Global existence for reaction-diffusion systems modeling ions electro-migration through biological membranes with mass control and critical growth with respect to the gradient

Bassam Al-hamzah, Naji Yebari



This paper studies the existence of global weak solutions for reaction-diffusion systems depending on two main assumptions: the non-negative of solutions and the total mass of components are preserved with time, the non-linearities have critical growth with respect to the gradient. This work is a generalization of the work developed by Alaa and Lefraich \cite{1} without the presence of the gradient in the kinetic reaction terms.


Global solutions; nonlinear parabolic; reaction-diffusion systems; Schauders fixed point

Full Text:



N. Alaa, M. Aitoussous, W. Bouarifi and D. Bensikaddour, Image restoration using a reaction-diffusion process Electron. J. Differential Equations 2014 (2014), no. 197, 1–12.

N. Alaa and H. Lefraich, Mathematical Analysis of a System Modeling Ions ElectroMigration through Biological Membranes, Applied Mathematical Sciences, Vol. 6, 2012, no. 43, 2091–2110.

N. Alaa and I. Mounir, Global existence for reaction-diffusion systems with mass control and critical growth with respect to the gradient, J. Math. Anal. Appl. 253 (2001), 53-2-557.

N. Alaa and M. Pierre, Weak solution of some quasilinear elliptic equations with measures, SIAM J. Math. Anal. 24 (1993), no. 1, 23–35.

B. Al-hamzah and N.Yebari, Gobal existence in reaction diffusion nonlinear parabolic partail differntial equation in image processing, Glob. J. Advanced Engineering Techn. Sci. 3 (2016), no. 5.

L. Alvarez, F. Guichard, P.-L. Lions and J.-M. Morel, Axioms and fundamental equations of image processing, Arch. Ration. Mech. Anal. 123 (1993), 199–257.

L. Alvarez, P.-L. Lions and J.-M. Morel, Image selective smoothing and edge detection by nonlinear diffusion, II, SIAM J. Num. Anal. 29 (1992), 845–866.

L. Alvarez and L. Mazorra, Signal and image restoration using shock filters and anisotropic diffusion, SIAM J. Num. Anal. 31 (1994), 590–605.

H. Amann and M.C. Crandall, On some existence theorems for semi linear equations, Indiana Univ. Math. J. 27 (1978), 779–790.

P. Baras, J.C. Hassan and L. Veron, Compacité de l’opérateur définissant la solution d’une équation non homogène, C.R. Acad. Paris Sér. A 284 (1977), 799–802.

P. Benila and H. Brezis, Solutions faibles d’équations d’évolution dans les espaces de Hilbert, Ann. Inst. Fourier 22 (1972), 311–329.

A. Bensoussan, L. Boccardo and F. Murat, On a nonlinear partial differentail equation having natural growth terms and unbounded solution, Ann. Inst. H. Poincaré 5 (1989), 347–364.

L. Boccardo, F. Murat and J.P. Puel, Existence de solutions faibles des équations elliptiques quasi-linéaires à croissance quadratique, Nonlinear Partial Differential Equations and their Applications, Colège de France Seminar 4 (1983), 19–73.

L. Boccardo, F. Murat and J.P. Puel, Existence results for some quasilinear parabolic equations, Nonlinear Anal. 13 (1989), 373–392.

W. Bouarifi, N. Alaa and S. Mesbahi, Global existence of weak solutions for parabolic triangular reaction diffusion systems applied to a climate model, Ann. Univ. Craiova Math. Comp. Sci. Ser. 42 (2015), no. 1.

F. Catté, P.L. Lions, J.-M. Morel and T. Coll, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal 29 (1992), no. 1, 182–193.

A. Dall’Aglio and L. Orsine, Nonlinear parablic equations with natural growth conditions and L1 data, Nonlinear Anal. 27 (1996), no. 1, 59–73.

R. Dautray and J.L. Lions, Analyse Mathématique et Calcul numérique pour les Sciences et les Techniques, vol. 8, Masson, 1988.

U. Diewald, T. Preusser, M. Rumpf and R. Strzodka, Diffusion models and their accelerated solution in image and surface processing, Acta Math. Univ. Comen.ian 70 (2001), no. 1; 15 (2001), no. 34.

O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Ural’tseva, Linear and quasi linear equations of parabolic type, Transl. Math. Monogr. Amer. Math. Soc. 23 (1967), 59–73.

Y. Peng and L. Pi et C. Shen, A semi-automatic method for burn scar delineation using a modified chan-vese model, Compu Geosci. 35 (2009) no2̇, 183–190.

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Machine Intelligence 12 (1990), 629–639.

M. Pierre, Weak solutions and supersolutions in L1 for reaction-diffusion systems, J. Evol. Equ. 3 (2003), 153–168.

M. Pierre, Global existence in reaction-diffusion systems with control of mass: a survey, Milan J. Math. 78 (2010), 417-455.

J. Weickert, Anisotropic Diffusion in Image Processing, PhD thesis, Kaiserslautern University, Kaiserslautern, Germany, 1996.

K. Zhang, Existence of infinitely many solutions for the one-dimensional Perona–Malik model, Calc. Var. Partial Differential Equations 26 (2006), 171–199.


  • There are currently no refbacks.

Partnerzy platformy czasopism