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STRONG SOLUTIONS IN L2 FRAMEWORK

FOR FLUID-RIGID BODY INTERACTION PROBLEM.

MIXED CASE
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Šárka Nečasová — Boris Muha

Dedicated to the memory of Professor Marek Burnat

Abstract. The paper deals with the problem describing the motion of
a rigid body inside a viscous incompressible fluid when the mixed boundary

conditions are considered. At the fluid–rigid body interface the slip Navier

boundary condition is prescribed, having the continuity of velocity just in
the normal component, and the Dirichlet condition is given on the boundary

of the fluid domain. The existence and uniqueness of the local strong

solution is proven by the local transformation and the fixed point argument.

1. Introduction

In this paper we investigate the motion of a rigid body inside a viscous

incompressible fluid when mixed boundary conditions are considered. The fluid

and the body occupy a bounded domain O ⊂ Rd (d = 2 or 3).

In order to describe our approach, let us denote by B(t) ⊂ O a bounded

domain occupied by the rigid body and a domain filled by the fluid by F(t) =

O \ B(t) at a time moment t ∈ R+. Assuming that the initial position B(0) of
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the rigid body is prescribed, for simplicity of notation we denote B0 = B(0) and

F0 = F(0). The interface between the body and the fluid is denoted by ∂B(t),

the normal vector to the boundary is denoted by n(t) and it is pointing outside

O and inside B(t). We write

QF(t) = {(t,x) ∈ R1+d : t ∈ R+, x ∈ F(t)},

Q∂B(t) = {(t,x) ∈ R1+d : t ∈ R+, x ∈ ∂B(t)}.

The fluid motion is governed by the equations

(1.1)



∂tuF + divT(uF , pF ) + (uF · ∇)uF = f0,

divuF = 0 in QF(t),

uF = 0 on ∂O × R+,

(uF − uB) · n = 0,

2µ[D(uF )n]× n = −β(uF − uB)× n on Q∂B(t),
uF (0) = u0 in F0,

where uF and pF denote the velocity and the pressure of the fluid and uB is the

full velocity of the rigid body. We recall that the rate of the strain tensor of the

fluid and its stress tensor are defined by

D(uF ) =
1

2

(
∇uF + (∇uF )T

)
and T(uF , pF ) = 2µD(uF )− pF I,

with µ > 0 being the viscosity of the fluid, and β > 0 is the slip length.

The fluid equations are coupled to the following balance equations for the

translation velocity η and the angular velocity ω of the body,

(1.2)



mη′(t) +

∫
∂B(t)

T(uF , pF )(t,x)n(t,x) dσ = f1(t),

(J ω)′(t) +

∫
∂B(t)

(x− xc(t))× T(uF , pF )(t,x)n(t,x) dσ = f2(t),

for t ∈ R+,

η(0) = η0, ω(0) = ω0,

where m = ρB|B0| and ρB are the mass and the constant density of the body,

xc is the position of its center of gravity,

J = ρB

∫
B(t)

(
|x− xc(t)|2I− (x− xc(t))⊗ (x− xc(t))

)
dx

is the matrix of the inertia moments of the body B(t). The full velocity of the

rigid body is given by

uB(t,x) = η(t,x) + ω(t)× (x− xc(t)).

The functions f0 and f1, f2 denote the external force and the torques, respec-

tively.
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Let us mention that the problem of the motion of one or several rigid bodies

in a viscous fluid filling a bounded domain was investigated by several authors

[2]–[4], [11]. In all articles mentioned a non-slip boundary condition has been

considered on the boundaries of the bodies and of the domain. Hesla [9] and

Hillairet [10] have shown that this condition gives a very paradoxical result of

no collisions between the bodies and the boundary of the domain.

