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Abstract. Monitoring the change in land cover in disaster-affected areas, such as forests, has become 
a conventional forest management practice, particularly in protected areas. Most change detection 
and fragmentation studies rely on single-dated satellite images even while investigating changes over  
a long temporal span. This study aims to move a step further to compare fragmentation before and 
after a derecho event that occurred in August 2017 using 23 Landsat-8 images of Brusy Commune 
within the Tuchola Forest Biosphere Reserve. The supervised classification was carried out in the Google 
Earth Engine using the machine learning algorithm of random forests within the summer months of 
2017 and 2018. The high overall accuracy of 0.92 was obtained for the two images which were 
then analysed with landscape metrics such as mean patch size, number of patches, total edge and 
edge density using Patch Analyst. These landscape metrics facilitated the characterisation of landscape 
fragmentation at both the class and landscape levels. Shannon’s Diversity Index was employed to 
assess heterogeneity across the landscape. The findings indicate significant fragmentation, particularly 
in the forest and pasture classes, with overall low diversity. This study underscores the potential for 
future research to employ advanced machine learning techniques and non-parametric classifiers, such 
as neural networks, to enhance the prediction of fragmentation across various spatial scales. 

Landscape metrics of the Brusy Commune 
before and after wind-storm: an assessment 
of the extent of changes based on Landsat-8 
data

Key words:
landscape fragmentation,

landscape metrics,
LULC changes,

Landsat-8,
wind-storm, 

Google Earth Engine

Introduction

The perception of forest landscapes varies 
significantly across different scales and is 
influenced by the observer’s experiences and the 
methodological approach adopted in its study. 
This variability is particularly evident in remote 
sensing, where landscapes are interpreted through 
various resolutions – spatial, radiometric, spectral 
and temporal. These resolutions frame our 
understanding of the landscape’s structure, dynamics 
and function. Natural disasters and human impacts 
have been consistently responsible for modifying 
the landscape, and it has thus become increasingly 

crucial to study the various changes occurring 
within the landscape using various remote-sensing 
and GIS tools on various scales (Haines-Young 
and Chopping 1996; Gustafson 1998; Frohn 2018; 
McGarigal and Cushman 2002; Vogt et al. 2007). 
When monitoring natural or human-induced events, 
change detection involves four steps: detecting the 
change, determining its nature, measuring its area 
and assessing its spatial pattern (Macleod and 
Congalton 1998).

Based on many remotely sensed images at 
various spatial resolutions and assessments of 
landscape metrics, researchers have been able to 
quantify the influence of spatial scale on landscape 
patterns (Kunz and Nienartowicz 2002, 2004, 2007; 
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Wu and Hobbs 2002; Saura 2004; Zhu et al. 2006; 
Gan et al. 2009). Indicators or metrics that consider 
the pattern, area and geometrical aspects of the 
landscape are used for change detection analysis 
(Kunz and Nienartowicz 2002). Turner et al. (2001) 
proposed methods for analysing landscape and 
forest patterns. In practice, the majority of forest 
fragmentation indicators are driven by either the 
ideas of adjacency or connectivity at the pixel level 
(Musick and Grover 1991). To meet requirements for 
the comparability of data and indicators across wide 
geographic regions, the input data for assessments 
are often derived from remote sensing and consist 
of land cover maps (Vogt et al. 2007).

Feng and Liu (2015) analysed raster datasets 
from 30 m to 330 m, at 30-m intervals, finding 
that landscape metrics’ sensitivity to cell size varies, 
with some metrics significantly affected and others 
showing minimal sensitivity. This result is consistent 
with previous literature highlighting the correlation 
with metrics and scales (Kunz and Nienartowicz 
2002; Millington et al. 2003; Uuemaa et al. 2005). 
Recent methodologies to analyse scale impacts 
have been utilised in case studies to examine scale 
constraints in landscape ecology (Alhamad et al. 
2011; Forzieri and Catani 2011; Feng et al. 2013; 
Lü et al. 2013).

