curve represented by equation (12) which is a’=0 locus, a’ > 0, 

and below it a’ < 0. This dynamic procedure is represented by the directional arrows in Figure 

1. Notice that a < 0 in equation (9) when T < (b/(1-k))1/α which corresponds to G* in equation 

(9). So this section of this curve is omitted. Notice also that a’>0 to the left of G* due to equa-

tion (11) because to the left of T* the last term in equation (11) is negative making a’>0. Using 

equation (2), it is shown that above G’=0, G’>0, and below G’=0, G’<0. The intersection of 

these loci represents equilibrium point (Gs,as). 

Figure 3. Phase Diagram-Equations (2) and (11) 
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equation (12) which is a’=0 locus, a’ > 0, and below it a’ < 0. This dynamic pro-
cedure is represented by the directional arrows in Figure 1. Notice that a < 0 in 
equation (9) when T < (b/(1-k))1/α which corresponds to G* in equation (9). So 
this section of this curve is omitted. Notice also that a’>0 to the left of G* due to 
equation (11) because to the left of T* the last term in equation (11) is negative 
making a’>0. Using equation (2), it is shown that above G’=0, G’>0, and below 
G’=0, G’<0. The intersection of these loci represents equilibrium point (Gs,as).

Figure 3. Phase Diagram-Equations (2) and (11)
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It is possible to reach the equilibrium point (Gs,as) from quadrants I and III. 
New or companies with low goodwill must begin with increasing the level of 
technical capability to the level implied by equation (9) by a jump in that state 
variable and continue with very high levels of expenditures (advertising, ex-
penditures to increase quality, and technical capability) at an increasing rate 
first to increase goodwill to G*, technical capability to T*=b/(1-k))1/α (where the 
claim ratio is one) implied by equation (9), then keep investing in goodwill and 
technical capability to further decrease the claim ratio to Ts and increase G to Gs 

which are the desired levels of goodwill and technical capability (Quadrant I). 
This strategy is represented by the curve which starts in the first quadrant 
with arrows on it. For companies with high level of beginning goodwill, the op-
timal strategy will be to keep investing in both goodwill and quality as to bring 
the level of goodwill to the level desired level in the long term (Quadrant III). 
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Strategies starting in quadrants II and IV will not lead to equilibrium. Stability 
of the equilibrium point is studied in the appendix. It is shown that this equi-
librium may or may not be stable. It is stable only if the relationship between 
goodwill G and the technical capability T is not very strong, i.e. M’(G) is small.

B. If 
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T** is the value of T that makes the denominator in equation (9) zero. G becomes infinite at 

this value of T. This relationship and its graph will be employed to translate equation (13) in 

(G, a) space. T* is same as defined previously. Notice that T* is greater than T**. The values of 

T less than T* will be disregarded since a<0 in that case due to equation (13).

Equation (13) is graphed is also in Figure 5 for better exposition with the full knowledge 

that it is not a sinusoidal curve. 

Figure 5. Graphic representation of Equation (13) 

Using Figures (4) and (5), a’=0 locus can be defined in (G, a) space. These loci, a’=0 and 

G’=0, are represented in Figure (6). The part of the graph where a<0 should be omitted. 

Figure 6. Phase Diagram-Equations (2) and (11) 

S o u r c e : developed by the author.

T** is the value of T that makes the denominator in equation (9) zero. G be-
comes infinite at this value of T. This relationship and its graph will be em-
ployed to translate equation (13) in (G, a) space. T* is same as defined previ-
ously. Notice that T* is greater than T**. The values of T less than T* will be 
disregarded since a<0 in that case due to equation (13).

Equation (13) is graphed is also in Figure 5 for better exposition with the 
full knowledge that it is not a sinusoidal curve.
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Figure 5. Graphic representation of Equation (13)
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It can be easily shown that the directional arrows are as shown in Figure (6). (GS,aS) are the 

values of a and G at the equilibrium point. It is shown in the appendix that this equilibrium 

point is a saddle point. 

