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ON SPECTRAL CONVERGENCE

FOR SOME PARABOLIC PROBLEMS

WITH LOCALLY LARGE DIFFUSION

Maria C. Carbinatto — Krzysztof P. Rybakowski

Abstract. In this paper, which is a sequel to [1], we extend the spectral
convergence result from [5] to a larger class of singularly perturbed families

of scalar linear differential operators. This also extends the Conley index

continuation principles from [1].

1. Introduction

In the important paper [5], Carvalho and Pereira approached a problem

previously considered by Fusco [6] from the point of view of spectral conver-

gence. Specifically, they considered a family of linear differential operators

u 7→ −(aεux)x on the interval ]0, 1[ with boundary conditions

(Sε)

ρu− (1− ρ)aεux = 0, x = 0,

σu+ (1− σ)aεux = 0, x = 1,

and made the following

Assumption 1.1. n ∈ N, ε0 ∈ ]0,∞], (ej)j∈[1..n], (lj)j∈[0..n], (bj)j∈[0..n]

are sequences of positive constants and (l′j)j∈[0..n], (b′j)j∈[0..n] are sequences of

positive functions defined on ]0, ε0[ such that l′j(ε) > lj and b′j(ε) > bj for j ∈
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[0. . n] and ε ∈ ]0, ε0[ and for some q ∈ ]0, 1[ and all j ∈ [0. . n], l′j(ε)− lj = O(εq)

and b′j(ε)− bj = O(εq) as ε→ 0.

(aε)ε∈]0,ε0[ is a family of positive C2 functions defined on [0, 1] and (xj)j∈[0..n]

is a strictly increasing sequence in [0, 1] with x0 = 0 with xn = 1 and such that

for each j ∈ [1. . n]

aε(x) ≥ ej
ε
, for xj−1 + εl′j−1 ≤ x ≤ xj − εl′j ,

aε(x) ≥ εbj , for xj − εl′j ≤ x ≤ xj + εl′j ,

aε(x) ≤ εb′j , for xj − εlj ≤ x ≤ xj + εlj .

Here x0 − εl′0 = x0 − εl0 = 0 and xn + εl′n = xn + εln = 1.

(Note that Carvalho and Pereira write ν instead of ε and (aj)j∈[0..n] and

(a′j)j∈[0..n] instead of (bj)j∈[0..n] and (b′j)j∈[0..n], respectively.)

The above differential operator generates, for ε ∈ ]0, ε0[, a linear operator Aε
in L2(0, 1) which has a simple spectrum (λl,ε)l, λl,ε < λl+1,ε, and corresponding

appropriately normalized eigenfunctions (ϕl,ε)l. The authors proved the exis-

tence of a linear operatorA0 on Rn which has simple spectrum (λl,0)l∈[1..n], λl,0 <

λl+1,0, and corresponding appropriately normalized eigenvectors (ϕl,0)l∈[1..n] such

that, for ε → 0, λl,ε → λl,0 for l ∈ [1. . n] and λl,ε → ∞ for l > n. Moreover,

for l ∈ [1. . n], in some sense, ϕl,ε → ϕl,0 as ε → 0. Cf [5, Lemma 3.1 and

Theorem 3.5] for the precise statement of these results.

As remarked in [5], the above results continue to hold, with some modifica-

tions and essentially the same proofs if, in the above hypothesis, we remove the

‘wells’ close to the boundary points.

Some impressive spectral convergence results were also obtained in the pa-

pers [2] and [4]. In [2] Carvalho extends some of the spectral convergence results

from [5] to rectangular domains in R2 and to domains whose intersection with

a vertical strip in R2 is a rectangle. Moreover, he also discusses, for the Neumann

case without wells and n = 2, an extension of Assumption 1.1 under which the

spectral convergence result from [5] continues to hold, cf. Section 4.

In the paper [4], Carvalho and Cuminato prove a spectral convergence result

for genuinely higher dimensional domains which are composed of a finite number

of subdomains (cells) and their boundaries (membranes). Here, diffusion is large

in the cells and small on the membranes.