Forest disturbance mapping at medium 
resolution faced constraints until 2008, when 
Landsat imagery was made freely available. From a 
scientific perspective, the authors found it essential 
to not rely solely on single images from satellite 
sensors. Instead, they utilised a median composite 
of all cloud-free data for classification on Google 
Earth Engine (GEE). GEE is a free cloud-computing 
platform for satellite-data processing (Landsat, 
Sentinel-2, MODIS) and planetary-scale analysis 
(Gorelick et al. 2017). Since the first major work 
on the topic was published in 2013 (Hansen et al. 
2013), the amount of research using GEE has risen 
sharply, with more than 397,000 results in Google 
Scholar as of April, 2024. The applications range 
from vegetation monitoring to land cover mapping, 
disaster management and agricultural applications 
(Kennedy et al. 2018; Mutanga and Kumar 2019; 
Amani et al. 2020; Orusa et al. 2023).

This research explores the suitability of 
Landsat’s 30-m resolution for analysing landscape 
fragmentation, focusing on the Brusy Commune 
forest in northern Poland, which experienced a 
derecho stemming from a mesocyclone on August 

11, 2017. It critically examines the impact of scale 
on landscape metrics and their sensitivity when 
employing GEE for satellite-based forest monitoring.

Materials and methods

Study area

The Brusy Commune, serving as the focal area for 
this study’s detailed land use/land cover (LULC) 
changes analysis, is situated within the Chojnice 
Poviat of the Pomeranian Voivodeship, northern 
Poland (see Fig. 1). Spanning an area of 400.74 km2, 
it is predominantly rural, with nearly 99% of its 
expanse dedicated to rural landscapes and a minor 
fraction (5.1 km²) constituting the urban area of 
the town of Brusy. As of 2017, the commune had a 
population of ~14,500, resulting in a density of 36 
individuals per km². The commune is composed of 
100 settlement units, encompassing major villages, 
minor settlements and the urban centre of Brusy 
(Kunz and Nienartowicz 2023).

Within the Brusy Commune, the Przymuszewo 
Forest District is the predominant State Forest 
economic unit, encompassing 80.53% of the area, 
with the Czersk and Rytel Forest Districts following 
in contribution. Land cover/usage analysis reveals 
forests as the largest category, occupying 23,684 
hectares or 59.1% of the commune’s terrain. 
Agricultural spaces make up 30.4% of the land, with 
arable fields accounting for 20.5% of this. Water 
bodies, including six lakes each over 100 hectares, 
constitute 6.2% of the area. Built-up and transport 
infrastructures cover 2.1%, while areas with 
scattered trees and shrubbery account for roughly 
0.2%. The forest landscape is mainly characterised 
by coniferous ecosystems, predominantly dry and 
fresh pine stands, with deciduous forests making up 
about 12% of the forestry. The average age of these 
forest stands is 62 years (Kunz and Nienartowicz 
2023).

The Brusy Commune’s forest regions are 
distinguished by a variety of protected areas, 
including the Zaborski Landscape Park located 
in its western sector (see Fig. 1). Within the 
commune boundaries, there exist eight nature 
reserves encompassing forest, peat bog and 
aquatic ecosystems, alongside 42 ecological sites. 
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Additionally, Brusy is among 22 communes within 
the Tuchola Forest Biosphere Reserve (TFBR), 
which was inaugurated on June 2, 2010 as part of 
the Man and Biosphere Programme (MaB), marking 
it as Poland’s eleventh and largest biosphere reserve. 
Occupying 319,525 hectares in the country’s 
north-west, the TFBR is predominantly forested, 
accounting for over 60% of its area. This significant 
forest cover positions the Tuchola Forest natural 
district as one of Poland’s most extensive forested 
areas (Nienartowicz et al. 2010; Nienartowicz and 
Kunz 2018).

The Tuchola Forest Biosphere Reserve is 
segmented into three distinct zones: core, buffer 
and transit, as illustrated in Figure 1. The core 
zone, deemed the most critical, encompasses the 
“Tuchola Forest” National Park and 25 nature 
reserves. Following this is the buffer zone, primarily 
composed of four landscape parks, including the 
Zaborski Landscape Park, which predominantly falls 
within the Brusy Commune. The transit zone, the 
largest, extends over the territories of 22 communes 

(13 from the Kuyavian-Pomeranian Voivodeship 
and 9 from the Pomeranian Voivodeship) and the 
city of Tuchola, covering an area exceeding 206,000 
hectares – nearly double the size of the buffer zone. 
This structure is a unique characteristic of the 
Tuchola Forest Biosphere Reserve. Nevertheless, 
in August 2017, the reserve, particularly within 
the Brusy Commune’s administrative boundaries, 
was struck by a devastating derecho, leading to 
significant alterations in the landscape’s structure 
(see figure 2)(Taszarek et al. 2019; Kunz et al. 2023).

