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Abstract. Drought is a major environmental challenge that signifi cantly impacts agriculture, water 
resources and ecosystems, particularly in regions prone to arid conditions. This study aims to classify 
and monitor drought severity using multi-temporal remote sensing data, drought indices and machine 
learning techniques. Landsat satellite imageries from 2014 to 2024, collected at two-year intervals, 
are utilized to assess drought patterns in Quang Tri Province, Vietnam. Three key drought indices 
Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI) and Land 
Surface Water Index (LSWI) are computed to evaluate vegetation health, surface water content and 
soil moisture levels. The Random Forest algorithm on Google Earth Engine (GEE) is applied to classify 
drought into different severity levels based on spectral features extracted from satellite images. 
The results indicate a clear spatial and temporal variation in drought severity, with coastal areas 
consistently undergoing extreme drought, whereas central regions show increasing drought expansion 
over time. Western and southern areas remain relatively stable due to higher vegetation cover and 
water retention capacity. The study highlights the effectiveness of combining remote sensing data 
and machine learning in improving drought classifi cation accuracy. The fi ndings contribute to early-
warning systems, water resource management and climate adaptation strategies, providing valuable 
insights for policymakers and land managers.
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Province, Vietnam using Landsat multi-
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Introduction

Drought is a severe natural disaster that signifi cantly 
impacts water resources, agriculture and ecosystems 
worldwide (Maybank et al. 1995; Sivakumar 2005; 
Trinh and Vu 2019). Unlike other natural disas-
ters such as fl oods or hurricanes, drought develops 
slowly and is diffi  cult to detect in its early stag-
es (Cooley 2006). Its eff ects are oft en long-lasting, 
causing serious damage to food production, water 
supply and economic stability (Wilhite 2016). With 

the increasing frequency and severity of droughts 
due to climate change, accurate monitoring and 
classifi cation of drought conditions have become 
crucial for water resource management, agricultural 
planning and disaster mitigation strategies (Gupta 
et al. 2011; Wilhite et al. 2014; Kumar et al. 2024).

Remote sensing data have been widely utilized 
for drought detection and classifi cation due to their 
ability to provide continuous and objective observa-
tions across extensive regions (AghaKouchak et al. 
2015; West et al. 2019). Multi-temporal satellite im-
agery, such as from Landsat and Sentinel-2, enables 
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researchers to track changes in vegetation health, 
soil moisture and surface water availability over 
time (Bhaga et al. 2023). Various spectral indices 
have proven effective in assessing drought severity 
by detecting variations in vegetation vigor and water 
stress. These indices provide critical insights into 
drought-affected areas, allowing for a more detailed 
spatial and temporal understanding of drought dy-
namics (Ihuoma and Madramootoo 2019; Trinh and 
Vu 2019; Pham et al. 2022; Agarwal et al. 2025). 
However, despite their effectiveness, these indices 
alone may not always provide sufficient accuracy 
in drought classification, particularly when dealing 
with complex environmental conditions.

To enhance the precision of drought classification, 
machine learning algorithms have been integrated 
with remote sensing data and drought indices (Zha 
et al. 2025). Supervised classification techniques, 
such as Random Forest (RF) or Artificial Neural 
Network, have demonstrated high performance in 
distinguishing different drought severity levels based 
on a combination of spectral features (Alemu et al. 
2025). These algorithms can process large datasets, 
learn complex patterns in remote sensing imagery 
and improve classification accuracy by minimizing 
human bias. By training on labeled sample data, 
machine learning algorithms can classify drought 
levels with high precision, making it an ideal choice 
for large-scale drought monitoring applications (Xiao 
et al. 2024).

In recent years, Google Earth Engine (GEE) plat-
form has emerged as a  powerful cloud-based tool 
for processing and analyzing large-scale geospatial 
datasets (Vijayakumar et al. 2024). GEE provides 
access to a vast repository of satellite imagery and 
enables real-time data processing using JavaScript 
or Python APIs (Ghosh et al. 2022). Its capacity to 
handle multi-temporal and high-resolution imagery 
makes it highly suitable for drought monitoring and 
classification tasks. Moreover, GEE allows for the 
integration of spectral indices and machine learning 
algorithms directly within the platform, streamlining 
the workflow from data acquisition to model deploy-
ment (Yang et al. 2022). This significantly reduces 
computational burden and processing time while 
enabling reproducible and scalable analyses from 
regional to global levels (Tamiminia et al. 2020; 
Vijayakumar et al. 2024).