Our article is devoted to the problem of the motion of the rigid body in

the viscous fluid when a slippage is allowed at the fluid-body interface ∂B(t)

and a Dirichlet boundary condition on ∂O. The slippage is prescribed by the

Navier boundary condition, having only the continuity of velocity just in the

normal component. We stress that taking into account slip boundary condition

at the interface is very natural within this model, since the classical Dirichlet

boundary condition leads to unrealistic collision behaviour between the solid and

the domain boundary. Nevertheless, due to the slip condition, the velocity field

is discontinuous across the fluid-solid interface. This makes many aspects of

the theory of weak solutions for Dirichlet conditions inappropriate. It is worth

noting that the case of bounded fluid domain O furnishes additional difficulty of

possible contacts of body and wall. For this reason, the body needs to start at

some distance from the boundary. Furthermore the lifespan of the solution has

to be restricted to a time interval in which no contacts occur.

To our knowledge the first solvability result was obtained by Neustupa and

Penel [15], [16] in a particular situation, where they considered a prescribed

collision of a ball with a wall, when the slippage was allowed on both bound-

aries. Their pioneer result shows that the slip boundary condition cleans the

no-collision paradox. Recently Gérard–Varet, Hillairet [6] have proved a local-

in-time existence result (up to collisions). The authors of [7] have investigated

the free fall of a sphere above a wall, that is when the boundaries are C∞-

smooth, in a viscous incompressible fluid in two different situations: mixed case:

the Navier boundary condition is prescribed on the boundary of the body and

the non-slip boundary condition on the boundary of the domain; slip case: the

Navier boundary conditions are prescribed on both boundaries, i.e. of the body

and of the domain. The result of them is interesting, saying that in the mixed

case the sphere never touches the wall and in the slip case the sphere reaches

the wall during a finite time period.

Recently, the global existence result for a weak solution was proven in the

mixed case, see [1], even if the collisions of the body with the boundary of domain

occur in a finite time under a lower regularity of the body and domain than [7].

Our article deals with the strong solution of the mixed case. The existence of

strong solution was studied by Takahashi, and Tucsnak [18], [19] in the no-slip

boundary conditions and in the slip case by Wang [20] in the 2D case.
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The plan of the paper is as follows. In Section 2 we introduce the local trans-

formation as in Inoue and Wakimoto [12], we define the functional framework at

the basis of our work, we recall also the main result of this work. Next in Sec-

tion 3 we prove the existence of solution to the linearised problem, we consider

the non linear problem and we prove the existence of solution using a fixed point

argument.

2. Preliminaries

2.1. Local transformation. Since the domain depends on the motion of

the rigid body, we transform the problem to a fixed domain. There are at least

two possibilities for this transform: the global transformation (cf. [5], [8]) is

linear, meaning that the whole space is rigidly rotated and shifted back to its

original position at every time t > 0. A fundamental difficulty of this approach

is that the transformed problem in case of the exterior domain brings additional

terms which are not local perturbation to parabolic equations and completely

change the character of equations. The second one (cf. [12]) is characterized by

a non-linear local change of coordinates which only acts in a suitable bounded

neighbourhood of the obstacle. The advantage of the later transform is that

it preserves the solenoidal condition on the fluid velocity, doesn’t change the

regularity of the solutions. However the rigid body equations change to become

non-linear. Our analysis is based on the second approach. We define the local

transformation introduced by Inoue and Wakimoto [12].

Let δ(t) = dist (B(t), ∂O). We fix δ0 such that δ(t) > δ0 and define a C∞-

smooth solenoidal velocity field Λ = Λ(t,x), defined for t ∈ R+, x ∈ O, satisfy-

ing

Λ(t,x) =

0 in the δ0/4 neighbourhood of ∂O,
η(t) + ω(t)× (x− xc(t)) in the δ0/4 neighbourhood of B(t).

Then the flow X(t) : O → O is defined as the solution of the system

(2.1)
d

dt
X(t,y) = Λ(t,X(t,y)), X(0,y) = y, for all y ∈ O.

From the results of Takahashi [18, Lemma 4.2] it follows that (2.1) has a unique

solution. Moreover, the mapping X is a C∞ diffeomorphism for O and itself

and a diffeomorphism from F0 onto F(t) such that the derivatives

∂i+αjX(t,y)

∂ti∂y
αj

j

, i ≤ 1, for all αj ≥ 0, j = 1, . . . , d,

exist and are continuous.
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Further, denoting Y as the inverse of X from [18, Lemma 4.2] it follows that

Y has also all continuous derivatives

∂i+αjY (t,x)

∂ti∂x
αj

j

, i ≤ 1, for all αj ≥ 0, j = 1, . . . , d.

