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Abstract. Drought is a major environmental challenge that significantly impacts agriculture, water
resources and ecosystems, particularly in regions prone to arid conditions. This study aims to classify
and monitor drought severity using multi-temporal remote sensing data, drought indices and machine
learning techniques. Landsat satellite imageries from 2014 to 2024, collected at two-year intervals,
are utilized to assess drought patterns in Quang Tri Province, Vietnam. Three key drought indices
Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI) and Land
Surface Water Index (LSWI) are computed to evaluate vegetation health, surface water content and
soil moisture levels. The Random Forest algorithm on Google Earth Engine (GEE) is applied to classify
drought into different severity levels based on spectral features extracted from satellite images.
The results indicate a clear spatial and temporal variation in drought severity, with coastal areas
consistently undergoing extreme drought, whereas central regions show increasing drought expansion
over time. Western and southern areas remain relatively stable due to higher vegetation cover and
water retention capacity. The study highlights the effectiveness of combining remote sensing data
and machine learning in improving drought classification accuracy. The findings contribute to early-
warning systems, water resource management and climate adaptation strategies, providing valuable
insights for policymakers and land managers.
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Drought is a severe natural disaster that significantly
impacts water resources, agriculture and ecosystems
worldwide (Maybank et al. 1995; Sivakumar 2005;
Trinh and Vu 2019). Unlike other natural disas-
ters such as floods or hurricanes, drought develops
slowly and is difficult to detect in its early stag-
es (Cooley 2006). Its effects are often long-lasting,
causing serious damage to food production, water
supply and economic stability (Wilhite 2016). With

the increasing frequency and severity of droughts
due to climate change, accurate monitoring and
classification of drought conditions have become
crucial for water resource management, agricultural
planning and disaster mitigation strategies (Gupta
et al. 2011; Wilhite et al. 2014; Kumar et al. 2024).

Remote sensing data have been widely utilized
for drought detection and classification due to their
ability to provide continuous and objective observa-
tions across extensive regions (AghaKouchak et al.
2015; West et al. 2019). Multi-temporal satellite im-
agery, such as from Landsat and Sentinel-2, enables
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researchers to track changes in vegetation health,
soil moisture and surface water availability over
time (Bhaga et al. 2023). Various spectral indices
have proven effective in assessing drought severity
by detecting variations in vegetation vigor and water
stress. These indices provide critical insights into
drought-affected areas, allowing for a more detailed
spatial and temporal understanding of drought dy-
namics (Thuoma and Madramootoo 2019; Trinh and
Vu 2019; Pham et al. 2022; Agarwal et al. 2025).
However, despite their effectiveness, these indices
alone may not always provide sufficient accuracy
in drought classification, particularly when dealing
with complex environmental conditions.

To enhance the precision of drought classification,
machine learning algorithms have been integrated
with remote sensing data and drought indices (Zha
et al. 2025). Supervised classification techniques,
such as Random Forest (RF) or Artificial Neural
Network, have demonstrated high performance in
distinguishing different drought severity levels based
on a combination of spectral features (Alemu et al.
2025). These algorithms can process large datasets,
learn complex patterns in remote sensing imagery
and improve classification accuracy by minimizing
human bias. By training on labeled sample data,
machine learning algorithms can classify drought
levels with high precision, making it an ideal choice
for large-scale drought monitoring applications (Xiao
et al. 2024).

In recent years, Google Earth Engine (GEE) plat-
form has emerged as a powerful cloud-based tool
for processing and analyzing large-scale geospatial
datasets (Vijayakumar et al. 2024). GEE provides
access to a vast repository of satellite imagery and
enables real-time data processing using JavaScript
or Python APIs (Ghosh et al. 2022). Its capacity to
handle multi-temporal and high-resolution imagery
makes it highly suitable for drought monitoring and
classification tasks. Moreover, GEE allows for the
integration of spectral indices and machine learning
algorithms directly within the platform, streamlining
the workflow from data acquisition to model deploy-
ment (Yang et al. 2022). This significantly reduces
computational burden and processing time while
enabling reproducible and scalable analyses from
regional to global levels (Tamiminia et al. 2020;
Vijayakumar et al. 2024).

