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Evaluation of machine learning algorithms for forest 
species mapping based on Sentinel 2 data:  
a case study of Ait Bouzid forest (Central High 
Atlas, Morocco)

Introduction

Forest sustains the well-being of many critical terrestrial 
ecosystems. It provides essential environmental services 
because it contains more than half of global biodiversity 
and of the world's carbon stock in soils and vegetation. 
However, the non-optimized production of forest 
ecosystem goods and services threatens the planet's 
forests, potentially driving deforestation and forest 
degradation (FAO 2023). Therefore, ever-increasing 
human activities, industrialization and urbanization 
combined with global climate changes have caused 

detrimental effects on the forest reserves and threatened 
their sustainability.

Forests in Morocco covers about 13.5% of the 
national territory and represents a sector of great 
economic and social importance (Ministry of Energy 
Transition and Sustainable Development, Morocco 
2023). It represents a most important natural resource 
for the people who live here and a source of economic 
activity. The Moroccan forest contributes about 2% of 
the Gross domestic product (GDP) and 0.4% of the 
national GDP (Ministry of Energy Transition and 
Sustainable Development, Morocco 2023).
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Abstract. In arid and semi-arid environments, producing accurate maps of forest tree cover using op-
tical remote-sensing data is essential to understand their spatial distributions and dynamics. In this 
respect, the current study aimed to explore the effectiveness of support vector machine (SVM), K near-
est neighbors (KNN) and random forest (RF) machine learning (ML) algorithms to map the forest tree 
species of Ait Bouzid region (Central High Atlas, Morocco) based on Sentinel-2A data. 
The results from all models showed that about 19–28%, 21–27%, 16–24%, 15–18% and 0.3–0.32% 
of the area was covered by euphorbia, red juniper, cedar, holm oak, bare ground, and water body, 
respectively. According to the overall accuracy (OA) and kappa coefficient, the SVM classifier showed 
the highest OA (73%) and kappa (0.66) values, followed by KNN (OA=70%, kappa=0.62) and RF 
(OA=67%, kappa=0.59). Regarding LC classes, water, bare soil and holm oak could be identified 
with the producer's accuracy attaining 100%. At the same time, red juniper and cedar were the most 
challenging classes to determine for all ML classifiers, with the producer's accuracy of 40–50% and 
40–67%. This study revealed the potential of ML approaches coupled with multispectral Sentinel-2A 
data for forest species cartography with high accuracy in arid areas. Furthermore, it provides crucial 
information about forest tree species distribution for developing forest management plans.
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However, this natural heritage is threatened with 
disappearance due to climatic hazards (desertification) 
and human intervention (uncontrolled exploitation of 
wood, evolution of agriculture, overgrazing and fires) 
(Barakat et al. 2018; Bouzekraoui et al. 2016; Ettaqy 
et al. 2020). Population growth in a mountainous 
region with limited agricultural land has reduced forest 
density. Subsistence farming, overgrazing and livestock 
practices, driven by a lack of alternatives, contribute 
to deforestation (Boubekraoui et al. 2023; Ziadi et 
al. 2023). Thus, providing the long-term health of 
Morocco's forest stands under changing climate while 
providing social, economic and environmental benefits 
to local communities needs efficient and sustainable 
planning and management of forest resources using 
modern techniques. Therefore, the National Agency 
for Water and Forests (ANEF), Morocco, has drawn 
up a national strategy and action plan to safeguard the 
forest and stop the process of its degradation without 
depriving residents of their livelihoods (ANEF 2023).