In the above papers the spectral convergence results are used to obtain infor-

mation on asymptotic dynamics for a corresponding family of semilinear para-

bolic equations with dissipative nonlinearities. In particular, existence and upper

semicontinuity of attractors as well as structural stability results, as ε → 0, are

established.

In the interesting recent paper [3], a general functional analytic framework

is developed for the study of singularly perturbed semilinear parabolic equations
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with finite dimensional limit problem using invariant manifold techniques. That

paper also contains various practical examples.

In the recent paper [1] we considered the abstract parabolic problem

(1.1) u̇ = −Aεu+ fε(u)

on H1(0, 1) and a corresponding limit problem

(1.2) ż = −A0z + f0(z)

on Rn. Here, Aε, ε ∈ ]0, ε0[, and A0 are as above while fε, ε ∈ ]0, ε0[, and

f0 are Nemitski operators generated by nonlinearities satisfying an appropriate

condition [1, Assumption 4.2]. Let us note that no dissipativeness conditions on

the nonlinearities are imposed.

Using the spectral convergence theorem from [5] together with some nonlin-

ear convergence and compactness results we proved singular Conley index and

homology index braid continuation principles for the families of local semiflows

generated by (1.1) and (1.2), cf. [1, Theorem 4.5].

In this paper we introduce a linear hypothesis, Assumption 2.1 (respectively,

Assumption 4.1), which is more general than the hypothesis from [5] (respec-

tively, the condition discussed in [2]), cf. Sections 2 and 4.

It turns out that a spectral convergence result can be proved under this

more general assumption, cf. Theorem 2.6 (resp. Theorem 4.2), extending the

corresponding results from [5] (resp. [2]).

Now, using Theorem 2.6 (resp. Theorem 4.2) instead of results from [5], we

extend, in Section 5, the Conley index continuation principles from [1] to the

present more general situation, cf Theorem 5.3 (resp. Remark 5.4).

In this paper, m is the one-dimensional Lebesgue measure.

2. The spectral convergence result

In this section we state and discuss our main hypothesis, Assumption 2.1.

Under this assumption, we define a family (Aε)ε∈]0,ε0[ of linear operators and

the limit operator A0. Then we state Theorem 2.6, which is the main result of

this paper.

We begin by stating our linear assumption:

Assumption 2.1.

(1a) n ∈ N, ε0 ∈ ]0,∞];

(1b) (aε)ε∈]0,ε0[ is a family of continuous positive functions defined on [0, 1];

(1c) (xj)j∈[0..n] is a strictly increasing sequence in [0, 1], with x0 = 0 and

xn = 1, (τj)j∈[0..n] is a sequence in ]0,∞[ and ξ′j,ε, ξj,ε, j ∈ [1. . n]

and ζj,ε, ζ
′
j,ε, j ∈ [0. . n− 1] are families in ]0, 1[ with xj−1 < ζj−1,ε <

ζ ′j−1,ε < ξ′j,ε < ξj,ε < xj , j ∈ [1. . n], ε ∈ ]0, ε0[.



634 M.C. Carbinatto — K.P. Rybakowski

(1d) If (Γε)ε∈]0,ε0[ is any of the families:

([ξ′j,ε, ζ
′
j,ε])ε∈]0,ε0[, ([x0, ζ

′
0,ε])ε∈]0,ε0[, ([ξ′n,ε, xn])ε∈]0,ε0[,

j ∈ [1. . n− 1], then m(Γε)→ 0 as ε→ 0.

(2a) If (Γε)ε∈]0,ε0[ is any of the families:

([ζ ′j,ε, ξ
′
j+1,ε])ε∈]0,ε0[, ([ζj,ε, ζ

′
j,ε])ε∈]0,ε0[, j ∈ [0. . n− 1] ,

or else the family ([ξ′j,ε, ξj,ε])ε∈]0,ε0[, j ∈ [1. . n], then

inf
Γε

aε

m(Γε)
→∞ as ε→ 0.