Derecho event in Tuchola Forest Biosphere 
Reserve

European Severe Weather Database records 600 
severe convective wind gusts annually in Poland 
(Dotzek et al. 2009). Such occurrences are most 
prevalent from May through August, with a typical 
peak in the late afternoon of July (Celiski-Mysaw and 

Fig. 1. Location of the Brusy Commune in the Tuchola Forest Biosphere Reserve
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Palarz 2017; Taszarek et al. 2019; Sulik and Kejna 
2020). These winds, capable of causing significant 
damage, commonly result from thunderstorm 
outflows and are frequently linked to supercells and 
mesoscale convective systems (MCS) (Zipser 1982; 
Doswell and Burgess 1993; Houze 1993).

Johns and Hirt (1987) were the inaugural 
scientists to outline the criteria for derechos, a term 
referring to intense downburst clusters associated 
with forward-propagating mesoscale convective 
systems (MCS) characterised by mesoscale vortices 
and inflow jets. According to Corfidi et al. (2016), 
for an event to be classified as a derecho, the damage 
path must maintain a width of at least 100 km and 
extend over a length of 650 km, predominantly 
driven by a mature, cold-pool MCS following 
the initial storm development. Annually, Poland 
witnesses an average of ten bow echoes and one 

derecho, indicative of the country’s susceptibility 
to such severe weather phenomena. Notably, the 
derecho on August 11, 2017 exemplified this 
destructive capability, generating substantial wind 
damage with gusts exceeding 42 m/s (Celiski-
Mysaw and Matuszko 2014; Celiski-Mysaw and 
Palarz 2017; Taszarek et al. 2019; Sulik and Kejna 
2020).

Materials and methods

The methodological scheme has been illustrated in 
Figure 3 and described in detail in the following 
section.

Fig. 2. Examples in aerial imageries of deforestation resulting from the derecho of August 11, 2017 
(source of remote-sensing data – geoportal.gov.pl)
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between March 30 and July 30, 2017, as pre-disaster 
evidence, and 13 images from the corresponding 
dates in 2018 as post-disaster evidence. For each set 
of yearly images, a median composite was generated 
to represent the summer season’s land cover state.

Classification method

Reference data, including both training and 
validation samples, were collected from Landsat 
imagery for the specified time frames. Reflecting 
the objectives of this study and the real-world 
conditions of the study area, six distinct land cover 
types were identified for sampling: water bodies, 
forest, damaged forest area, bare land, pastures and 
built-up areas. To ensure a non-biased assessment 
of classification accuracy, validation samples were 
acquired at least one week subsequent to the 
collection of training samples. For the purpose of 
training, ~1500 samples for each land cover category 
were compiled. Conversely, the number of validation 

Satellite data

This research employed multispectral satellite 
imagery from the Landsat-8 Operational Land 
Imager (OLI), focusing on orthorectified surface 
reflectance data processed through Google Earth 
Engine (GEE) to conduct land use and land cover 
(LULC) classification in Brusy, North Poland, 
specifically during the summer period of April, 
May, June, and July. Landsat-8’s moderate spatial 
resolution of 30 meters, coupled with its global 
reach, has facilitated its widespread adoption for 
various land cover delineation tasks, including the 
identification of agricultural lands and wetland 
areas, since its launch (Giri et al. 2013; Schultz et 
al. 2015; Gilbertson et al. 2017). For the purpose 
of classification, this study selected only the blue, 
green, red, and near-infrared (NIR) bands, given 
their similar Spectral Response Functions (SRF). 
The criteria for image selection included a cloud 
cover of less than 10%. The dataset comprised 10 
Landsat-8 surface reflectance (SR) images collected 

Fig. 3. Methodological scheme of work
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samples was significantly lower, emphasising quality 
over quantity in assessing the model’s performance.