In recent decades, digital modeling and mapping 
of forest canopy have emerged as promising tools 
that help planners propose strategies for achieving 
sustainable forest management. Remote Sensing (RS), 
Geographical Information Systems (GIS) and statistical 
techniques are the common tools applied in forest 
stand mapping (Barakat et al. 2019; Soleimannejad et 
al. 2019a; Nasiri et al. 2023) as they are cost-efficient 
and timesaving. Remote sensing provides valuable 
information for forest mapping and inventories on 
temporal and spatial scales. It makes it possible to 
precisely map forest stands, their types and their 
distribution and changes (Decuyper et al. 2022; Grabska 
et al. 2020; Nasiri et al. 2023). GIS have also become 
crucial in forest studies for effectively managing and 
analyzing extensive geospatial data collected from 
remote sensing and field observations (Mickelson 
et al. 1998; Appeaning Addo 2010; Fassnacht et al. 
2016). Moreover, the geostatistical probabilistic models 
incorporated with GIS have been used for processing 
the complex geospatial dataset to assess the status of 
the vulnerability of forests around the world (Wilson 
et al. 2005; Gülci 2014; Tuček et al. 2014). Recently, 
machine learning (ML) has been successfully applied to 
process the high-dimensional and complex geospatial 
dataset collected from remote-sensing imagery and 
field measurements for predicting a hazard and risk 
in environmental sciences (Sajedi-Hosseini et al. 2018; 
Vega Isuhuaylas et al. 2018; Mishra et al. 2021; Barakat 

et al. 2022). These approaches provided multivariate, 
nonparametric and nonlinear data classifications (Lary 
et al. 2016; Maxwell et al. 2018). For instance, the 
most popular ML algorithms used in forest studies 
are Random Forest (RF) (Cheng and Wang 2019; 
Soleimannejad et al. 2019b; Grabska et al. 2020; Sothe 
et al. 2020) and Support Vector Machines (SVM) 
(Grabska et al. 2020; Radhakrishnan et al. 2020; Sothe 
et al. 2020; Zagajewski et al. 2021). Thus, all these ML 
models have proven to identify and map contiguous 
forest formations in most further studies. However, 
simple classifiers such as the K-Nearest Neighbor 
(KNN), which performs better than the SVM or the 
RF (Ge et al. 2018), receive less attention. Therefore, 
a sensitivity comparison of the prediction accuracies 
among the model (SVM, KNN and RF) results is 
missing and needs to be well analyzed. In this respect, 
this study attempted to compare SVM, KNN and RF 
models to indicate the type and density of forest trees.

Given the above, the present study aimed to evaluate 
the potential of multispectral Sentinel-2 MSI data 
with ML models (SVM, KNN and RF) for mapping 
forest stand species in the Ait Bouzid forest, Atlas of 
Afourer, Morocco. A confusion matrix was applied to 
the classified images to evaluate the efficiency of the 
ML models and validate the maps generated from 
each model. The provided information is precious and 
will serve as a foundation to direct and enhance the 
effectiveness of conservation initiatives, restoration of 
natural ecosystems and land-use planning. Also, the 
employed research methodology can serve as a model 
for studying other similar areas. 

Materials and methods

Study area

The forest of Ait Bouzid is located in the High Atlas 
of Afourer, in the center of Morocco. Bounded 
south by Oued El Abid, a main river supplying the 
lake of the Bine El Ouidane dam, and north by the 
Tadla plain, the study forest covers a surface area 
of 16,477 ha. It lies between 32°07’ and 32°14’ N 
latitudes and 6°19’ and 6°40’ W longitudes (Fig. 
1). It is characterized by a dominance of medium 
and high mountain landscapes with elevation 
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varying from 695 to 2412 m. Average annual 
precipitation varies between 200 mm and 600 mm, 
with minimal rainfall occurring in August, and a 
yearly temperature ranges between 3°C and 40°C, 
with the minimum temperature in January. The 
forest comprises tree-dominant species, including 
holm oak (Quercus rotundifolia), barberry cedar 
(Tetraclinis articulata), and red juniper (Juniperus 
turbinata), often in forest or pre-forest formations 
(Taïbi et al. 2015). Other plant species are common 
but often in association with holm oak or alone in 
particular reliefs (high mountains, very steep slopes, 
escarpments or valley bottoms) (Bouzekraoui et al. 
2016; Barakat et al. 2018).

Data

In the present research, multi-temporal remotely 
sensed and filed data have been used to map the 
forest canopy species in the Ait Bouzid forest (High 
Atlas of Afourer, Morocco).