This study aims to develop an integrated drought
classification approach that combines multi-tem-
poral remote sensing data, drought indices and

machine learning techniques to enhance the accu-
racy of drought monitoring. The study focuses on
classifying drought severity levels using Landsat
imagery, spectral indices (NDVI, NDWI, LSWI)
and the Random Forest algorithm. All data process-
ing, index calculation and model implementation
were conducted on GEE platform, which enabled
efficient handling of large datasets and facilitated
a streamlined, cloud-based workflow for region-
al-scale drought assessment.

Materials and methodologys

Study area

Quang Tri is a province in the North Central Coast
region of Vietnam, characterized by diverse topogra-
phy and harsh climatic conditions. Covering an area
of approximately 4,739 km?, it borders Quang Binh
to the north, Thua Thien Hue to the south, Laos to
the west, and the East Sea to the east (Electronic
Information Portal Of Quang Tri Province 2025).
The provinces terrain is distinctly divided into three
main regions: the mountainous region in the west,
the midland hilly area in the center, and the coast-
al lowlands in the east. The western mountainous
region occupies the largest area, featuring high el-
evations and steep slopes, predominantly along the
border with Laos. The midland and hilly areas have
infertile soils with low water retention capacity, while
the narrow coastal plains are vulnerable to saline
intrusion and erosion.

Quang Tri falls within the tropical monsoon cli-
mate zone, undergoing two distinct rainy and dry
seasons. The rainy season lasts from September to
December, with high rainfall averaging between
2,200 and 2,700 mm per year, often leading to flood-
ing and soil erosion. Conversely, the dry season
extends from January to August, with the peak dry
period occurring between April and August, when
the province is heavily affected by the hot, dry Lao
winds. These winds not only raise temperatures to
extreme levels, sometimes reaching 39-41 °C, but
also drastically reduce humidity, accelerating water
evaporation and intensifying drought conditions.
Additionally, while Quang Tri has major rivers such
as the Thach Han and Hieu Rivers, their flow is
highly dependent on seasonal rainfall. During the
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Fig. 1. Location of the study area
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Source: Prepared by the authors based on provincial boundary data, the administrative map of Quang Tri province, and Landsat satellite imagery.

dry season, many streams and rivers dry up, exac-
erbating water shortages for agriculture and daily
consumption.

Due to these geographical and climatic character-
istics, Quang Tri is one of the most drought-prone
provinces in Central Vietnam. Droughts frequently
occur during the dry season, significantly impacting
agricultural production by reducing crop yields, par-
ticularly for rice and industrial crops such as pepper
and rubber. The land in the midland and coastal
areas is highly susceptible to degradation due to
prolonged water shortages, while the coastal zone
faces increased risks of saline intrusion caused by
a lack of freshwater resources. Additionally, access
to drinking water becomes increasingly difficult,
especially in rural areas where the water supply
infrastructure is inadequate.
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Data sources

The study utilizes multi-temporal Landsat data for
drought classification. Landsat is one of the most
important data sources for drought monitoring re-
search, providing continuous satellite imagery since
1972. Operated by the National Aeronautics and Space
Administration (NASA) and the U.S. Geological Survey
(USGS), the Landsat program offers multi-spectral
data with a 30-meter spatial resolution, enabling the
monitoring of vegetation changes, soil moisture and
surface water over time (NASA 2025; U.S. Geological
Survey 2025). Different Landsat generations, such
as Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI/
TIRS and Landsat 9 OLI-2/TIRS-2, are widely used
in drought studies due to their multi-temporal data
acquisition capabilities, with a revisit cycle of 16 days.
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In this study, 06 Landsat 8 and Landsat 9 OLI_
TIRS images were used to calculate drought indices
(NDVI, LSWI, NDWI) for creating a drought-risk
map of Quang Tri province. Information about the
Landsat 8/9 imagery used in this study is presented
in Table 1.