Now we introduce the new unknown functions, defined for t ∈ R+ and y ∈ O,

ũF (t,y) = JY (t,X(t,y))uF (t,X(t,y)),

p̃F (t,y) = pF (t,X(t,y)),

T (ũF (t,y), p̃F (t,y)) = QT (t)T
(
Q(t)ũF (t,y), p̃F (t,y)

)
Q(t),

f̃0(t,y) = JY (t,X(t,y))f0(t,X(t,y)),

ω̃(t) = QT (t)ω(t), η̃(t) = QT (t)η(t),

f̃1(t) = QT (t)f1(t), f̃2(t) = QT (t)f2(t),

where JY (t,x) = (∂Yi(t,x)/∂xj) and Q(t) ∈ SO(3) is a rotation matrix associ-

ated with the rigid body angular velocity ω. The transformed normal ñ on ∂B0
satisfies ñ = QT (t)n(t). The transformed inertia tensor I = QT (t)J(t)Q(t) no

longer depend on time. Furthermore the transformed total force and torque on

the rigid body are given by∫
∂B(t)

T(uF , pF )n(t) dσ = Q

∫
∂B0

T
(
ũF , p̃F

)
ñ dσ(y),∫

∂B(t)
(x− xc(t))× T(uF , pF )n(t) dσ = Q

∫
∂B0

y × T
(
ũF , p̃F

)
ñ dσ(y).

Thus for some T > 0, that will be founded later on, the new unknowns ũF , p̃F
and η̃, ω̃, defined on the cylindrical domains (0, T )×F0 and (0, T )×B0, satisfy

the following system of equations

(2.2)



∂tũF + (M− µL)ũF +N ũF + Gp̃F = f̃0,

div ũF = 0 in (0, T )×F0,

ũF = 0 on (0, T )× ∂O,
ũF (0) = u0 in F0,

(ũF − ũB) · ñ = 0,

2µ[D(ũF )ñ]× ñ = −β(ũF − ũB)× ñ on (0, T )× ∂B0,

m η̃′ −m
(
ω̃ × η̃

)
+

∫
∂B0

T (ũF , p̃F )ñ dσ = f̃1(t),

Iω̃′ − ω̃ × (Iω̃) +

∫
∂B0

y × T (ũF , p̃F )ñdσ = f̃2(t), for t ∈ (0, T ),

η̃(0) = η0, ω̃(0) = ω0,
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with ũB = η̃ + ω̃ × y and the convection term is transformed into

(Nu)i =

d∑
j=1

uj∂jui +

d∑
j,k+1

Γijkujuk, i = 1, . . . , d.

The transformed time derivative Mu and the gradient Gp are calculated by

(Mu)i =

d∑
j=1

Ẏj∂jui +

d∑
j,k=1

(
ΓijkẎk +

(
∂kYi)(∂jẊk

))
uj , (Gp)i =

d∑
j=1

gij∂jp.

Moreover, the operator L denotes the transformed Laplace operator, having the

components

(Lu)i =

d∑
j,k=1

∂j(g
jk∂ui) + 2

d∑
j,k,l=1

gklΓijk∂luj

+

d∑
j,k,l=1

(
∂k(gklΓikl) +

n∑
m=1

gklΓmjlΓ
i
km

)
uj .

The coefficients are given by the metric covariant tensor gij = Xk,iXk,j , the

metric contra-variant tensor gij = Yi,kYj,k and the Christoffel symbols

Γkij =
1

2
gkl(gil,j + gjl,i − gij,l).

It is easy to observe that in particular it holds Γkij = Yk,lXl,ij . As described

in [12], problem (1.1)–(1.2) is equivalent to problem (2.2) and a solution to the

transformed problem (2.2) yields a solution to the initial problem (1.1)–(1.2).

2.2. Function spaces and the main theorem. In the sequel we use the

following function spaces, defined on the moving domain (0, T )×F(t),

L2(0, T ;H2(F(t))), C([0, T ];H1(F(t))),

H1(0, T ;L2(F(t))), L2(0, T ;H1(F(t))).