LC classification

Defining the land cover classes is necessary to 
generate a reliable forest map. Based on common 
categories defined by the Regional Directorate of 
Waters and Forests Béni Mellal-Khénifra (Morocco) 
and field observations, a set of land cover categories 
of interest were considered for the study area, 
namely holm oak, cedar, red juniper and euphorbia, 
water body, and bare ground. These thematic classes 
are as homogeneous as possible to avoid any mixing 
between classes during classification (Ettaqy et al. 
2020). 

Holm oak is the first forest species in terms of 
its surface area and its production of firewood. This 
species is found in its pure state in a few places in the 
forest, at an altitude range between 100 and 1819 m 
(Barakat et al. 2018). It is generally abundant on the 
northern slopes corresponding to the bioclimatic 
stages of the humid, sub-humid, locally semi-arid, 
temperate and cool and cold types. In addition, 
this plant species generally colonized all types of 
geological substrates due to its ecological plasticity 
and resistance.

The barberry cedar extends over tiny areas, 
constituting islets experiencing a strong regression 
under the effect of anthropic action. Its populations 
are remarkably linked to the warm and temperate 

Fig. 1. Location of the study area
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variants of the semi-arid thermo-Mediterranean and 
locally lower sub-humid (Benabid 2000) and have a 
high plasticity and ecological resistance that allow 
them to colonize all types of geological substrates.

The red juniper grows in the forest in altitudes 
between 1000 m and 2200 m and strongly occupies 
a large part of the two northern and southern slopes 
of the study area. This softwood is characterized by 
high plasticity and resistance, allowing it to colonize 
different substrate types (Benabid 2000).

Euphorbia develops in the study forest at an 
altitudinal range from 600–1200 m marked by arid 
to sub-humid bioclimates (Ettaqy et al. 2020). It 
colonizes cracked calcareous substrates, dolomite 
and rocky soils. This species has a high socio-
economic and environmental interest because it 
protects the soil against water erosion and allows 
many cooperatives to produce high quantities of 
high-quality honey.

The vegetal cover comprised seasonal crops, 
vegetables, fruit, lower wild plants and shrubs. The 
bare land corresponds to exposed soils, urban and 
rural areas and roads (Barakat et al. 2016).

Satellite data

For our case study, the Sentinel-2 MSI product 
is used for mapping the forest vegetation types 
because it constitutes a cost-effective technique 
for spatial data collection and analysis of forest 
characteristics. Previous research utilizing Sentinel-2 
data has conclusively demonstrated its remarkable 
capability to produce precise vegetation maps, even 
at the species level. (Kollert et al. 2021; Mahmud et 
al. 2022; Verhegghen et al. 2022; Potić et al. 2023). 
The Sentinel-2 MIS also covers a large area with 

13 spectral bands (visible, near-infrared and short-
wave), as summarized in Table 1.

The Sentinel-2 MIS image used in this study 
was downloaded from the European Space Agency 
(https://www.scihub.copernicus.eu) on July 28, 2019, 
when seasonal crops (especially cereals) become dry 
and clouds are absent (Jun–Sep). 

A field survey was conducted to gather reference 
data supporting satellite image processing and to 
assess the precision of the generated land cover 
map. Seventy-nine samples were taken in the 
field, Google Earth images, and local forest maps, 
all representing similar areas of each LC class. 
(Table  1). All image processing, classification and 
GIS analyses were performed using QGIS 2.8.6 and 
ArcGIS 10.2.2 software.

Methods

Data processing and image classification

The present study followed a procedure based on 
three ML algorithms for discriminating tree species 
in the Ait Bouzid forest (Central High Atlas) and 
assessing the efficient classification algorithm by 
using remote-sensing imagery and geoinformatics 
tools. To indicate the type and density of the forest 
trees, the common SVM, KNN and RF classifiers 
were selected to classify the Sentinel-2 bands 
resampled to 10. The methodology implemented in 
this study is illustrated in Figure 2. The work steps 
consisted of: (I) pre-processing of Sentinel-2 MSI 
imagery, (II) land cover classification, (III) accuracy 

LC classes Number of training 
points

Number of 
Validation points

Holm oak 5 9
Thuja 15 4
Red juniper 9 5
Euphorbia 9 6
Water body 2 1
Bare ground 4 8

Table 1. Number of training and validation points
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assessment, and (IV) ML algorithms performance 
comparison.