(2b) For each j ∈ [0. . n] and ε ∈ ]0, ε0[, set Γj,ε = [ξj,ε, ζj,ε], if j ∈ [1. . n− 1],

Γ0,ε = [x0, ζ0,ε] and Γn,ε = [ξn,ε, xn]. Then

inf
Γj,ε

aε

m(Γj,ε)
→ τj and

sup
Γj,ε

aε

m(Γj,ε)
→ τj as ε→ 0.

Notation. In this and the next section, we write, for j ∈ [1. . n],

Kj,ε = [ζj−1,ε, ξj,ε] , K ′j,ε = [ζ ′j−1,ε, ξ
′
j,ε] , Kj = [xj−1, xj ] , Lj = m(Kj).

Remark 2.2. For j ∈ [1. . n] we have the following picture:

xj−1 ζj−1,ε ζ′j−1,ε ξ′j,ε ξj,ε xj

Let j ∈ [1. . n] be arbitrary. Since m(K ′j,ε) → Lj > 0 as ε → 0, part (2a) of

Assumption 2.1 implies that aε → ∞ for ε → 0, uniformly in K ′j,ε. Moreover,

by part (2b), on the small intervals [ξj,ε, ζj,ε] around xj , aε is of the same order

as the measure of these intervals so aε → 0 for ε → 0, uniformly in [ξj,ε, ζj,ε].

Finally, there is some transitional behavior on the remaining small intervals

[ξ′j,ε, ξj,ε] and [ζj,ε, ζ
′
j,ε] around xj , as aε is of lower order than the measure of

these intervals.

The following result further clarifies the above assumption. It provides a nec-

essary and sufficient condition, in terms of the relative positions of the partition

points xj , ξj,ε, ξ
′
j,ε, ζj,ε and ζ ′j,ε, for the existence of diffusion coefficient functions

aε such that Assumption 2.1 holds.

Proposition 2.3. If Assumption 2.1 holds, then

(2.1)
m([ξ′j,ε, ξj,ε]) + m([ζj,ε, ζ

′
j,ε])

m([ξj,ε, ζj,ε])
→ 0, as ε→ 0, j ∈ [1. . n− 1]

and

(2.2)
m([ζ0,ε, ζ

′
0,ε])

m([x0, ζ0,ε])
→ 0 and

m([ξ′n,ε, ξn,ε])

m([ξn,ε, xn])
→ 0 as ε→ 0.
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Conversely, if parts (1a), (1c) and (1d) of Assumption 2.1 together with esti-

mates (2.1) and (2.2) hold, then there is a family (aε)ε∈]0,ε0[, such that parts

(1b), (2a) and (2b) of that assumption are also satisfied. In addition, we may

assume that each function aε can be extended to a C∞-function defined on all

of R.

Proof. If Assumption 2.1 holds, then, by (2a),

aε(ζj,ε)

m([ζj,ε, ζ ′j,ε])
→∞ and

aε(ξj,ε)

m([ξ′j,ε, ξj,ε])
→∞ as ε→ 0, j ∈ [1. . n− 1]

and
aε(ζ0,ε)

m([ζ0,ε, ζ ′0,ε])
→∞ and

aε(ξn,ε)

m([ξ′n,ε, ξn,ε])
→∞ as ε→ 0,

while, by (2b),

aε(ζj,ε)

m([ξj,ε, ζj,ε])
→ τj and

aε(ξj,ε)

m([ξj,ε, ζj,ε])
→ τj as ε→ 0, j ∈ [1. . n− 1]

and
aε(ζ0,ε)

m([0, ζ0,ε])
→ τ0 and

aε(ξn,ε)

m([ξn,ε, 1])
→ τn as ε→ 0.

These estimates imply estimates (2.1) and (2.2). Conversely, suppose that parts

(1a), (1c) and (1d) of Assumption 2.1 together with estimates (2.1) and (2.2)

hold. For j ∈ [1. . n] let hj : ]0, ε0[ → R be an arbitrary positive function with

hj(ε) → ∞ as ε → 0. Then, for each ε ∈ ]0, ε0[ there is a uniquely determined

continuous function ãε : [0, 1]→ R such that: for each j ∈ [1. . n], ãε(x) = hj(ε)

on K ′j,ε; for each j ∈ [1. . n− 1], ãε(x) = τj ·m([ξj,ε, ζj,ε]) on [ξj,ε, ζj,ε]; ãε(x) =