Random forest classifier

In this research, the Random Forest (RF) algorithm 
was selected for the task of classification, recognised 
for its robustness in handling various satellite 
imagery types (Jin et al. 2019; Xu et al. 2020). 
Random Forest operates on the principle of 
Ensemble Learning, amalgamating multiple decision 
trees to improve the classification outcome. Each 
decision tree, constructed from a randomly sampled 
subset of the training data, contributes equally to 
the final decision through a process of majority 
voting on the classification of unlabelled samples.

Notably, the RF classifier is acclaimed for 
its swift training process, exceptional accuracy, 
resilience to outliers and resistance to overfitting, as 
highlighted in previous studies (Rodriguez-Galiano 
et al. 2012; Zhong et al. 2014). For the purposes 
of this study, the classifier was configured with 50 
trees, a decision aimed at optimising the trade-off 
between computational efficiency and classification 
precision. All other parameters within the Google 
Earth Engine (GEE) framework were maintained 
at their default settings, ensuring a standardised 
approach to the classification process.

Accuracy evaluation

The evaluation of precision stands as a pivotal 
aspect of the classification workflow, with accuracy 
assessment being integral to verifying the correct 
categorisation of land cover types from sampled 
pixels (Rwanga and Ndambuki 2017). This process 
encompasses a variety of techniques designed 
to measure the thematic accuracy of land cover 
classifications. Among these, the confusion matrix 
serves as a fundamental tool, facilitating the 
calculation of Overall Accuracy (OA). OA is derived 
by dividing the number of correctly classified pixels 
by the total pixel count, offering a straightforward 
metric of classification success (Foody 2010). This 
measure provides a quantifiable means to assess 
the effectiveness of the classification algorithm 
in accurately identifying land cover from satellite 
imagery.

Landscape pattern analysis

The LULC classes can be mapped and their 
structural properties computed with the use of 
landscape ecological concepts and metrics. The 
authors used the term landscape metrics and 
indices simultaneously. Quantifying LULC patch 
distribution patterns and geographical analysis 
is crucial to understanding the direction and 
magnitude of landscape changes. Landscape pattern 
analysis can provide valuable information regarding 
LULC change (Zhang et al. 2011; Huang and Song 
2016; Jaafari et al. 2016; Wang et al. 2018; Motlagh 
et al. 2020; Tariq et al. 2023; Tran et al. 2023). 
Forest fragmentation involves separating contiguous 
ecosystems into smaller sections called “patches” 
(Dutt and Kunz 2022). According to Forman (1995), 
a patch is defined as a relatively homogeneous area. 
The term “class” encompasses various categories of 
patches, including those defined by land cover/land 
use, habitat or vegetation types. Rutledge (2003) 
notes that fragmentation typically results in an 
increased number of patches, a reduction in the 
average size of these patches and an augmentation 
in the total length of their edges.

Fragmentation indices

Landscape indices are commonly categorised into 
two types: non-spatial and spatial (Gustafson 1998). 
Non-spatial indices quantify the composition of 
the landscape by measuring the classes of patches 
or the proportions of area they occupy. In contrast, 
spatial indices assess fragmentation by detailing 
the properties of these patches. Rutledge (2003) 
suggests that spatial indices are indicative of 
patch composition, shape and configuration. It 
is important to note that, strictly speaking, only 
patch composition is directly associated with 
fragmentation. However, the conventional concept 
of ecosystem fragmentation also encompasses 
the reduction of area and the additional 
indices previously discussed. The fundamental 
fragmentation landscape indices encompass 
composition, form and configuration. The selection 
of specific indices depends on authors’ discretion and 
the metrics’ applicability derived from prior studies. 
Composition indicators elucidate the foundational 
properties of fragmentation. Metrics such as the 
number of patches and mean patch area serve as 
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primary measures of fragmentation (McCarigal et 
al. 2002). However, these metrics are inadequate in 
capturing fragmentation comprehensively, as it also 
entails considerations of patch sizes.

Shape indices gauge patch complexity, with 
shapes like circles or squares featuring fewer 
edges and more core area (Forman 1995). Fractal 
dimension serves as another prominent metric for 
assessing shape and complexity (Krummel et al. 
1987; O’Neill et al. 1988; Kunz and Nienartowicz 
2007).