If we consider UF (t,y) : F0 → Rd, which is calculated as

UF (t,y) = uF (t,X(t,y)) for any function uF (t, · ) : F(t)→ Rd,

then above mentioned function spaces can be redefined in the fixed domain

(0, T )×F0. For instance

L2(0, T ;H2(F0)) = {UF : uF ∈ L2(0, T ;H2(F(t)))}.

Now we can formulate the main result.

Theorem 2.1. Suppose that B0 ⊂ O and

(2.3)
u0 ∈ H1(F0), uB,0 = η0 + ω0 × (x− xc(0)) ∈ H1(B0),

f0 ∈ L2
loc(R+;H1(F0)), f1,f2 ∈ L2

loc(R+),
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that satisfy

(u0 − uB,0) · n|∂B0 = 0, u0|∂O = 0, divu0 = 0 in F0.

Then there exists T0 > 0 such that (1.1)–(1.2) has a unique solution which

satisfies, for all T < T0,

uF , pF ,η(t),ω(t) ∈ UT (F(t))× L2(0, T ;H1(F(t)))×H1(0, T )×H1(0, T ),

where UT (F(t)) = L2(0, T ;H2(F(t))) ∩ C(0, T ;H1(F(t))) ∩H1(0, T ;L2(F(t))).

3. Strong solution

3.1. Stokes problem. We will consider the following linearized system,

which couples Stokes type equations and linear ordinary differential equations

(3.1)



∂t zF − µ∆zF +∇qF = F0, div zF = 0 in (0, T )×F0,

zF = 0 on (0, T )× ∂O,
zF (0) = u0 in F0,

(zF − zB) · ñ = 0,

2µ[D(zF )ñ]× ñ = −β(zF − zB)× ñ on (0, T )× ∂B0,

m ξ′ +

∫
∂B0

T(zF , qF )ñ dσ = F1,

Iw′ +

∫
∂B0

y × T(zF , qF )ñ dσ = F2 for t ∈ (0, T ),

ξ(0) = η0, w(0) = ω0,

with zB = ξ + w × y.
Let us recall a well-known result (see Kato [13], [14]).

Proposition 3.1. Let H be a Hilbert space. Let A : D(A) → H be a self

adjoint and accretive operator. If F ∈ L2(0, T ;H), u0 ∈ D(A1/2), then the

problem

u′ + Au = F , u(0) = u0,

has a unique solution u ∈ L2(0, T ;D(A)) ∩ C([0, T ];D(A1/2)) ∩ H1(0, T ;H),

which satisfies

‖u‖L2(0,T ;D(A)) + ‖u‖C([0,T ];D(A1/2)) + ‖u‖H1(0,T ;H)

≤ C(‖u0‖D(A1/2) + ‖F ‖L2(0,T ;H))

with a constant C depending on the operator A and the time T . Moreover, the

constant C is a non decreasing function of T .
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Let us define the functional spaces

H = {φ ∈ L2(O) : divφ = 0 in O, φ|F0
= φF ∈ D′(F0), φ|B0

= φB ∈ R},

V = {φ ∈ H : φF ∈ H1(F0), φF |∂O = 0, (φF − φB)·ñ|∂B0
= 0},

where R = {φ : φ(y) = ξφ + wφ×y with ξφ,wφ ∈ Rd}. For u,v ∈ H we define

the inner product

(u,v) =

∫
F0

uF · vF dy +

∫
B0

ρBuB · vB dy,

which equals to

(3.2) (u,v) =

∫
F0

uF · vF dy +m ξuB · ξvB + (IwuB) ·wvB .

Let us denote

Az(y) =


−µ∆zF (y), y ∈ F0,

2µ

m

∫
∂B0

D(zF )ñ dσ +

(
2µI−1

∫
∂B0

D(zF )ñ× y dσ
)
× y, y ∈ B0,

and define the operator

(3.3) Az = PAz for any z ∈ D(A),

where P : L2(O)→ H is the orthogonal projector on H in L2(O) and the domain

of the operator of A is defined by

D(A) = {φ ∈ H : φF ∈ H2(F0), φF |∂O = 0, (φF − φB) · ñ |∂B0
= 0,

2µ(D(φF ) · ñ)× ñ |∂B0
= −β(φF − φB)× ñ |∂B0

},

Proposition 3.2. The operator A defined by (3.3) is self adjoint and pos-

itive. Consequently A is a generator of contraction analytic semi-group in H.