Methodology

The drought classification process using multi-tem-
poral Landsat imagery, drought indices and the
Random Forest (RF) algorithm involves multiple
steps, including data collection, drought indices
computation, sample data generation, data incor-
poration, drought classification and assessment of
affected area changes. Figure 2 illustrates the re-
mote-sensing-data processing workflow adopted in
this study for drought classification.

Step 1: Collecting multi-temporal Landsat
satellite images

The first step in the process is to collect multi-tempo-
ral Landsat satellite images to monitor drought vari-
ations over time. This study utilizes Landsat datasets
available on the cloud computing platform Google
Earth Engine (GEE). The Landsat program has multi-
ple sensor generations, among which Landsat 8 OLI/
TIRS and Landsat 9 OLI-2/TIRS-2 are commonly
used sources for drought analysis (GEE 2025).

After collecting the dataset, input images are
selected and preprocessed. The key factors to de-
termine include the study area, cloud filtering and
the image acquisition period.

Table 1. Landsat data used in this study

Multi-temporal Landsat images

|

Select input data:
Research area
Cloud filtering
Image acquisition time
I

Calculate Calculate
NDVI NDWI
Generate sample | Combine Landsat image bands and

data drought indices

Calculate

LSWI

| Classify drought levels using the RF algorithm

l

Evaluate the changes in drought coverage

Fig. 2. Flowchart of remote-sensing-data processing in this
study

o Study area: The research defines the bounda-
ries of the study region to focus on processing
relevant data.

o Cloud filtering: Since Landsat satellite images
can be affected by cloud cover, cloud masking
techniques are applied to remove cloud-af-
fected areas and enhance data quality (Guo
et al. 2016; Cao et al. 2020).

« Image acquisition period: Drought is a sea-
sonal phenomenon, so images must be col-
lected at different time points to evaluate
change trends. This study collects images
over the research years, corresponding to the
dry season when drought conditions occur
in the study area (Table 1).

No. Satellite Acquisition date
1 Landsat 8 OLI_TIRS August 1, 2014
2 Landsat 8 OLI_TIRS July 21, 2016
3 Landsat 8 OLI_TIRS May 24, 2018
4 Landsat 8 OLI_TIRS July 16, 2020
5 Landsat 9 OLI2_TIRS2 August 31, 2022
6 Landsat 9 OLI2_TIRS2 August 4, 2024
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Finally, the authors obtain a multi-temporal Landsat
image dataset, where each image represents a spe-
cific research period.

Step 2: Calculation of the drought indices

After obtaining high-quality input data, the next

step is to calculate key indices to assess drought

conditions. These indices are essential in determining

the extent of water stress, soil moisture availability

and overall vegetation health. The primary drought

indices used in this study include LSWI, NDVI and
NDWI, which are defined as follows:

o LSWI (Land Surface Water Index): LSWI is

a key indicator in monitoring drought by

assessing soil and vegetation moisture (Dong

et al. 2014). It responds quickly to rainfall,

making it useful for tracking water availability

(Chandrasekar et al. 2010). In low-precipita-

tion areas, LSWI shows a strong correlation

with total rainfall. It also helps monitor veg-

etation health and soil water content across

different growth stages, aiding in drought

assessment and agricultural planning. LSWI

is calculated using the Near-Infrared (NIR)

and Shortwave Infrared (SWIR) bands of

Landsat imagery as (Mohammed et al. 2024):

LS = NIR — SWIR (1)
" NIR + SWIR

o NDVI (Normalized Difference Vegetation
Index): NDVI is a widely used indicator in
monitoring drought by assessing vegetation
health and water stress. NDVT is calculated
as (Myneni et al. 1995):