Patch configuration indices quantify the 
connectivity within landscape patches (Tischendorf 
and Fahrig 2000). The Shannon’s Diversity Index 
(SHDI) offers a more robust measure of abundance, 
while the number of patches is termed “richness” 
(Turner 1990). A Shannon diversity index of zero 
indicates uniform distribution of space among 
patches across the entire landscape. Traditionally, 
composition analysis has utilised the Shannon 
metric (Effati et al. 2021).

The metrics for this landscape study are listed 
in Table 1 and were calculated using Patch Analyst 
3.1 for Esri Software based on criteria from the 
literature. These metrics were determined by analysis 

of the vector data produced from the supervised 
classification both at the landscape level and the 
class level. For the landscape-level change metrics, 
the authors calculated the percentage value to plot 
all the matrices in the same graph for better visual 
interpretation.

Results and discussion

LULC change analysis

Windstorms can significantly alter the landscape 
through mechanisms such as wind damage, 
precipitation and storm surge (Dutt et al. 2024). 
Spatial variations resulting from a recorded 
derecho event have been distinctly observed within 
these categories (Dutt and Kunz 2022). Given the 
capabilities of Google Earth Engine, which includes 
a range of machine learning techniques, it was 
considered advantageous to evaluate whether this 
application programming interface could reliably 
compute forest fragmentation. Accordingly, imagery 

Name of metrics Definition Implication

Number of Patches 
(NP)

Total number of landscape patches, if 
Analyse by Landscape is selected, or 
the Number of Patches for each class, 
if Analyse by Class is selected.

Describes the fragmentation of the landscape, the higher 
the number, the more fragmentation.

Mean Patch Size 
(MPS)

Mean of all patch areas belonging to 
class i.

Defines landscape composition. Diversity index and 
mean patch size are inversely associated (Kumar et al. 
2006). As the number of classes grows, the mean patch 
size decreases at a landscape scale (Li et al. 2005).

Total Edge (TE)
Length of edges in the surface area; 
an edge is the boundary between two 
distinct types of land cover.

Fragmentation produces a greater edge (Rutledge 2003).

Edge Density (ED)
Total edge density index is a ratio of 
total edges (number of cells at patch 
boundary) to total area (total cells).

Total edge density represents the level of fragmentation, 
it begins to increase rapidly at the landscape scale, but 
the rate slows as the number of classes increases (Li et al. 
2005) species richness is sometimes positively correlated 
with edge density (Kumar et al. 2006).

Area Weighted 
Mean Patch 
Fractal Dimension 
(AWMPFD)

Shape complexity adjusted for shape 
size.

Rectangles, squares, and circles have fractal dimension 
1, whereas irregular shapes approach 2. Human 
perturbations reduce the landscape's fractal dimension.

Shannon's Diversity 
Index (SHDI)

Number of land cover and land 
use types in a landscape; when 
normalised, this index value ranges 
from 0 to 1.

A high score suggests a fairly equal proportion of land 
cover types. Low values signify that a single land cover 
category dominates.

Table 1. Description and implication of metrics
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from pre- (2017) and post-disaster (2018) scenarios 
was utilised. However, relying solely on a single 
database to observe these changes is inadequate 
for determining whether landscape metrics offer 
additional insights beyond conventional satellite 
imagery. Consequently, the authors employed 
supervised classification schemes to categorise 
Landsat images from 2017 and 2018, as illustrated 
in Figure 4. Post-classification, it is essential to 
assess and validate cartographic accuracy. Since the 
creation of ideal classification maps is unfeasible, 
a certain degree of error is anticipated. Thus, it 
is crucial to acknowledge the limitations imposed 
by user preferences, geographic regions or sensor 
specifications.

Figure 4 depicts land cover change trajectories in 
the Brusy Commune region. The trend analysis (Fig. 
5A) shows a 177.52% increase in damaged forest, 
followed by a 79.59% increase in bare land. The 
forest cover decreased by 25.16%. Pastures, built-
up and water had negligible change. Considering 
the two datasets, the predicted changes between 
the pre-disaster and post-disaster scenarios depict 
a  satisfactory image of a disturbed landscape 
affected by windstorms.

