### Strict $C^1$-triangulations in o-minimal structures

DOI: http://dx.doi.org/10.12775/TMNA.2018.033

#### Abstract

#### Keywords

#### References

M. Coste, An Introduction to O-minimal Geometry, Dottorato di Ricerca in Matematica, Dipartimento di Matematica, Università di Pisa, Istituti Editoriali e Poligrafici Internazionali, Pisa, 2000.

M. Czapla, Invariance of regularity conditions under definable, locally Lipschitz, weakly bi-Lipschitz mappings, Ann. Polon. Math. 97 (2010), 1–21.

M. Czapla, Definable triangulations with regularity conditions, Geom.Topol. 16 (2012), no. 4, 2067–2095.

K. Kurdyka and W. Pawlucki, O-minimal version of Whitney’s extension theorem, Studia Math. 224 (2014), no. 1, 81–96.

T.L. Loi, Whitney stratifications of sets definable in the structure Rexp , Singularities and Differential Equations (Warsaw, 1993), Banach Center Publ. 33, Polish Acad. Sci., Warsaw, 1996, 401–409.

T.L. Loi, Verdier and strict Thom stratifications in o-minimal structures, Illinois J. Math. 42 (1998), 347–356.

S. Lojasiewicz Stratifications et triangulations sous-analytiques, Geometry Seminars, 1986 (Italian) (Bologna, 1986); Univ. Stud. Bologna, 1988, 83–97.

S. Lojasiewicz, J. Stasica and K. Wachta, Stratifications sous-analytiques. Condition de Verdier, Bull. Polish Acad. Sci. (Math.) 34 (1986), 531–539.

T. Ohmoto and M. Shiota, C 1 -triangulations of semialgebraic sets, arXiv:1505.03970v1 [math AG] 15 May 2015.

T. Ohmoto and M. Shiota, C 1 -triangulations of semialgebraic sets, J. Topol. 10 (2017), 765–775.

A. Thamrongthanyalak, Whitney’s extension theorem in o-minimal structures Ann. Polon. Math. 119 (2017), no. 1, 49–67.

L. van den Dries, Tame Topology and O-minimal Structures, Cambridge University Press, 1998.

### Refbacks

- There are currently no refbacks.