This study aims to develop an integrated drought 
classification approach that combines multi-tem-
poral remote sensing data, drought indices and 

machine learning techniques to enhance the accu-
racy of drought monitoring. The study focuses on 
classifying drought severity levels using Landsat 
imagery, spectral indices (NDVI, NDWI, LSWI) 
and the Random Forest algorithm. All data process-
ing, index calculation and model implementation 
were conducted on GEE platform, which enabled 
efficient handling of large datasets and facilitated 
a  streamlined, cloud-based workflow for region-
al-scale drought assessment.

Materials and methodologys

Study area

Quang Tri is a province in the North Central Coast 
region of Vietnam, characterized by diverse topogra-
phy and harsh climatic conditions. Covering an area 
of approximately 4,739 km², it borders Quang Binh 
to the north, Thua Thien Hue to the south, Laos to 
the west, and the East Sea to the east (Electronic 
Information Portal Of Quang Tri Province 2025). 
The province’s terrain is distinctly divided into three 
main regions: the mountainous region in the west, 
the midland hilly area in the center, and the coast-
al lowlands in the east. The western mountainous 
region occupies the largest area, featuring high el-
evations and steep slopes, predominantly along the 
border with Laos. The midland and hilly areas have 
infertile soils with low water retention capacity, while 
the narrow coastal plains are vulnerable to saline 
intrusion and erosion.

Quang Tri falls within the tropical monsoon cli-
mate zone, undergoing two distinct rainy and dry 
seasons. The rainy season lasts from September to 
December, with high rainfall averaging between 
2,200 and 2,700 mm per year, often leading to flood-
ing and soil erosion. Conversely, the dry season 
extends from January to August, with the peak dry 
period occurring between April and August, when 
the province is heavily affected by the hot, dry Lao 
winds. These winds not only raise temperatures to 
extreme levels, sometimes reaching 39–41 °C, but 
also drastically reduce humidity, accelerating water 
evaporation and intensifying drought conditions. 
Additionally, while Quang Tri has major rivers such 
as the Thach Han and Hieu Rivers, their flow is 
highly dependent on seasonal rainfall. During the 
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Fig. 1. Location of the study area
Source: Prepared by the authors based on provincial boundary data, the administrative map of Quang Tri province, and Landsat satellite imagery.

dry season, many streams and rivers dry up, exac-
erbating water shortages for agriculture and daily 
consumption.

Due to these geographical and climatic character-
istics, Quang Tri is one of the most drought-prone 
provinces in Central Vietnam. Droughts frequently 
occur during the dry season, significantly impacting 
agricultural production by reducing crop yields, par-
ticularly for rice and industrial crops such as pepper 
and rubber. The land in the midland and coastal 
areas is highly susceptible to degradation due to 
prolonged water shortages, while the coastal zone 
faces increased risks of saline intrusion caused by 
a  lack of freshwater resources. Additionally, access 
to drinking water becomes increasingly difficult, 
especially in rural areas where the water supply 
infrastructure is inadequate.

Data sources

The study utilizes multi-temporal Landsat data for 
drought classification. Landsat is one of the most 
important data sources for drought monitoring re-
search, providing continuous satellite imagery since 
1972. Operated by the National Aeronautics and Space 
Administration (NASA) and the U.S. Geological Survey 
(USGS), the Landsat program offers multi-spectral 
data with a 30-meter spatial resolution, enabling the 
monitoring of vegetation changes, soil moisture and 
surface water over time (NASA 2025; U.S. Geological 
Survey 2025). Different Landsat generations, such 
as Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI/
TIRS and Landsat 9 OLI-2/TIRS-2, are widely used 
in drought studies due to their multi-temporal data 
acquisition capabilities, with a revisit cycle of 16 days.
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In this study, 06 Landsat 8 and Landsat 9 OLI_
TIRS images were used to calculate drought indices 
(NDVI, LSWI, NDWI) for creating a drought-risk 
map of Quang Tri province. Information about the 
Landsat 8/9 imagery used in this study is presented 
in Table 1.

Methodology

The drought classification process using multi-tem-
poral Landsat imagery, drought indices and the 
Random Forest (RF) algorithm involves multiple 
steps, including data collection, drought indices 
computation, sample data generation, data incor-
poration, drought classification and assessment of 
affected area changes. Figure 2 illustrates the re-
mote-sensing-data processing workflow adopted in 
this study for drought classification.