A detailed examination of the satellite image 
classifications before and after the 2017 disaster, 
depicted in Figure 3, reveals significant vegetation 
loss in the north-west and south-east sections of 
the study area consequent to the derecho event. 
This data also facilitates the efficient determination 
of the storm’s path. Notably, the region already 
exhibited signs of forest damage before the 2017 
event, traceable to a tornado in 2012, as evidenced 
by the pre-disaster classified map (left) where short 
straight lines inside the forest patches vividly depict 
regions of secondary forest growth.

Errors in the classification process were noted, 
with omission errors present in water, pastures 
and bare land, while commission errors affected 
settlements and forests. These misclassifications, 
typically not expected in real-world scenarios, did 
not influence the water or settlement classes despite 
the storm events, and were thus deemed negligible 
by the authors. Additionally, the apparent decline in 
built-up areas is hypothesised to result from human 
classification errors, where highways and smaller 
settlements were likely misidentified as bare land 
or damaged forest.

Given the Landsat dataset’s 30-m resolution, 
it is possible that machine learning techniques 

misclassified some open land as damaged forest or 
bare land. This scenario prompts a re-evaluation of 
the dataset’s reliability for forest change studies and 
raises the question of whether higher-resolution 
data should be utilised for more accurate forest 
management analyses. These annual assessments 
prove crucial for identifying the impacts of recurrent 
events.

Fragmentation analysis at class level

According to Jiao et al. (2012), there is 
a  significant linkage between land use and land 
cover (LULC) and landscape metrics. These 
metrics are instrumental in defining the landscape 
characteristics associated with LULC classes, as 
highlighted by Gudmann et al. (2020). Generally, 
the development of fragmentation indices mirrors 
advances in landscape ecology. This connection 
is succinctly captured in the title of Turner’s 
seminal 1989 review, “Landscape Ecology: The 
Effect of Pattern on Process”, which underscores 
the critical interplay between landscape patterns 
and ecological processes. The popularity and 
effectiveness of landscape pattern analysis have 
been enhanced by tools such as FRAGSTAT 
(McGarigal and Marks 1995) and Patch Analyst 
(Rempel et al. 1999). These tools have not 
only facilitated detailed measures of individual 
patches, classes and the entire landscape but their 
continued utilisation underscores their enduring 
relevance and utility. The analysis focuses on 
class-level changes across six dominant element 
types: damaged forest, forest, pastures, built-up 
area, barren land and water. Landscape metrics 
have yielded valuable insights into changes within 
the forest, particularly in terms of fragmentation, 
connectivity and heterogeneity. From 2017 to 
2018, the total number of patches (NP) increased 
from 21,375 to 29,579, marking a 38.38% rise. 
This significant increase is partly attributable to 
interventions in the damaged forest landscape, 
where heavy equipment used for debris removal 
and subsequent restoration activities created 
numerous small, open spaces. These areas may be 
mistakenly identified as built-up areas in satellite 
imagery. Additionally, the presence of sandy 
surfaces and remains of devastated vegetation can 
further exacerbate these misclassifications.
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C. Mean patch size

In addition, there was a notable decrease in the 
mean patch size (MPS) by 30.05%, as shown in 
Figure 5C. This reduction, along with the results 
from other indicators, suggests that the landscape 
became increasingly fragmented during the 
study period. Figure 5A summarises the metrics 
generated for the area per land cover class at the 
class level, highlighting the substantial changes 
within the landscape. Notably, the category of 
damaged forest exhibited the most significant 
alterations. Concurrently, the MPS for pastures and 
forest land in Brusy also declined (Fig. 5C). This 
reduction in MPS occurred alongside a decrease in 
the total class areas (CA) (Fig. 5A) and an increase 
in the number of patches (NP) and edge density 
(ED) (Figs. 5B and 5D). These changes collectively 
indicate that fragmentation was most pronounced 
in the pastures and forest lands.

Fragmentation analysis at landscape level

Planners and policymakers often address the adverse 
effects of landscape fragmentation, which can arise 
through two primary mechanisms as identified 

by Burel and Baudry (2003): the reduction in the 
overall size of a habitat and the division of a habitat 
class into smaller patches. This process may also 
coincide with an increase in the total amount of 
edge, further complicating landscape integrity (Yu 
and Ng 2006; Dutt et al. 2024).