Following conclusions can be drawn from the diagram above: 

 Companies with low level of beginning goodwill (Quadrant I) must begin with increas-

ing the level of technical capability to the level implied by equation (9) by a jump in 

that state variable and continue with high levels of advertising expenditures to increase 

their goodwill and adjust technical capability T in accordance with equation (9) until 

equilibrium levels are reached. In practice, this strategy implies that the companies 

with low goodwill should first invest heavily in technical capability to improve claim 

ratio to improve profitability then invest heavily in advertising and quality to increase 

the number of customers. 

 For companies with very high levels of goodwill (Quadrant III) optimal behavior will 

be to gradually decrease the goodwill level to the level desired in the long run (Gs), and 

adjusts technical capability level T in accordance with equation (9) to the long term 

technical capability (Ts). 

 Starting in other Quadrants (II and IV) will not lead to equilibrium points. 

The outcome of the research process and conclusions 

S o u r c e : developed by the author.
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It can be easily shown that the directional arrows are as shown in Figure 
(6). (GS,aS) are the values of a and G at the equilibrium point. It is shown in the 
appendix that this equilibrium point is a saddle point.

Following conclusions can be drawn from the diagram above:
 ■ Companies with low level of beginning goodwill (Quadrant I) must be-

gin with increasing the level of technical capability to the level implied 
by equation (9) by a jump in that state variable and continue with high 
levels of advertising expenditures to increase their goodwill and adjust 
technical capability T in accordance with equation (9) until equilibrium 
levels are reached. In practice, this strategy implies that the companies 
with low goodwill should first invest heavily in technical capability to 
improve claim ratio to improve profitability then invest heavily in adver-
tising and quality to increase the number of customers.

 ■ For companies with very high levels of goodwill (Quadrant III) optimal 
behavior will be to gradually decrease the goodwill level to the level de-
sired in the long run (Gs), and adjusts technical capability level T in ac-
cordance with equation (9) to the long term technical capability (Ts).

 ■ Starting in other Quadrants (II and IV) will not lead to equilibrium po-
ints.

The outcome of the research process and conclusions

Findings

When the impact of increasing the technical capability (T) on claim ratio is 
greater than its impact on number of customers 

 
 

Findings 

When the impact of increasing the technical capability (T) on claim ratio is greater than its 

impact on number of customers (  ) or revenues, the optimal strategy is to first to decrease 

the claim ratio to one as quickly as possible (a jump),then to keep investing in it until the  

equilibrium level (Ts) implied by equation (9) is reached. A similar strategy should be fol-

lowed with respect to goodwill (G). Goodwill should be aggressively increased first until the 

claim ratio becomes one and then to continue investing until the long term desired level (Gs) is 

reached. 

However, if the impact of increasing technical capability on claim ratio is less than its im-

pact on the number of customers (ε>α), the strategy should be to increase the goodwill to in-

crease the number of customers, and technical capability in accordance with equation (9). 

In any case, the equilibrium level of goodwill (Gs) and the technical capability level (Ts) are 

greater in the first case than they are in the second case (Figures 3 and 6). This implies high 

spending levels for a company in such an environment which in turn may require high capital-

ization at the beginning discouraging small companies to enter into this sector. 

It is clear that the parameters α and ε are very important in determining the optimal strategy 

for an insurance company. Therefore an insurance company must make an analysis to deter-

mine these parameters before determining a general strategy. 

Discussion 

The model developed above is a strategic planning model in terms of the state variables 

Goodwill G(t) and Technical Capability T(t), control variables, advertising and quality im-

provement a(t) and technical investment q(t). It cannot be used for short term profit maximiza-

tion. The parameters in the model are assumed to be simple to be able to carry out an indica-

tive analysis. For example  =2 while  =0.5. 

The assumed forms of number of customers N(t) and the claim ratio H(t) are arbitrary but 

somehow reflective of their true forms. All cost items (rents, water, electricity, personnel, etc.) 

other than investments in goodwill and technical capability are assumed to be fixed and hence 

are not taken into account.  