Pre-processing of the satellite image

The Sentinel-2 MIS image used in this study was 
projected to the UTM WGS84 World Geodetic 
System. Of all the 13 bands (visible, near-infrared 
and short-wave) that compose the sentinel-2 image, 
only the bands with a high spatial resolution (10 
m and 20 m) can be used for vegetation analysis 
and mapping according to previous works (Wessel 
et al. 2018; Kollert et al. 2021). In this study, all 
bands with a high spatial resolution (B2, B3, B4, 
B8, B5, B6, B7, 8A, B11, and B12) have been used. 
The bands at 20 m are resampled to 10 m using the 
nearest neighbor interpolation and the SEN2COR 
plugin in SNAP software and GIS environment. 

The spectral reflectance remote-sensing data 
comprehensively identify various ground objects, 
including vegetation, water and soil (Baumgardner 
et al. 1986; Khellouk et al. 2020). Therefore, the 
separability of the selected LC categories in the 
study forest was checked by their S2A spectral 
trends. Spectral signatures were generated using 
QGIS and Excel software from 44 control points 
(training samples) collected from local forest maps, 
Google Earth images and field observations (Table 
1). 

Fig. 2. Schematic overview of steps to create land use maps

ML classifiers selected for forest mapping

To classify the Sentinel-2 bands for mapping forest 
tree species, the common classifiers SVM, KNN and 
RF were employed in this study.

- SVM classifier

The SVM is a supervised learning technique 
employed for both classification and regression 
tasks, effectively reducing errors for classification 
and regression, successfully used to minimize 
the error in data grouping or fit function. It was 
successfully applied to many classification problems 
in environmental sciences (George et al. 2014; Lee 
et al. 2018; Dinh et al. 2021; Han et al. 2021). The 
input data in the SVM algorithm are divided into 
testing and training samples. The SVM model 
splits the training data in feature space based 
on a user-defined kernel function by a maximal 
margin hyperplane. The ultimate classification 
is determined by the position of the unlabeled 
samples concerning the hyperplane (Evgeniou and 
Pontil 1999). Compared with other algorithms, the 
SVM algorithm showed great superiority in solving 
nonlinear problems, especially small sample data, 
and often produced higher classification accuracy. 
Hence, the SVM model was selected for the present 
study and applied with the predefined parameters 
(C=100 and γ=0.25).

- KNN classifier

The KNN classifier, developed by Fix and Hodges 
(1989), is one of the simplest supervised ML 
algorithms used in various studies for regression 
and classification (MohanRajan et al. 2020; Nguyen 
et al. 2020; Ramezan et al. 2021; Barakat et al. 
2022). It became a useful nonparametric statistical 
tool in remote sensing for image classification 
(Tuominen et al. 2018; Mohammadi et al. 2020; 
Nidamanuri 2020). KNN computes the similarity 
between data items considering features. It ranks 
the sample neighbors among the training examples 
in the feature space and uses the k most similar 
neighbor class labels to predict the new class based 
on maximum votes. In our study, the number of 
neighboring profiles (k) considered is 5.
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- RF classifier

The RF classifier (Breiman 2001) is a popular ML 
algorithm employed for various natural hazard 
assessments (Achour and Pourghasemi 2020; 
Barakat et al. 2022; Sahin 2022), hydrology (Ardabili 
et al. 2020; Zounemat-Kermani et al. 2021; Mosaffa 
et al. 2022) and LULC classification (Preidl et al. 
2020; Adugna et al. 2022; Barakat et al. 2022). This 
non-parametric and nonlinear approach combines 
decision trees constructed from randomly selected 
predictors and samples in the training dataset. The 
final classification/prediction decision is generated 
according to the voting results (Belgiu and Drăguţ 
2016). The effectiveness of using the RF algorithm in 
predicting environmental issues has been discussed 
in the literature and surpasses the performance of 
other robust machine learning models like SVM 
(Ghosh and Joshi 2014; Naghibi et al. 2017; Amiri 
et al. 2019), in terms of fast computing (Rodriguez-
Galiano et al. 2012; Naghibi et al. 2017) and of 
separating the most important variables from those 
less important (Catani et al. 2013; Belgiu and Drăguţ 
2016; Liaw and Wiener 2021). We employed the RF 
package with its default settings (classification-RF, 
fitting 500 trees to all records). The current study 
utilized the RF model with default settings (100 
trees).