Moreover, there exists a constant C > 0, such that for any z ∈ D(A) we have

‖zF‖H2(F0) + ‖zB‖H2(B0) ≤ C‖(I +A)z‖L2(O).

Proof. (1) A is symmetric. Let z,v ∈ D(A). Then the integration by parts

used twicely gives that

(Az,v) = 2µ

∫
F0

D(zF ) : D(vF ) dy

+ β

∫
∂B0

[(zF − zB)× ñ] · [(vF − vB)× ñ] dσ = (z, Av).

Hence A is a symmetric operator.

(2) A is positive. From (1) we have that

(Az, z) = 2µ‖D(zF )‖2L2(F0)
+ β

∫
∂B0

|zF − zB|2 dσ for any z ∈ D(A).

Thus A is a positive operator.
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(3) A is self-adjoint. In order to prove that A is self adjoint, it suffices to

prove that the operator I +A : D(A)→ H is surjective.

First, let us note that the solution z ∈ D(A) of the problem (I+A)z = F ∈ H
in the weak formulation satisfies the integral equality

(z,v) + (Az,v) = (F ,v) for any v ∈ V,

that is, for any v ∈ V,

(z,v) + 2µ

∫
F0

D(zF ) : D(vF ) dy + β

∫
∂B0

(zF − zB) · (vF − vB) dσ = (F ,v).

Let us define the bilinear form a : V × V → R by

(3.4) a(z,v) = (z,v)+2µ

∫
F0

D(zF ) : D(vF ) dy+β

∫
∂B0

(zF−zB)·(vF−vB) dσ

for any z,v ∈ V. Using the positivity of the operator A, we easily check that a is

a bilinear continuous coercive form on V. Furthermore the mapping v→ (F ,v)

is a continuous linear form on V. Therefore the Lax–Milgram theorem implies

the existence of a unique solution z ∈ V of the problem (3.4). Using [17] we

deduce that there exists qF ∈ D′(F0), such that

zF − µ∆zF +∇ qF = F in D′(F0).

In addition, zF is a unique weak solution of the system
zF − µ∆zF +∇qF = F , div zF = 0 in F0,

(zF − zB) · ñ = 0, 2µ[D(zF )ñ]× ñ = −β(zF − zB)× ñ on ∂B0,
zF = 0 on ∂,O

and it satisfies the estimate

‖zF‖H2(F0) ≤ C (‖F ‖L2(F0) + ‖zB‖H3/2(∂B0)).

On the other hand, since zB ∈ R, there exist two vectors ξ, w ∈ Rd, such that

zB = ξ + w × y in B0, that gives

‖zB‖H2(B0) ≤ C ‖F ‖L2(O).

Hence we conclude that

‖zF‖H2(F0) + ‖zB‖H2(B0) ≤ C ‖(I +A)z‖L2(O). �

Now we are in a position to prove the following result for the linearised

fluid-structure problem (3.1).

Proposition 3.3. Let T > 0. If

ũ0 = (ũF,0, ũB,0) ∈ V, F0 ∈ L2(0, T ;L2(F0)) and F1,F2 ∈ L2(0, T ),
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then problem (3.1) has a unique solution on [0, T ], that satisfies a priori estimate

(3.5) ‖zF‖UT (F0) + ‖∇qF‖L2(0,T ;L2(O)) + ‖ξ‖H1(0,T ) + ‖w‖H1(0,T )

≤ C
(
‖(F1,F2)‖L2(0,T ) + ‖F0‖L2(0,T ;L2(F0)) + ‖ũB,0‖H1(B0) + ‖ũ0‖H1(F0)

)
,

where C is a non-decreasing function of T .