Step 1: Collecting multi-temporal Landsat 
satellite images

The first step in the process is to collect multi-tempo-
ral Landsat satellite images to monitor drought vari-
ations over time. This study utilizes Landsat datasets 
available on the cloud computing platform Google 
Earth Engine (GEE). The Landsat program has multi-
ple sensor generations, among which Landsat 8 OLI/
TIRS and Landsat 9 OLI-2/TIRS-2 are commonly 
used sources for drought analysis (GEE 2025).

After collecting the dataset, input images are 
selected and preprocessed. The key factors to de-
termine include the study area, cloud filtering and 
the image acquisition period.

Table 1. Landsat data used in this study

No. Satellite Acquisition date
1 Landsat 8 OLI_TIRS August 1, 2014
2 Landsat 8 OLI_TIRS July 21, 2016
3 Landsat 8 OLI_TIRS May 24, 2018
4 Landsat 8 OLI_TIRS July 16, 2020
5 Landsat 9 OLI2_TIRS2 August 31, 2022
6 Landsat 9 OLI2_TIRS2 August 4, 2024

Fig. 2. Flowchart of remote-sensing-data processing in this 
study

•	 Study area: The research defines the bounda-
ries of the study region to focus on processing 
relevant data. 

•	 Cloud filtering: Since Landsat satellite images 
can be affected by cloud cover, cloud masking 
techniques are applied to remove cloud-af-
fected areas and enhance data quality (Guo 
et al. 2016; Cao et al. 2020).

•	 Image acquisition period: Drought is a sea-
sonal phenomenon, so images must be col-
lected at different time points to evaluate 
change trends. This study collects images 
over the research years, corresponding to the 
dry season when drought conditions occur 
in the study area (Table 1).
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Finally, the authors obtain a multi-temporal Landsat 
image dataset, where each image represents a  spe-
cific research period.

Step 2: Calculation of the drought indices

After obtaining high-quality input data, the next 
step is to calculate key indices to assess drought 
conditions. These indices are essential in determining 
the extent of water stress, soil moisture availability 
and overall vegetation health. The primary drought 
indices used in this study include LSWI, NDVI and 
NDWI, which are defined as follows:

•	 LSWI (Land Surface Water Index): LSWI is 
a  key indicator in monitoring drought by 
assessing soil and vegetation moisture (Dong 
et al. 2014). It responds quickly to rainfall, 
making it useful for tracking water availability 
(Chandrasekar et al. 2010). In low-precipita-
tion areas, LSWI shows a strong correlation 
with total rainfall. It also helps monitor veg-
etation health and soil water content across 
different growth stages, aiding in drought 
assessment and agricultural planning. LSWI 
is calculated using the Near-Infrared (NIR) 
and Shortwave Infrared (SWIR) bands of 
Landsat imagery as (Mohammed et al. 2024):

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

•	 NDVI (Normalized Difference Vegetation 
Index): NDVI is a widely used indicator in 
monitoring drought by assessing vegetation 
health and water stress. NDVI is calculated 
as (Myneni et al. 1995):

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅 

 •	 NDWI (Normalized Difference Water Index): 
First introduced by Gao in 1996, NDWI has 
become widely used in agriculture, forestry 
and environmental monitoring to analyze 
drought effects and water dynamics (Gao 
1996). NDWI is particularly valuable for 
detecting surface water changes, assessing 
vegetation moisture content and identifying 
drought-prone areas. The formula for NDWI:

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 − 𝑁𝑁𝑁𝑁𝑁𝑁
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑁𝑁𝑁𝑁𝑁𝑁 

 

In this study, Landsat surface reflectance imagery 
was processed on the Google Earth Engine (GEE) 
platform to enable consistent multi-temporal anal-
ysis. Landsat 8 and Landsat 9 Collection 2 Level-2 
Surface Reflectance datasets, atmospherically cor-
rected using the LaSRC algorithm, were utilized. 
Cloud and shadow contamination were mitigated 
through the CFMask band (QA_PIXEL), with an 
additional buffer applied around flagged pixels to 
minimize edge effects. To address temporal acquisi-
tion differences, a median composite was generated 
for each dry-season period (May–August), thereby 
reducing residual atmospheric noise and ensuring 
seasonal comparability. Spectral indices, including 
NDVI, LSWI and NDWI, were subsequently derived 
from the corresponding Landsat bands (Green: B3, 
Red: B4, NIR: B5, SWIR: B6) to monitor vegetation 
dynamics and surface moisture. The use of GEE 
enabled efficient data access, preprocessing and har-
monization of multi-year Landsat archives, which is 
critical for detecting spatiotemporal drought patterns 
at the provincial scale.