NIR — Red
NDVI= NTR + Red @

o« NDWI (Normalized Difference Water Index):
First introduced by Gao in 1996, NDWI has
become widely used in agriculture, forestry
and environmental monitoring to analyze
drought effects and water dynamics (Gao
1996). NDWI is particularly valuable for
detecting surface water changes, assessing
vegetation moisture content and identifying
drought-prone areas. The formula for NDWTI:

NDWI Green — NIR
" Green + NIR (3)

In this study, Landsat surface reflectance imagery
was processed on the Google Earth Engine (GEE)
platform to enable consistent multi-temporal anal-
ysis. Landsat 8 and Landsat 9 Collection 2 Level-2
Surface Reflectance datasets, atmospherically cor-
rected using the LaSRC algorithm, were utilized.
Cloud and shadow contamination were mitigated
through the CFMask band (QA_PIXEL), with an
additional buffer applied around flagged pixels to
minimize edge effects. To address temporal acquisi-
tion differences, a median composite was generated
for each dry-season period (May-August), thereby
reducing residual atmospheric noise and ensuring
seasonal comparability. Spectral indices, including
NDVI, LSWI and NDWI, were subsequently derived
from the corresponding Landsat bands (Green: B3,
Red: B4, NIR: B5, SWIR: B6) to monitor vegetation
dynamics and surface moisture. The use of GEE
enabled efficient data access, preprocessing and har-
monization of multi-year Landsat archives, which is
critical for detecting spatiotemporal drought patterns
at the provincial scale.

Step 3: Generating sample data
and integrating drought indices

After calculating the vegetation indices, the data is
aggregated to serve as input for the drought clas-
sification model. The LSWI index is specifically
used to generate sample data, which is essential for
training the model.

LSWT has four levels of severity classification. The
first class represents extreme drought, with values in
the range of LSWI < -0.1. The second class indicates
severe drought, ranging —0.1 < LSWI < 0. The third
class corresponds to moderate drought, with values
of 0 < LSWI < 0.1. The fourth class represents no
drought, with LSWI values in the range of 0.1 <
LSWI (Du et al. 2018; Alwan and Aziz 2022).

The sample dataset is generated by randomly
selecting 1,000 samples from the extreme drought
class of LSWI and labeling them as “drought” and
1,000 samples from the no-drought class of LSWI
and labeling them as “no drought”. The dataset was
subsequently divided into training (70%) and testing
(30%) subsets for model performance evaluation. At
the same time, all calculated indices from Landsat
imagery will be integrated with Landsat spectral
bands to form the input dataset, enhancing the ac-
curacy of drought classification. The input dataset
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includes NDVI, NDWI, LSWI, BLUE (Band 2),
GREEN (Band 3), RED (Band 4), NIR (Band 5),
SWIR1 (Band 6) and SWIR2 (Band 7).

Step 4: Drought classification using
the RF algorithm

Aggregated data obtained from the previous steps
were utilized within the Random Forest (RF) ma-
chine learning algorithm to classify drought severity
levels. Random Forest (RF) is a robust algorithm
capable of effectively handling nonlinear data by
integrating multiple decision trees (Breiman 2001).
The model was trained on the generated sample
dataset and subsequently applied to the entire study
area to classify drought into distinct severity levels.
This approach enhances the reliability and accuracy
of drought classification.

The RF model was trained as a binary classifier
with two classes: drought and no-drought. After
training, the model outputs the probability of each
pixel belonging to the drought class. In Google Earth
Engine (GEE), the RF classifier is deployed with
200 trees, the remaining parameters are set to de-
fault values. To produce categorical drought severity
maps, these probabilities were partitioned into five
severity levels using equal intervals:

Extreme drought: P > 0.8
Severe drought: 0.6 < P < 0.8
Moderate drought: 0.4 < P < 0.6
Mild drought: 0.2 < P < 04

No drought: P < 0.2

This probability-based discretization allowed the
conversion of binary classification outputs into mul-
ti-class drought severity levels, ensuring both con-
sistency in training and interpretability in mapping.