Sample data and accuracy assessment

To check the comparability of the SVM, RF and 
KNN classifiers employed in the present study, the 
same training samples were used to perform each 
supervised classification of the sentinel-2 image. 
The field survey of trees in the studied forest was 
conducted in June 2022, and 33 sites within the 
studied forest were surveyed to define the land-
use classes and to verify the tree species locations 
provided by the regional director of Water, Forests 
and Desertification Control, and validate the 
generated forest species maps (Table 1). Visual 
interpretation of Google Earth images was also used 
to assess accurately the final forest cover maps. For 
validation, 44 sites of all LU classes were chosen 
similarly to the training samples (Table 1, Fig. 3).

The accuracy of each model’s forest stands species 
classification was assessed by confusion matrices 
calculated by the training reference samples (Fig. 

3a). The confusion matrices were then used to 
generate overall classification accuracy, Kappa index 
(kappa) and producer’s accuracy (precision) that are 
commonly used to evaluate the performance of the 
applied ML classifiers (Huang et al. 2002; Ghosh 
et al. 2014). OA and kappa were used to evaluate 
the proportion of correctly classified imagery pixels 
and the statistical difference between classifiers. 
The producer's accuracy enabled assessment of 
the model's performance based on individual class 
accuracy.

Results

Analysis of LC maps

The classified maps generated from the three ML 
algorithms of the Ait Bouzid forest are presented 
in Figures 4, 5 and 6. The maps showed the spatial 
distribution pattern of six LC classes, i.e., holm oak, 
cedar, red juniper, euphorbia, water body and bare 
ground. Table 2 displays the percentage distribution of 
each LC class compared to the entire study area for 
each classifier. 

Results from all models established that areas 
covered by different classes are 0.3–0.32% under water 
body, 13–21% under bare ground and 78.68–86.7% 
under forest canopy (Table 2). Similarly, the LC maps 
showed that 19–28%, 21–27%, 16–24% and 15–18% 
of the area was covered by euphorbia (32–46 km2), 
red juniper (35–44 km2), cedar (27–39 km2) and holm 
oak (24–29 km2), respectively. Table 2 shows that 
forest species emerge as the predominant LC class, 
consistently classified by all classifiers. They cover 
a total area of about 79 % by KNN, 80% by SVM and 
88% by RF. 

The comparison of the results of the classification 
elaborated by SVM and KNN shows a less significant 
difference in classification that varies between 1% and 
2% for the classes of bare soil, holm oak and euphorbia 
and a significant difference of 8% for the red juniper 
and cedar classes. Furthermore, it is noticed that the 
bare ground extends about 13% and 20% of the total 
studied area using the RF and SVM, respectively. 
Likewise, the euphorbia regions exhibited a variance of 
12 km2 or 8% of the total area. As for the other classes, 
the disparities in the occupied area ranged from 1% to 
5% % of the total studied area.
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Fig. 4. (a) Location of training points; (b) Location of validation points 
 

Fig. 3. (a) Location of training points; (b) Location of validation points

Classification accuracy

To identify the optimal ML classifier for the forest 
canopy mapping at Ait Bouzid forest, a confusion 
matrix providing average overall accuracy (OA), 

kappa index and producer’s accuracy (Congalton and 
Green 2019) was used to describe the concordance 
between the generated classes and the validation 
samples (Ma et al. 2017; Congalton and Green 
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Fig. 4. LC map generated using the SVM classifier

Fig. 5. LC map generated using the KNN classifier
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LC classes
SVM KNN RF
Area Area Area

(km2) (%) (km2) (%) (km2) (%)
Holm oak 27 17 24 15 29 18
Thuja 27 16 39 24 32 20
Red juniper 44 27 35 21 35 22
Euphorbia 34 20 32 19 46 28
Water body 0.5 0.3 0.5 0.3 0.52 0.32
Bare ground 32 20 34 21 22 13

Table 2. Comparison of classification results performed by SVM, KNN and RF

2019). Table 3 summarizes the accuracy assessment 
results for the classification ML algorithms.