Step 3: Generating sample data  
and integrating drought indices

After calculating the vegetation indices, the data is 
aggregated to serve as input for the drought clas-
sification model. The LSWI index is specifically 
used to generate sample data, which is essential for 
training the model.

LSWI has four levels of severity classification. The 
first class represents extreme drought, with values in 
the range of LSWI ≤ –0.1. The second class indicates 
severe drought, ranging –0.1 < LSWI ≤ 0. The third 
class corresponds to moderate drought, with values 
of 0 < LSWI ≤ 0.1. The fourth class represents no 
drought, with LSWI values in the range of 0.1 < 
LSWI (Du et al. 2018; Alwan and Aziz 2022).

The sample dataset is generated by randomly 
selecting 1,000 samples from the extreme drought 
class of LSWI and labeling them as “drought” and 
1,000 samples from the no-drought class of LSWI 
and labeling them as “no drought”. The dataset was 
subsequently divided into training (70%) and testing 
(30%) subsets for model performance evaluation. At 
the same time, all calculated indices from Landsat 
imagery will be integrated with Landsat spectral 
bands to form the input dataset, enhancing the ac-
curacy of drought classification. The input dataset 

(1)

(2)

(3)
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includes NDVI, NDWI, LSWI, BLUE (Band 2), 
GREEN (Band 3), RED (Band 4), NIR (Band 5), 
SWIR1 (Band 6) and SWIR2 (Band 7).

Step 4: Drought classification using  
the RF algorithm

Aggregated data obtained from the previous steps 
were utilized within the Random Forest (RF) ma-
chine learning algorithm to classify drought severity 
levels. Random Forest (RF) is a  robust algorithm 
capable of effectively handling nonlinear data by 
integrating multiple decision trees (Breiman 2001). 
The model was trained on the generated sample 
dataset and subsequently applied to the entire study 
area to classify drought into distinct severity levels. 
This approach enhances the reliability and accuracy 
of drought classification.

The RF model was trained as a binary classifier 
with two classes: drought and no-drought. After 
training, the model outputs the probability of each 
pixel belonging to the drought class. In Google Earth 
Engine (GEE), the RF classifier is deployed with 
200 trees, the remaining parameters are set to de-
fault values. To produce categorical drought severity 
maps, these probabilities were partitioned into five 
severity levels using equal intervals:

Extreme drought: P ≥ 0.8
Severe drought: 0.6 ≤ P < 0.8
Moderate drought: 0.4 ≤ P < 0.6
Mild drought: 0.2 ≤ P < 0.4
No drought: P < 0.2

This probability-based discretization allowed the 
conversion of binary classification outputs into mul-
ti-class drought severity levels, ensuring both con-
sistency in training and interpretability in mapping.

Step 5: Assessing drought-affected area 
changes over time

After classifying drought severity, the final step is 
to evaluate changes in the drought-affected area 
over time. Comparing drought data across multi-
ple years helps identify drought trends, determine 
the most severely affected regions, and assess the 
spatial extent of drought expansion. This analysis 
provides crucial insights for understanding drought 

progression and developing strategies for mitigation 
and resource management.

Results and discussion

The study collects multi-temporal Landsat images 
spanning the period from 2014 to 2024, with a two-
year interval between each image. The research focus-
es on Quang Tri Province, enabling a comprehensive 
assessment of drought patterns and trends over the 
past decade. Figure 3 presents the collected Landsat 
images displayed using a  natural color composite 
(Red - Green - Blue).