Step 5: Assessing drought-affected area
changes over time

After classifying drought severity, the final step is
to evaluate changes in the drought-affected area
over time. Comparing drought data across multi-
ple years helps identify drought trends, determine
the most severely affected regions, and assess the
spatial extent of drought expansion. This analysis
provides crucial insights for understanding drought

progression and developing strategies for mitigation
and resource management.

Results and discussion

The study collects multi-temporal Landsat images
spanning the period from 2014 to 2024, with a two-
year interval between each image. The research focus-
es on Quang Tri Province, enabling a comprehensive
assessment of drought patterns and trends over the
past decade. Figure 3 presents the collected Landsat
images displayed using a natural color composite
(Red - Green - Blue).

LSWI maps from 2014 to 2024 show fluctua-
tions in drought severity across Quang Tri Province
(Fig. 4). Lower LSWI values in 2020 indicate in-
creased drought stress, whereas 2022 data show
slight improvements. Southern and south-western
areas consistently exhibit a lower LSWI, suggesting
greater drought risk. The variability may be attributed
to changes in precipitation, land use, and climatic
influences, highlighting the necessity of drought
monitoring and the development of adaptive water
management strategies. Based on Figure 5, NDVI
values in Quang Tri fluctuated significantly during
2014-2024, reflecting changes in land cover and
drought conditions. In 2014 and 2016, low NDVI
was prevalent in coastal and sand dune areas. In
2018-2020, spatial differentiation was more evident:
the plains maintained high NDVI, while hilly and
coastal areas remained low. In 2022, the maximum
NDVI was 0.86, with the area of low values decreas-
ing, indicating favorable humid conditions. However,
in 2024, the minimum NDVI decreased to -0.46,
reflecting the return of drought. Similarly, the NDWI
values in Quang Tri province during 2014-2024 show
clear fluctuations in surface moisture conditions (Fig.
6). In 2014 and 2016, the maximum NDWI reached
0.70 and 0.66, while low values were widespread in
coastal areas and dry uplands. In 2018, the index
declined sharply, indicating more severe moisture
deficiency. By 2020, NDWTI slightly recovered but
remained lower than the early period. Notably, in
2022, the maximum value reached 0.81, reflecting
unusually wet conditions consistent with the peak
“no drought” classification. However, in 2024, the
maximum dropped to 0.53, indicating reduced mois-
ture and a renewed risk of drought.
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Based on the independent test dataset of 600
samples, the RF model for 2024 achieved an overall
accuracy (OA) of 0.97 and a Kappa coefficient (k)
of 0.93, indicating a very high level of agreement
beyond chance. The confusion matrix shows that 289
drought pixels were correctly classified, 11 drought
pixels were misclassified as “no drought’, 291 no-
drought pixels were correctly classified, and only
9 no-drought pixels were misclassified (Table 2).
Class-specific performance metrics were also high,
with Fl-scores of 0.97 for the drought class and
0.96 for the no-drought class, while both precision
and recall ranged from 0.96 to 0.97. These results
confirm the balanced and stable classification ability
of the RF model and demonstrate the reliability of
the approach for drought assessment.

The drought classification maps for Quang Tri
Province (2014-2024) reveal significant spatial and
temporal variations in drought severity. Over the
ten-year period, the eastern coastal region consist-
ently undergoes extreme drought, as indicated by the
dominance of red areas. This is likely due to sandy
soil with low water retention, high evaporation rates,
and saltwater intrusion. The central region, includ-
ing agricultural and urban areas, shows fluctuating
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Fig. 3. Landsat data images of Quang Tri province for the period 2014-2024
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Fig. 6. NDWI maps of Quang Tri province for the period 2014-2024

Table 2. Confusion matrix of the RF model for 2024

Drought (Prediction)

No Drought (Prediction)

Drought (True) 289
No Drought (True) 09

11
291

2022 at 81.43% (3,950.43 km?). By 2024, this pro-
portion had slightly declined to 74.55% (3,616.61
km?). These fluctuations could be linked to changes
in rainfall, temperature and water resource manage-
ment measures at different times.