τ0 ·m([0, ζ0,ε]) on [0, ζ0,ε], ãε(x) = τn ·m([ξn,ε, xn]) on [ξn,ε, xn], and ãε is affine

on [ξ′j,ε, ξj,ε]) for j ∈ [0. . n− 1] and on [ζj,ε, ζ
′
j,ε]) for j ∈ [1. . n]. With this

choice of (ãε)ε∈]0,ε0[ and estimates (2.1) and (2.2) it is easily proved that parts

(1b), (2a) and (2b) of Assumption 2.1 also hold. Each function ãε is constant

on [0, ζ0,ε] and [ξn,ε, xn] so it can be extended to a continuous function (again

denoted by ãε) defined on all of R. Choose a family (bε)ε∈]0,ε0[ in ]0,∞[ with

bε < inf
[0,1]

ãε for ε ∈ ]0, ε0[ and such that bε/m(Γε) → 0 and bε/m(Γj,ε) → 0 as

ε → 0+, where (Γε)ε∈]0,ε0[ is any family occurring in Assumption 2.1 (1d) and

(2a), and (Γj,ε)ε∈]0,ε0[, j ∈ [0. . n], is any family occurring in Assumption 2.1

(2b). Applying to the function ãε the usual smoothing procedure via mollifiers,

we obtain, for every ε ∈ ]0, ε0[ a smooth function aε on R, which differs from ãε
by at most bε on [0, 1]. We see that with this choice of the family (aε)ε∈]0,ε0[,

parts (1b), (2a) and (2b) of Assumption 2.1 also hold. �

Remark 2.4. If Assumption 1.1 is satisfied, then define ζj,ε = xj + εlj ,

ζ ′j,ε = xj + εl′j(ε) for j ∈ [0. . n− 1] and ξj,ε = xj − εlj , ξ′j,ε = xj − εl′j(ε) for

j ∈ [1. . n]. Moreover, set τj = (bj/2lj) for j ∈ [1. . n− 1] and τj = (bj/lj) for
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j ∈ {0, n}. With these definitions, taking ε0 ∈ ]0,∞[ smaller, if necessary, it is

easy to prove that Assumption 2.1 holds.

Remark 2.5. On the other hand, Assumption 2.1 may hold without Assump-

tion 1.1 being satisfied. In fact, let n ∈ N, (xj)j∈[0..n] be a strictly increasing

sequence in [0, 1], with x0 = 0 and xn = 1 and (τj)j∈[0..n] be a sequence in ]0,∞[.

For each ε ∈ ]0,∞[ define ζj,ε = xj + ε2, ζ ′j,ε = xj + ε2 + ε3, for j ∈ [0. . n− 1],

and ξj,ε = xj − ε2 and ξ′j,ε = xj − ε2 − ε3, for j ∈ [1. . n]. Choose ε0 ∈ ]0,∞[

such that xj−1 < ζj−1,ε < ζ ′j−1,ε < ξ′j,ε < ξj,ε < xj , j ∈ [1. . n], ε ∈ ]0, ε0[. If

(Γε)ε∈]0,ε0[ is any of the following families:

([ξ′j,ε, ζ
′
j,ε])ε∈]0,ε0[, ([x0, ζ

′
0,ε])ε∈]0,ε0[, ([ξ′n,ε, xn])ε∈]0,ε0[, j ∈ [1. . n− 1] ,

it is easy to show that m(Γε) → 0 as ε → 0. Hence (1a), (1c) and (1d) of

Assumption 2.1 are satisfied. Moreover,

m([ξ′j,ε, ξj,ε]) + m([ζj,ε, ζ
′
j,ε])

m([ξj,ε, ζj,ε])
=

2ε3

2ε2
= ε→ 0, as ε→ 0, j ∈ [1. . n− 1],

and
m([ζ0,ε, ζ

′
0,ε])

m([x0, ζ0,ε])
=

m([ξ′n,ε, ξn,ε])

m([ξn,ε, xn])
=
ε3

ε2
= ε → 0 as ε→ 0.