The results revealed that the OA reached 73%, 
70% and 67% for SVM KNN and RF algorithms, 
respectively. This indicated that the SVM and KNN 
models are more effective than the RF model. 
According to the kappa values that are still moderate 
(McHugh 2012), the SVM (0.66) produced slightly 
superior results than the KNN (0.62), followed by 
the RF (0.59) for LC classifying in the study area.

By analyzing the individual class accuracy, 
different performances for each of the six LC classes 

were revealed independently of the employed ML 
algorithms. The highest (100%) and lowest (40%) 
UA and PA values were obtained for non-forest 
classes and mixed forests, respectively.

Regardless of the ML classifiers, the most 
straightforward classes to identify are water, bare 
soil and holm oak, with the producer's accuracy 
attaining 100%. This could be explained by the 
fact that the classes are relatively pure with distinct 
spectral variation, i.e., when they have fewer 
mixed pixels. On average, all three classification 
methods showed contamination in one or two 

Fig. 6. LC map generated using the RF classifier
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other classes. Moreover, the moderate producer's 
accuracies, ranging between 40% and 67%, were 
achieved for all other LC classes (Table 3, Fig. 7). 
Euphorbia showed accuracies of 50%, 51% and 63% 
generated by SVM, RF and KNN classifiers, likely 
due to mixed pixels containing spectral signatures 
of euphorbia, bare soil and red juniper. The results 
also indicated that red juniper and cedar were the 
most challenging classes to identify for all ML 
classifiers, with producer's accuracies of 40–50% 
and 40–67%, respectively. Intuitively, this could be 
explained by a significant similarity in the spectral 
signature of the two types. Even in the field, it is 
not easy to distinguish between red juniper and 
cedar due to the strong resemblance of the leaves 
of these two species belonging to the same family 
(Cupressaceae). 

Previous results revealed notable disparities in 
OA, kappa index and producer accuracy among 
the SVM, KNN and RF classifiers. SVM exhibited 
the highest accuracies, followed by KNN, while RF 
achieved the lowest accuracy. Therefore, the SVM 
is more suitable for categorizing tree species classes 
with near-similar spectral characteristics. Previous 
works on forests have illustrated that the SVM 

produced more accurate results in distinguishing 
forest tree species types (Nasiri et al. 2021). The 
relatively smaller training dataset may be why SVM 
outperformed KNN and RF. Numerous studies have 
already indicated that the precise prediction of ML 
models employed in our study is highly sensitive to 
the training sample size. According to Thanh Noi 
and Kappas (2018), SVM achieved the highest OA 
with sensitivity to the training sample sizes, followed 
consecutively by RF and KNN. In contrast, when 
the training sample size was large enough, all three 
classifiers showed similar results. Sabat-Tomala et 
al. (2020) also found that SVM produces a higher 
accuracy with fewer training samples than RF. This 
confirms that the SVM is more efficient in mapping 
forest tree species in the case of small numbers of 
training samples.