Next, mild drought generally decreased from
7.45% (361.58 km?) in 2014 to 4.72% (228.92 km?)
in 2024. It fluctuated across the years, with a drop
to 4.84% (234.98 km?) in 2016, then a rise to 7.02%
(340.39 km?®) in 2018. By 2020, it decreased again to
5.51% (267.32 km?) and reached 6.56% (318.34 km?)
in 2022 before lowering to 4.72% in 2024. Similarly,
moderate drought fluctuated between 4 and 5% in
2014, 2016 and 2018, showing a downward trend
t0 2.99% (144.89 km?) in 2022 before rising slightly
to 4.26% (206.55 km?®) in 2024.

Regarding severe drought, although its proportion
remains relatively low compared to other classes,
noticeable changes were observed. It increased from
2.92% (141.84 km?) in 2014 to 3.27% (158.41 km?)
in 2016, then gradually declined to 1.83% (88.91
km?) in 2022, before rising again to 4.47% (217.01
km?) in 2024. Meanwhile, extreme drought fluctuated
between 7 and 13% over the study period. In 2014,
it accounted for 12.22% (592.57 km?), reaching its
highest value in 2020 at 12.99% (630.14 km?). In
2022, extreme drought saw its lowest proportion at
7.18% (348.48 km?) before rising again to 12.00%
(581.95 km?) in 2024.

As shown in Table 3, the “No drought” area domi-
nates throughout the study period, peaking at 81.43%
in 2022. However, the “Extreme drought” level still
maintains a high proportion in several years (12-13%
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Fig. 7. Drought risk maps of Quang Tri province for the period 2014-2024

in 2014, 2020, and 2024), reflecting that the risk of
extreme drought has not been effectively controlled.
Other potential factors, such as deforestation or in-
creasing water demand, are discussed as hypotheses
and will need to be verified with auxiliary data in
future studies.

From these figures, the general trend shows that
the area without drought tends to increase signifi-
cantly in certain years such as 2022. However, the
proportion of extreme droughts remains high, in-
dicating that severe drought areas have not been
completely mitigated. The results are similar to the
annual reports of the province on drought (Quang
Tri Province Department of Natural Resources
and Environment 2022). These results highlight

the importance of water resources management,
early-warning systems and sustainable solutions to
reduce the damage caused by drought.

Conclusion

This study has classified and analyzed drought severi-
ty using multi-temporal remote sensing data, drought
indices and machine learning techniques. By inte-
grating Landsat imagery, key drought indices NDVI,
NDWI, LSWI and the Random Forest (RF) algorithm
on GEE, the research provides a comprehensive

Table 3. Area and percentage of the area of the drought classes during the study period

No drought Mild drought lﬁfjs;;tte Severe drought i:(t::;l:
km? % km? % km? % km? % km? %
2014 3,536.34 72.90 361.58 7.45 218.71 4.51 141.84 2.92 592.57 12.22
2016  3,612.98 74.48 234.98 4.84 223.28 4.60 158.41 3.27 621.40 12.81
2018  3,648.95 75.22 340.39 7.02 212.98 4.39 133.46 2.75 515.27 10.62
2020 3,570.46 73.60 267.32 5.51 218.37 4.50 164.75 3.40 630.14 12.99
2022 3,950.43 81.43 318.34 6.56 144.89 2.99 88.91 1.83 348.48 7.18
2024 3,616.61 74.55 228.92 4.72 206.55 4.26 217.01 4.47 581.95 12.00
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drought classification framework for Quang Tri
Province over the ten-year period 2014-2024. The
results highlighted significant spatial and temporal
variations in drought severity, with coastal areas
undergoing persistent extreme drought, while cen-
tral regions showing increasing drought expansion
over time. In contrast, western and southern areas
remained relatively stable due to better vegetation
cover and water availability. The results from this
research contributed to a better understanding of
drought dynamics and offered valuable guidance for
mitigating climate-related risks in vulnerable regions.
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