LSWI maps from 2014 to 2024 show fluctua-
tions in drought severity across Quang Tri Province 
(Fig. 4). Lower LSWI values in 2020 indicate in-
creased drought stress, whereas 2022 data show 
slight improvements. Southern and south-western 
areas consistently exhibit a lower LSWI, suggesting 
greater drought risk. The variability may be attributed 
to changes in precipitation, land use, and climatic 
influences, highlighting the necessity of drought 
monitoring and the development of adaptive water 
management strategies. Based on Figure 5, NDVI 
values in Quang Tri fluctuated significantly during 
2014–2024, reflecting changes in land cover and 
drought conditions. In 2014 and 2016, low NDVI 
was prevalent in coastal and sand dune areas. In 
2018–2020, spatial differentiation was more evident: 
the plains maintained high NDVI, while hilly and 
coastal areas remained low. In 2022, the maximum 
NDVI was 0.86, with the area of low values decreas-
ing, indicating favorable humid conditions. However, 
in 2024, the minimum NDVI decreased to –0.46, 
reflecting the return of drought. Similarly, the NDWI 
values in Quang Tri province during 2014–2024 show 
clear fluctuations in surface moisture conditions (Fig. 
6). In 2014 and 2016, the maximum NDWI reached 
0.70 and 0.66, while low values were widespread in 
coastal areas and dry uplands. In 2018, the index 
declined sharply, indicating more severe moisture 
deficiency. By 2020, NDWI slightly recovered but 
remained lower than the early period. Notably, in 
2022, the maximum value reached 0.81, reflecting 
unusually wet conditions consistent with the peak 
“no drought” classification. However, in 2024, the 
maximum dropped to 0.53, indicating reduced mois-
ture and a renewed risk of drought.
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Based on the independent test dataset of 600 
samples, the RF model for 2024 achieved an overall 
accuracy (OA) of 0.97 and a  Kappa coefficient (κ) 
of 0.93, indicating a  very high level of agreement 
beyond chance. The confusion matrix shows that 289 
drought pixels were correctly classified, 11 drought 
pixels were misclassified as “no drought”, 291 no-
drought pixels were correctly classified, and only 
9 no-drought pixels were misclassified (Table  2). 
Class-specific performance metrics were also high, 
with F1-scores of 0.97 for the drought class and 
0.96 for the no-drought class, while both precision 
and recall ranged from 0.96 to 0.97. These results 
confirm the balanced and stable classification ability 
of the RF model and demonstrate the reliability of 
the approach for drought assessment.

The drought classification maps for Quang Tri 
Province (2014–2024) reveal significant spatial and 
temporal variations in drought severity. Over the 
ten-year period, the eastern coastal region consist-
ently undergoes extreme drought, as indicated by the 
dominance of red areas. This is likely due to sandy 
soil with low water retention, high evaporation rates, 
and saltwater intrusion. The central region, includ-
ing agricultural and urban areas, shows fluctuating 

 

 Fig. 3. Landsat data images of Quang Tri province for the period 2014–2024 

drought intensity, with an expansion of moderate and 
severe drought conditions over time. This trend may 
be influenced by land use changes, deforestation and 
increased water demand for agriculture and human 
uses. Meanwhile, the western and southern regions 
remain largely unaffected, as shown by the prevalence 
of green (no-drought) areas across all years. These 
areas benefit from higher forest cover, better water 
retention, and proximity to natural water sources. 
Over time, drought conditions worsen in 2016 and 
2020, reflecting reduced rainfall and increasing cli-
mate variability. The maps suggest that coastal areas 
are the most vulnerable, while central regions are 
at growing risk of severe drought expansion. Key 
factors contributing to these trends include climate 
change, declining precipitation and overextraction 
of water resources.

During the study period from 2014 to 2024, Table 
3 reveals variations in the distribution of areas among 
different drought classes. First, no-drought consistently 
holds the largest proportion. In 2014, it accounted for 
72.90% (3,536.34 km²), which increased to 74.48% 
(3,612.98 km²) in 2016 and 75.22% (3,648.95 km²) 
in 2018. However, it slightly decreased to 73.60% 
(3,570.46 km²) in 2020 before reaching its peak in 



T.T.T. Tran et al.Drought risk assessment in Quang Tri Province, Vietnam using Landsat multi-temporal remote sensing data... 

Citation: Bulletin of Geography. Physical Geography Series 2026, 30, http://doi.org/10.12775/bgeo-2026-000232

 

 

 

 

Fig. 4. LSWI maps of Quang Tri province for the period 2014–2024

Fig. 5. NDVI maps of Quang Tri province for the period 2014–2024
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 Fig. 6. NDWI maps of Quang Tri province for the period 2014–2024

Drought (Prediction) No Drought (Prediction)
Drought (True) 289 11

No Drought (True) 09 291

Table 2. Confusion matrix of the RF model for 2024

2022 at 81.43% (3,950.43 km²). By 2024, this pro-
portion had slightly declined to 74.55% (3,616.61 
km²). These fluctuations could be linked to changes 
in rainfall, temperature and water resource manage-
ment measures at different times.