Proof. We follow Wang verbatim [20]. The difference between Wangs prob-

lem and our problem is that, Wang considered slip boundary conditions on both

boundaries and we consider the Mixed case. Moreover, in [20] only 2D case is

investigated. We consider 3D case. For completeness, we will give the principal

part of the proof.

We will show that the linearized fluid-solid problem (3.1) can be written in

the form

(3.6) ∂tz +Az = F , z(0) = ũ0,

where z = zF1F0 + zB1B0 , ũ0 = zF (0)1F0 + zB(0)1B0 and

F = P
(

F01F0
+

(
F1

m
+ I−1F2 × y

)
1B0

)
.

By Proposition 3.2, the fluid-solid operator A : D(A) → H is a positive self ad-

joint operator. Thus by Proposition 3.1, the problem (3.1) has a unique solution

z ∈ L2(0, T ;D(A)) ∩ C([0, T ];D(A1/2)) ∩H1(0, T ;H).

Recall that the norm of D(A1/2) is equivalent to the norm of V.

Since z ∈ H1(0, T ;H), there exist two vector functions ξ,w ∈ H1(0, T ), such

that

zB(t,y) = ξ(t) + w(t)× y for any y ∈ B0.

If we take the inner product (3.2) of equality (3.6)1 and φ ∈ H, we get

(3.7)

∫
F0

z′F · φF dy +m

(
ξ′ − F1

m

)
· ξφ + I

(
w′ − I−1F2

)
·wφ

−
∫
F0

µ∆zF · φF dy + 2µ

∫
∂B0

D(zF )ñ dσ · ξφ

+ 2µ

(∫
∂B0

D(zF )ñ× y dσ
)
·wφ =

∫
F0

PF0 · φF dy.

Considering test functions φ ∈ H, such that φB = 0, we obtain that there exists

a function qF ∈ L2(0, T ;H1(F0)) satisfying the equation

z′F − µ∆zF +∇qF = F0 in F0.

Thus, for arbitrary φ ∈ H, we have∫
F0

(
z′F − µ∆zF − F0

)
· φF dy = −

∫
∂B0

qFφF · ñ dσ.
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Substituting this equality into (3.7), we obtain that

m

(
ξ′(t)− F1

m

)
· ξφ + I

(
w′B − I−1F2

)
·wφ + 2µ

∫
∂B0

D(zF )ñ dσ · ξφ

+ 2µ

(∫
∂B0

D(zF )ñ× y dσ
)
·wφ =

∫
∂B0

qFφF · ñ dσ.

Since the function φ is divergence free, we have (φF − φB) · ñ |∂B0
= 0. As

a consequence we obtain that

mξ′(t) +

∫
∂B0

(
2µD(zF )− qF I

)
ñ dσ = F1,

Iw′(t) +

∫
∂B0

(
2µD(zF )− qF I

)
ñ× y dσ = F2.

Therefore a problem (3.6) is equivalent to a problem (3.1). Finally Proposi-

tions 3.1 and 3.2 imply the uniqueness of the solution (zF , qF , ξ,w), that satisfies

estimate (3.5). �

3.2. Nonlinear case (Proof of Theorem 2.1). In this section we show

Theorem 2.1. To do it we prove existence and uniqueness results for the modified

system (2.2).The proof is based on the fixed point argument. Let us define

P : (ẑF , q̂F , ξ̂, ŵ)→ (zF , qF , ξ,w),

which maps UT (F0)× L2(0, T ;H1(F0))×H1(0, T )×H1(0, T ) into itself. Func-

tions (zF , qF , ξ,w) = P(ẑF , q̂F , ξ̂, ŵ) are the solution of the linear system (3.1)

with

F0 =F0(ẑF , q̂F , ξ̂, ŵ) = −(M− µL+ µ∆)ẑF + (∇− G)q̂F −N ẑF + f̃0,

F1 =F1(ẑF , q̂F , ξ̂, ŵ) = f̃1 +m(ŵ × ξ̂)

+

∫
∂B0

T(ẑF , q̂F )ñ dσ −
∫
∂B0

T (ẑF , q̂F )ñ dσ,

F2 =F2(ẑF , q̂F , ξ̂, ŵ) = f̃2 + ŵ × (Iŵ)

+

∫
∂B0

y × T(ẑF , q̂F )ñ dσ −
∫
∂B0

y × T (ẑF , q̂F )ñ dσ.