The major strength of the model is that it is dynamic and its solution gives an insight about 

the optimal strategic performance to the management of nonlife insurance companies. The 

 or revenues, the opti-
mal strategy is to first to decrease the claim ratio to one as quickly as possible 
(a jump),then to keep investing in it until the equilibrium level (Ts) implied by 
equation (9) is reached. A similar strategy should be followed with respect to 
goodwill (G). Goodwill should be aggressively increased first until the claim ra-
tio becomes one and then to continue investing until the long term desired level 
(Gs) is reached.

However, if the impact of increasing technical capability on claim ratio is 
less than its impact on the number of customers (ε > α), the strategy should be 
to increase the goodwill to increase the number of customers, and technical ca-
pability in accordance with equation (9).
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In any case, the equilibrium level of goodwill (Gs) and the technical capa-
bility level (Ts) are greater in the first case than they are in the second case 
(Figures 3 and 6). This implies high spending levels for a company in such an 
environment which in turn may require high capitalization at the beginning 
discouraging small companies to enter into this sector.

It is clear that the parameters α and ε are very important in determining 
the optimal strategy for an insurance company. Therefore an insurance com-
pany must make an analysis to determine these parameters before determin-
ing a general strategy.

Discussion

The model developed above is a strategic planning model in terms of the state 
variables Goodwill G(t) and Technical Capability T(t), control variables, adver-
tising and quality improvement a(t) and technical investment q(t). It cannot be 
used for short term profit maximization. The parameters in the model are as-
sumed to be simple to be able to carry out an indicative analysis. For example 
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It is clear that the parameters α and ε are very important in determining the optimal strategy 

for an insurance company. Therefore an insurance company must make an analysis to deter-
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Discussion 

The model developed above is a strategic planning model in terms of the state variables 

Goodwill G(t) and Technical Capability T(t), control variables, advertising and quality im-

provement a(t) and technical investment q(t). It cannot be used for short term profit maximiza-

tion. The parameters in the model are assumed to be simple to be able to carry out an indica-

tive analysis. For example  =2 while  =0.5. 

The assumed forms of number of customers N(t) and the claim ratio H(t) are arbitrary but 

somehow reflective of their true forms. All cost items (rents, water, electricity, personnel, etc.) 

other than investments in goodwill and technical capability are assumed to be fixed and hence 

are not taken into account.  

The major strength of the model is that it is dynamic and its solution gives an insight about 
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The assumed forms of number of customers N(t) and the claim ratio H(t) 
are arbitrary but somehow reflective of their true forms. All cost items (rents, 
water, electricity, personnel, etc.) other than investments in goodwill and tech-
nical capability are assumed to be fixed and hence are not taken into account. 

The major strength of the model is that it is dynamic and its solution gives 
an insight about the optimal strategic performance to the management of non-
life insurance companies. The major weakness of the model is the assumption 
made on the functional forms related to claim ratio, cost of advertising, and 
number of customers even though the author believes that these functions re-
flect the reality. Another weakness is the assumption that all factors affecting 
the company will remain the same during the life of the company even though 
this assumption is widely used in optimal control theory models.

Suggestions for further research

All cost items related to volume of business can be added to the model as a frac-
tion of total revenues as defined in the nonlife insurance sector (expense ratio). 
However, this will have no impact on the general solution. Proportional insur-
ance can easily be introduced into the model. However non-proportional rein-
surance function will make the model very difficult.
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Appendix: Stability Analysis of Equilibrium Points

The Taylor’s expansion of the nonlinear system represented by equations (2) 
and (11) around the equilibrium point (Gs,as) is analyzed. The signs of the roots 
of the linear system determine the stability of the system.

Then the system of nonlinear differential equations rewritten below will be 
expanded around the equilibrium point.
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It is clear that the stability depends on the term (D-η) and the term (E-Dη).
The term D is assumed to be positive.

It can be shown that (the details are not included here) the term dN(G)/dG 
is negative if α < ε. This implies that the term E is negative making the term in 
the square root above is positive which in turn implies that one root is posi-
tive when the other is negative. Thus the equilibrium point is a saddle point if 
α<ε i.e. when the impact of increase of technical capability on claim ratio is less 
than its impact on number of customers the equilibrium reached will be a sad-
dle point. The stability analysis in the case of α>ε, we do not have a definite re-
sult on the sign of E thus the equilibrium can be of any type.
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