Next, mild drought generally decreased from 
7.45% (361.58 km²) in 2014 to 4.72% (228.92 km²) 
in 2024. It fluctuated across the years, with a drop 
to 4.84% (234.98 km²) in 2016, then a rise to 7.02% 
(340.39 km²) in 2018. By 2020, it decreased again to 
5.51% (267.32 km²) and reached 6.56% (318.34 km²) 
in 2022 before lowering to 4.72% in 2024. Similarly, 
moderate drought fluctuated between 4 and 5% in 
2014, 2016 and 2018, showing a  downward trend 
to 2.99% (144.89 km²) in 2022 before rising slightly 
to 4.26% (206.55 km²) in 2024.

Regarding severe drought, although its proportion 
remains relatively low compared to other classes, 
noticeable changes were observed. It increased from 
2.92% (141.84 km²) in 2014 to 3.27% (158.41 km²) 
in 2016, then gradually declined to 1.83% (88.91 
km²) in 2022, before rising again to 4.47% (217.01 
km²) in 2024. Meanwhile, extreme drought fluctuated 
between 7 and 13% over the study period. In 2014, 
it accounted for 12.22% (592.57 km²), reaching its 
highest value in 2020 at 12.99% (630.14 km²). In 
2022, extreme drought saw its lowest proportion at 
7.18% (348.48 km²) before rising again to 12.00% 
(581.95 km²) in 2024.

As shown in Table 3, the “No drought” area domi-
nates throughout the study period, peaking at 81.43% 
in 2022. However, the “Extreme drought” level still 
maintains a high proportion in several years (12–13% 
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No drought Mild drought Moderate 
drought Severe drought Extreme 

drought
km2 % km2 % km2 % km2 % km2 %

2014 3,536.34 72.90 361.58 7.45 218.71 4.51 141.84 2.92 592.57 12.22
2016 3,612.98 74.48 234.98 4.84 223.28 4.60 158.41 3.27 621.40 12.81
2018 3,648.95 75.22 340.39 7.02 212.98 4.39 133.46 2.75 515.27 10.62
2020 3,570.46 73.60 267.32 5.51 218.37 4.50 164.75 3.40 630.14 12.99
2022 3,950.43 81.43 318.34 6.56 144.89 2.99 88.91 1.83 348.48 7.18
2024 3,616.61 74.55 228.92 4.72 206.55 4.26 217.01 4.47 581.95 12.00

Table 3. Area and percentage of the area of the drought classes during the study period

 

 Fig. 7. Drought risk maps of Quang Tri province for the period 2014–2024

in 2014, 2020, and 2024), reflecting that the risk of 
extreme drought has not been effectively controlled. 
Other potential factors, such as deforestation or in-
creasing water demand, are discussed as hypotheses 
and will need to be verified with auxiliary data in 
future studies.

From these figures, the general trend shows that 
the area without drought tends to increase signifi-
cantly in certain years such as 2022. However, the 
proportion of extreme droughts remains high, in-
dicating that severe drought areas have not been 
completely mitigated. The results are similar to the 
annual reports of the province on drought (Quang 
Tri Province Department of Natural Resources 
and Environment 2022). These results highlight 

the importance of water resources management, 
early-warning systems and sustainable solutions to 
reduce the damage caused by drought.

Conclusion

This study has classified and analyzed drought severi-
ty using multi-temporal remote sensing data, drought 
indices and machine learning techniques. By inte-
grating Landsat imagery, key drought indices NDVI, 
NDWI, LSWI and the Random Forest (RF) algorithm 
on GEE, the research provides a  comprehensive 
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drought classification framework for Quang Tri 
Province over the ten-year period 2014–2024. The 
results highlighted significant spatial and temporal 
variations in drought severity, with coastal areas 
undergoing persistent extreme drought, while cen-
tral regions showing increasing drought expansion 
over time. In contrast, western and southern areas 
remained relatively stable due to better vegetation 
cover and water availability. The results from this 
research contributed to a  better understanding of 
drought dynamics and offered valuable guidance for 
mitigating climate-related risks in vulnerable regions.
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