It follows from Proposition 2.3 that there is a family (aε)ε∈]0,ε0[, such that parts

(1b), (2a) and (2b) of Assumption 2.1 are also satisfied.

Suppose that, with this choice of (xj)j∈[0..n] and the family (aε)ε∈]0,ε0[, As-

sumption 1.1 from [5] is satisfied and fix a j ∈ [1. . n− 1]. Then, in particular,

there is a constant l = lj and a positive function a′j of ε ∈ ]0, ε0[ such that

a′j(ε) → 0 as ε → 0 and aε(x) ≤ a′j(ε) for x ∈ [xj − εl, xj + εl] (simply take

a′j(ε) := εb′j(ε), where b′j is as in Assumption 1.1). Now there is an ε1 ∈ ]0, ε0[

such that ζ ′j−1,ε = xj−1 + ε2 + ε3 < xj − εl < xj − ε2 − ε3 = ξ′j,ε < xj for

ε ∈ ]0, ε1[. For each such ε choose a point yε with xj − εl < yε < ξ′j,ε. Then,

on the one hand, aε(yε) ≥ inf
[ζ′j−1,ε,ξ

′
j,ε]
aε → ∞ as ε → 0 and, on the other hand,

aε(yε) ≤ a′j(ε)→ 0 as ε→ 0. This is a contradiction.

For the rest of this section we suppose that Assumption 2.1 holds.

In the sequel we write H1 = H1(0, 1) and L2 = L2(0, 1). Let b̃ε : H1×H1 →
R be the bilinear form defined by

b̃ε(u, v) =

∫ 1

0

aε · u′ · v′ dx, u, v ∈ H1.

We fix numbers ρ, σ ∈ [0, 1].

For ε ∈ ]0, ε0[ let Aε be the set of all pairs (u,w) with u ∈ H1 and w ∈ L2

such that aεu ∈ H1, ρu(0) − (1 − ρ)aε(0)u′(0) = σu(1) + (1 − σ)aε(1)u′(1) = 0

and w = −(aεu)′.
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It is known that Aε is (the graph of) a densely defined nonnegative self-

adjoint linear operator in L2.

Let 〈 · , · 〉L2 be the standard scalar product on L2 and define the bilinear

form bε : Z × Z → R by

bε(u, v) = b̃ε(u, v) + δ0u(0)v(0) + δ1u(1)v(1), u, v ∈ Z.

Here we have the following cases:

(a) ρ < 1 and σ < 1. Then Z := H1, δ0 := ρ/(1− ρ) and δ1 := σ/(1− σ);

(b) ρ = 1 and σ < 1. Then Z := {u ∈ H1 | u(0) = 0 }, δ0 := 0 and

δ1 := σ/(1− σ);

(c) ρ < 1 and σ = 1. Then Z := {u ∈ H1 | u(1) = 0 }, δ0 := ρ/(1− ρ) and

δ1 := 0;

(d) ρ = 1 and σ = 1. Then Z := {u ∈ H1 | u(0) = u(1) = 0 }, δ0 := 0 and

δ1 := 0.

It follows that the operator Aε is generated by the pair (bε, 〈 · , · 〉L2). This means

that (u,w) ∈ Aε if and only if u ∈ Z, w ∈ L2 and bε(u, v) = 〈w, v〉L2 for all

v ∈ Z. Let (λl,ε)l denote the increasing sequence of eigenvalues of Aε (which are

all simple).

Now define the ‘limit’ bilinear form b0 : Rn × Rn → R by

b0(y, z) = τ̃0y1z1 +

n−1∑
j=1

τj(yj+1 − yj)(zj+1 − zj) + τ̃nynzn,

where

τ̃0 =
τ0ρ

2 + δ0τ
2
0 (1− ρ)2

(ρ+ τ0(1− ρ))2
and τ̃n =

τnσ
2 + δ1τ

2
n(1− σ)2

(σ + τn(1− σ))2
,

and the scalar product 〈 · , · 〉L on Rn by

〈y, z〉L =

n∑
j=1

Ljyjzj , y = (y1, . . . , yn), z = (z1, . . . , zn) ∈ Rn.