For some R > 0 we define the set

K = {(ẑF , q̂F , ξ̂, ŵ) ∈ UT (F0)× L2(0, T ;H1(F0))×H1(0, T )×H1(0, T ) :

‖ẑF‖UT (F0) + ‖q̂F‖L2(0,T ;H1(F0)) + ||ξ‖H1(0,T ) + ‖ŵ‖H1(0,T ) ≤ R}.

As the first step we show that P(K) ⊂ K. We put C0, B0 constants that de-

pends only on T , ‖u0‖H1(F0), ‖uB,0‖H1(B0), ‖f0‖L2
loc(R+;H1(F0)), ‖(f1,f2)‖L2

loc(R+)
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(see the regularity (2.3)). Moreover, C0, B0 are nondecreasing functions of T .

Also C0 is a nondecreasing function of R. Then Proposition 3.3 gives

‖zF‖UT (F0) + ‖qF‖L2(0,T,H1(F0)) + ‖ξ‖H1(0,T ) + ‖w‖H1(0,T )

≤ C0(‖(F1,F2)‖L2(0,T ) + ‖F0‖L2(0,T ;L2(F0)) + 1).

From [18] we have

‖F0‖L2(0,T ;L2(F0)) + ‖(F1,F2)‖L2(0,T ) ≤ C0T
1/10 +B0.

Therefore it follows that

‖zF‖UT (F0) + ‖qF‖L2(0,T,H1(F0)) + ‖ξ‖H1(0,T ) + ‖w‖H1(0,T ) ≤ C0T
1/10 +B0.

Now, choosing R and T such that 4B0 < R and C0(T )T 1/10 < R/4, we deduce

that

C0T
1/10 +B0 < R and P(K) ⊂ K.

In the second step we prove that P is a contraction operator, when T is small

enough and R is large enough. Let us define

(ziF , q
i
F , ξ

i,wi) = P(ẑiF , q̂
i
F , ξ̂

i, ŵi) for (ẑiF , q̂
i
F , ξ̂

i, ŵi) ∈ K, i = 1, 2,

and calculate the diferences

(zF , qF , ξ,w) = (z1F , q
1
F , ξ

1,w1)− (z1F , q
1
F , ξ

1,w1),

(ẑF , q̂F , ξ̂, ŵ) = (ẑ1F , q̂
1
F , ξ̂

1, ŵ1)− (ẑ2F , q̂
2
F , ξ̂

2, ŵ2).

Then the functions (zF , qF , ξ,w) satisfy the system (3.1) with zero initial con-

ditions, i.e.

zF (0) = 0 in F0, ξ(0) = 0, w(0) = 0

and

Fk = Fk(ẑ1F , q̂
1
F , ξ̂

1, ŵ1)− Fk(ẑ2F , q̂
2
F , ξ̂

2, ŵ2), k = 0, 1, 2.

It is easy to check

‖F0‖L2(0,T ;L2(F0)) + ‖(F1,F2)‖L2(0,T )

≤ C0T
1/10

(
‖ẑF‖UT (F0) + ‖q̂F‖L2(0,T ;H1(F0)) +

∥∥(ξ̂, ŵ)
∥∥
H1(0,T )

)
.

Applying Proposition 3.3 we obtain

‖zF‖UT (F0) + ‖qF‖L2(0,T ;H1(F0)) + ‖ξ‖H1(0,T ) + ||w‖H1(0,T )

≤ C0T
1/10

(
‖ẑF‖UT (F0) + ‖q̂F‖L2(0,T ;H1(F0)) +

∥∥(ξ̂, ŵ)
∥∥
H1(0,T )

)
.

Thus, when T is small enough, P is a contraction operator, such that the unique

fixed point of P is a unique solution (ũF , p̃F , η̃, ω̃) of system (2.2) in K. For

given two strong solutions of (2.2), there exists a large enough R, such that these

solutions belong to the set K. Since the system (2.2) has a unique solution in K

by the continuity argument we get that system (1.1)–(1.2) has a unique solution.
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