Discussion

The present study investigated the performance 
of classification algorithms, SVM, KNN and RF 
to map the Ait Bouzid forest formations (Atlas of 
Afourer, Morocco) using Sentinel-2 imagery. The 
mapping of formations, in general, is not a perfect 
representation of the reality in the field because 
errors may be present. Therefore, it is important 
to know the accuracy of these maps generated 
to exploit them for various applications. For this 
reason, the accuracy of these three classifiers used 
in our study was evaluated using the confusion 
matrix and the Kappa index. Regardless of the 
results, the SVM significantly outperformed KNN 
and RF regarding overall accuracies and kappa.Fig. 7. Comparative graph of classification results

Table 3. Confusion matrix results for the ML algorithms for the LC maps
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The classification results in this study were 
affected by mixed signals caused by the small area 
classes. Moreover, the disadvantage of the directed 
classification methods used is associated with this 
confusion of close spectral responses for some forest 
formations. Some previous studies have reported 
similar difficulties (N'Dia et al. 2008; Tankoano et 
al. 2015). Ahmadi et al. (2020) and Hemmerling 
et al. (2021) demonstrated that multispectral data 
cannot accurately map diverse plant communities. 
In addition, the confusion in our case could be 
related to the definition of homogeneous plots 
when selecting training sites based on the visual 
interpretation of Google Earth images. The points 
representing the sites visited and used to generate 
the validation points could also be subject to errors 
related to the complexity of moving through the 
forest (Fig. 3b). Although the field visit aimed 
to be as cost-effective as possible regarding the 
homogeneity of the visited sites, some points are, 
therefore, close to each other and are sometimes 
located in small forest formations.

This study confirmed the relevance of the 
Sentinel-2A sensor in predicting canopy cover in 
semi-arid regions based on the spectral information 
provided by the optical remote-sensing data. This 
ascertainment agrees with previous studies that used 
Sentinel-2 data in mapping forest canopies (Barakat 
et al. 2018; Godinho et al. 2018; Suleymanov et al. 
2023). Šiljeg et al. (2022)  and Liang et al. (2023) 
found that SVM learning schemes perform well 
in Object-Based Image Analysis. Immitzer et al. 
(2016) carried out a study evaluating the potential 
of Sentinel-2 data for mapping tree species while 
adopting an object-oriented and pixel-based 
classification with a supervised classifier (RF); the 
results obtained are very close: 64% for the first 
exercise and 66% for the second.

Conclusion

This study employed the common ML algorithms 
SVM, KNN and RF to classify the Sentinel-2 bands 
for mapping forest tree species in the Ait Bouzid 
forest (Central High Atlas, Morocco). The accuracy 
of these three classifiers was evaluated using the 
confusion matrix and Kappa index.

Results from all models established that areas 
covered by different classes are 0.3–0.32% under 
the water body, 13–21% under the bare ground, and 
78.68–86.7% under the forest canopy. Similarly, the 
LC maps showed that 19–28%, 21–27%, 16–24% 
and 15–18% of the area was covered by euphorbia 
(32–46 km2), red juniper (35–44 km2), cedar (27–39 
km2) and holm oak (24–29 km2), respectively. The 
forest species represent the most dominant LC class 
in the studied area, classified by all classifiers. They 
cover of the total area, about 79 % by KNN, 80% 
by SVM and 88% by RF.  An OA of 73%, 67% and 
70%, with a kappa coefficient of 0.62, 0.59 and 0.62, 
were achieved, respectively, for SVM, RF and KNN 
algorithms for LC classifying in the study area. 
The classification successfully identified forest trees 
with water body and bare ground; however, it was 
affected by mixed signals caused by the small area 
classes and by confusion related to the definition 
of homogeneous training sites. Subsequent studies 
may explore Sentinel time series data across various 
seasons to assess the precision of forest stand 
characteristic predictions, determining the optimal 
season for obtaining more reliable and accurate 
results.

In a general sense, this study showed that the 
proposed ML algorithm-based classification for 
Sentinel-2 images, as outlined in this paper, holds 
potential for applications in the survey and analysis 
of forest canopy in other similar areas of Morocco. 
The SVM classifier has proven its accuracy in 
mapping forest canopy and is a reliable and fast 
option. Therefore, further investigations of the SVM 
algorithm across other variables and datasets are 
required to understand its limitations and strengths.

Finally, the current study findings could assist 
decision-makers involved in land-use planning and 
forest protection in the study region. Also, since 
we exclusively utilized images from the Sentinel-2 
sensor, our approach is well suited for cost-effective 
classification models to monitor areas similar to 
those employed in this study. 
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