Let A0 : Rn → Rn be the linear map defined by the pair (b0, 〈 · , · 〉L).(2.3)

The matrix representation of A0 in terms of the standard basis on Rn is given

as Ã = L−1B, where L = diag(L1, . . . , Ln) and B is the matrix

m1 r1 0 0 0 · · · 0 0

r1 m2 r2 0 0 · · · 0 0

0 r2 m3 r3 0 · · · 0 0

0 0 r3 m4 r4 · · · 0 0
...

...
. . .

. . .
. . .

...
...

0 0 · · · 0 rn−3 mn−2 rn−2 0

0 0 · · · 0 0 rn−2 mn−1 rn−1

0 0 · · · 0 0 0 rn−1 mn


,
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with

m1 = τ̃0 + τ1, mn = τ̃n + τn−1,

mk = τk−1 + τk, k ∈ [2. . n− 1]

and rk = −τk, k ∈ [1. . n− 1]. Since the matrix Ã is tridiagonal with non-zero

product of the off-diagonal entries, it has n distinct eigenvalues.

It follows that the map A0 is 〈 · , · 〉L-symmetric and all of its eigenvalues are

simple. Denote by (λl,0)l∈[1..n] the increasing sequence of eigenvalues of A0.

We can now state the main result of this paper.

Theorem 2.6. With the above notation and definitions the following asser-

tions hold:

(a) λn+1,ε →∞ as ε→ 0.

(b) For each l ∈ [1. . n], λl,ε → λl,0 as ε→ 0.

(c) There is a family (ϕ̂l,ε)(l,ε)∈[1..n]×[0,ε0[ such that if (l, ε) ∈ [1. . n]× ]0, ε0[

then ϕ̂l,ε is an eigenfunction of Aε corresponding to λl,ε with ‖ϕ̂l,ε‖L2 =

1, if l ∈ [1. . n] then ϕ̂l,0 is an eigenvector of A0 corresponding to λl,0
with ‖ϕ̂l,0‖L = 1 and such that for j ∈ [1. . n]

sup
x∈Kj,ε

|ϕ̂l,ε(x)− ϕ̂l,0,j | → 0, as ε→ 0,

where ϕ̂l,0,j is the j-th component of the vector ϕ̂l,0 ∈ Rn. Moreover,

there is an ε′ ∈ ]0, ε0[ such that

sup
ε∈[0,ε′]

sup
l∈[1..n]

sup
x∈[0,1]

|ϕ̂l,ε(x)| <∞.

3. Proof of the main result

This section is devoted to the proof of Theorem 2.6, which is accomplished

through a series of technical lemmas. Although we follow, in spirit, the proof of

the spectral convergence result from [5], the various technical differences require

a detailed treatment.

For the rest of this section we suppose that Assumption 2.1 holds.

Lemma 3.1. If M ∈ ]0,∞[, I ⊂ [0, 1] is a compact interval, a : I → R is

a continuous positive function and ϕ ∈ H1 is such that
∫
I
a · (ϕ′)2 dx ≤M , then

|ϕ(x)− ϕ(y)|2 ≤M m(I)

infI a
, x, y ∈ I.

Proof. For x, y ∈ I,

|ϕ(x)− ϕ(y)|2 =

∣∣∣∣ ∫ x

y

ϕ′ dx

∣∣∣∣2 ≤ (∫
I

|ϕ′| dx
)2

≤
∫
I

(ϕ′)2 dx

∫
I

12 dx

≤ 1

inf
I
a

∫
I

a · (ϕ′)2 dx ·m(I) ≤M m(I)

inf
I
a
.
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This proves the lemma. �

For each ε ∈ ]0, ε0[ and j ∈ [1. . n] define ψj,ε : [0, 1] → R as the uniquely

determined continuous function such that

(a) if j ∈ [2. . n− 1], then ψj,ε(x) = 1 for x ∈ [ζj−1,ε, ξj,ε], ψj,ε(x) = 0 for

x /∈ [ξj−1,ε, ζj,ε] and ψj,ε is affine on each of the intervals [ξj−1,ε, ζj−1,ε]

and [ξj,ε, ζj,ε].