In this study, fragmentation was assessed using 
several indices, including Mean Patch Size (MPS), 
Number of Patches (NP), Total Edge (TE) and Edge 
Density (ED), as shown in Figure 6. The pre-disaster 
scenario exhibited a landscape where MPS was at 
its maximum, while TE, ED and NP were relatively 
low, indicating minimal fragmentation. In contrast, 
the post-disaster scenario showed a significant 
reversal in these metrics, clearly signalling increased 
landscape fragmentation.

Furthermore, measuring landscape heterogeneity, 
which encompasses patch variety and spatial 
complexity, is crucial for understanding landscape 
evolution (Burel and Baudry 2003). Despite the 
storm, Shannon’s Diversity Index (SHDI), calculated 
to assess heterogeneity, showed no significant 
changes between pre- (1.64) and post-disaster (1.62) 
scenarios, as presented in Figure 6. This stability 
suggests that no substantial shifts in land cover types 
occurred within the short study period. The similar 

Fig. 5. Selected landscape indices: A. class area (CA), B. number of patches (NP), C. mean patch size (MPS), and D. edge density 
(ED)
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values of this index imply that while the structural 
dominance of land cover categories changed, it did 
not significantly impact overall diversity.

In general, the areas that remained forested 
despite the storm event are located at a considerable 
distance from roads and settlements, as well as from 
pastures (Fig. 4). This shows that there are many 
complex and interconnected processes behind 
recent land cover change.

Conclusion

The patterns found in the landscape as a result of 
our research show a direct relationship between 
land use and land cover. Within the research area, 
forests are generally located at a distance from 
human populations, roads, and pastures. This 
configuration may indicate the vulnerability of 
vegetation that remains closer to open lands and 
built-up structures, a finding consistent with what 
Dutt et al. (2024) identified in their study on forest 
fragmentation susceptibility. The methods employed 
within the study combine satellite images with 
landscape metrics, allowing us to assess and analyse 
changes in land use patterns in the study region. The 
utilisation of machine learning ensemble methods of 
stacked images covering the entire summer season 

Fig. 6. Fragmentation and diversity analysis at landscape level

of 2017 and 2018 with relevant metrics enables 
a deep investigation of dynamic landscapes that 
would have otherwise appeared static using single-
date land cover analysis approaches. Although 
remote sensing is increasingly used to research land 
cover change (Feng et al. 2013; Gilbertson et al. 
2017; Gin et al. 2019), few studies relate land cover 
change trajectories using multiple-dated imageries 
with landscape patterns.

The alleged lack of interpretability of numerous 
landscape metrics has always been a key issue 
(Haines-Young and Chopping 1996) in estimating 
which metrics are the most appropriate to which 
type of landscape and spatial resolution. Although 
this technique has also been applied to imagery with 
a medium resolution, the objective has remained the 
same: to investigate an area of interest and gather 
information about the texture of an image. The 
methodologies utilised here provide information on 
forest disturbance in the study area; spatial analysis 
of forest fragmentation at the class and landscape 
levels; land cover-change analysis through the 
incorporation of data from multiple images; and 
comparison of spatial patterns before and after the 
storm event. It is also worth noting that medium-
resolution Landsat data are sufficient to determine 
forest fragmentation in this region.

This research blends environmental sciences and 
landscape ecology with remote sensing, GIS and 
machine learning techniques bringing us a  step 
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forward from the past forest disturbance studies. 
Further integration of methodologies and interpre-
tations across disciplines is required if we are to 
fully comprehend and consequently mitigate the ef-
fects of global and local change on the environment.

Future studies should: (1) look into non-para-
metric classifiers like neural networks and decision 
trees that might improve LULC classification accu-
racy; (2) analyse specified landscape metrics using 
more scales, such as 4 m, 10 m, 90 m, 250 m, 500 m 
and 1000 m; (3) establish the scale influence on sur-
face processes and LULC changes; (4) assess LULC 
changes at different spatial and temporal scales us-
ing efficient feature algorithms from various types 
of sensors; and (5) further integrate GIS and remote 
sensing and expert systems in detecting, visualising 
and monitoring LULC changes in disturbed forest 
environments.
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