(b) ψ1,ε(x) = 1 for x ∈ [ζ0,ε, ξ1,ε], ψ1,ε(x) = 0 for x /∈ [0, ζ1,ε], ψ1,ε(x) =

1 + (ρ/(ρζ0,ε + (1− ρ)aε(0)))(x− ζ0,ε) for x ∈ [0, ζ0,ε] and affine on the

interval [ξ1,ε, ζ1,ε].

(c) ψn,ε(x) = 1 for x ∈ [ζn−1,ε, ξn,ε], ψn,ε(x) = 0 for x /∈ [ξn−1,ε, xn],

ψn,ε(x) = 1 − (σ/(σ(1− ξn,ε) + (1 − σ)aε(1)))(x− ξn,ε) for x ∈ [ξn,ε, 1]

and affine on the interval [ξn−1,ε, ζn−1,ε].

Notice that ψj,ε ∈ Z for all j ∈ [1. . n] and ε ∈ ]0, ε0[.

For each ε ∈ ]0, ε0[, let Wε be the span of the functions ψj,ε, j ∈ [1. . n], i.e.

the n-dimensional subspace of Z given by

Wε =

{ n∑
j=1

ujψj,ε

∣∣∣∣ uj ∈ R, for j ∈ [1. . n]

}
.

Lemma 3.2. There exists a C ′1 ∈ ]0,∞[ and an ε′1 ∈ ]0, ε0[ such that

b̃ε(u, u)

‖u‖2L2

≤ C ′1 for all ε ∈ ]0, ε′1] and all u ∈Wε with u 6= 0.

Proof. There is a c ∈ ]0,∞[ and an ε1 ∈ ]0, ε0[ such that

c ≤ min
j∈[1..n]

(ξj,ε − ζj−1,ε), for all ε ∈ ]0, ε1].

Let ε ∈ ]0, ε1] and let u ∈Wε be arbitrary with ‖u‖2L2 = 1. Hence u =
n∑
j=1

ujψj,ε

with uj ∈ R, for j ∈ [1. . n]. Thus

1 = ‖u‖2L2 ≥
n∑
j=1

∫ ξj,ε

ζj−1,ε

u2 dx =
n∑
j=1

u2
j (ξj,ε − ζj−1,ε) ≥ c

n∑
j=1

u2
j ,

so |uj | ≤ c−1/2 for all j ∈ [1. . n]. Notice that u′(x) = 0 for x ∈
n⋃
j=1

[ζj−1,ε, ξj,ε].

Moreover, for j ∈ [1. . n− 1] and x ∈ [ξj,ε, ζj,ε],

u(x) = ujψj,ε(x) + uj+1ψj+1,ε(x)

with |ψ′j,ε(x)| = |ψ′j+1,ε(x)| = (1/(ζj,ε − ξj,ε)).
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For x ∈ [0, ζ0,ε], u(x) = u1ψ1,ε(x) and for x ∈ [ξn,ε, 1], u(x) = unψn,ε(x). It

follows that

b̃ε(u, u) =

∫ 1

0

aε · (u′)2 dx =

n∑
j=1

∫ xj

xj−1

aε · (u′)2 dx

=

n∑
j=1

(∫ ζj−1,ε

xj−1

aε · (u′)2 dx+

∫ xj

ξj,ε

aε · (u′)2 dx

)

=

n−1∑
j=0

∫ ζj,ε

xj

aε · (u′)2 dx+

n∑
j=1

∫ xj

ξj,ε

aε · (u′)2 dx

=

∫ ζ0,ε

0

aε · (u′)2 dx+

n−1∑
j=1

∫ ζj,ε

ξj,ε

aε · (u′)2 dx+

∫ 1

ξn,ε

aε · (u′)2 dx.

Now∫ ζ0,ε

0

aε · (u′)2 dx =

∫ ζ0,ε

0

aε · (u1ψ
′
1,ε)

2 dx

≤
∫ ζ0,ε

0

(
sup

[0,ζ0,ε]

aε

) ρ2

c (ρζ0,ε + (1− ρ)aε(0))2
dx

=

(
1

ζ0,ε
sup

[0,ζ0,ε]

aε

)
ρ2

c(ρ+ (1− ρ)(aε(0)/ζ0,ε))2
→ τ0ρ

2

c(ρ+ (1− ρ)τ0)2
,

as ε→ 0.

n−1∑
j=1

∫ ζj,ε

ξj,ε

aε · (u′)2 dx =

n−1∑
j=1

∫ ζj,ε

ξj,ε

aε ·
(
ujψ

′
j,ε + uj+1ψ

′
j+1,ε

)2
dx

≤
n−1∑
j=1

∫ ζj,ε

ξj,ε

(
sup

[ξj,ε,ζj,ε]

aε

)
4

c(ζj,ε − ξj,ε)2
dx

=

n−1∑
j=1

(
sup

[ξj,ε,ζj,ε]

aε

)
4

c(ζj,ε − ξj,ε)
→ 4

c

n−1∑
j=1

τj ,

as ε→ 0, and∫ 1

ξn,ε

aε · (u′)2 dx =

∫ 1

ξn,ε

aε ·
(
unψ

′
n,ε

)2
dx

≤
∫ 1

ξn,ε

(
sup

[ξn,ε,1]

aε

)
σ2

c(σ(1− ξn,ε) + (1− σ)aε(1))2
dx

=

(
1

(1− ξn,ε)
sup

[ξn,ε,1]

aε

)
σ2

c(σ + (1− σ)(aε(1)/(1− ξn,ε)))2

→ τnσ
2

c(σ + (1− σ)τn)2
,

as ε→ 0. These estimates prove the assertion. �
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Notation. For C ∈ ]0,∞[ and ε ∈ ]0, ε0[ let B̃ε,C be the set of all u ∈ H1

such that b̃ε(u, u) + ‖u‖2L2 ≤ C2.

Lemma 3.3. The following two assertions hold:

(a) There exist an ε′2 ∈ ]0, ε0[ and a C ′2 ∈ ]0,∞[ such that for every v ∈ H1

and every ε ∈ ]0, ε′2]

(3.1) sup
x,y∈[0,1]

|v(x)− v(y)| ≤ C ′2b̃ε(v, v)1/2

and

(3.2) sup
x∈[0,1]

|v(x)| ≤ C ′2(̃bε(v, v) + ‖v‖2L2)1/2.

(b) Let M ∈ ]0,∞[ be arbitrary. For each j ∈ [1. . n] we have

(3.3) sup
v∈B̃ε,M

sup
x,y∈Kj,ε

|v(x)− v(y)| → 0, as ε→ 0.

Proof. By our assumptions there are an ε1 ∈ ]0, ε0[ and a C1 ∈ ]0,∞[ such

that, for ε ∈ ]0, ε1],
m(Γε)

inf
Γε

aε
≤ C1,

where Γε is any of the ` = 5n intervals [xj−1, ζj−1,ε], [ζj−1,ε, ζ
′
j−1,ε], [ζ ′j−1,ε, ξ

′
j,ε],

[ξ′j,ε, ξj,ε], [ξj,ε, xj ], j ∈ [1. . n]. Thus, whenever ε ∈ ]0, ε1] and v ∈ H1, it follows

from Lemma 3.1 that

diam v(Γε) ≤ (C1b̃ε(v, v))1/2.

The above ` intervals can be ordered to form a sequence (Ij)j∈[1..`] such that for

j ∈ [1. . `− 1] the endpoint of Ij is the initial point of Ij+1. Consequently,

diam v([0, 1]) ≤ 5n(C1b̃ε(v, v))1/2,

so

|v(x)| ≤ |v(y)|+ 5n(C1b̃ε(v, v))1/2, x, y ∈ [0, 1] ,

which implies

|v(x)| ≤ C2(̃bε(v, v) + ‖v‖2L2)1/2, x ∈ [0, 1] ,

where C2 = 1 + 5nC
1/2
1 . These estimates prove part (a) of the lemma. Now, let

M ∈ ]0,∞[ be arbitrary and for each ε ∈ ]0, ε0[ let βε be the maximum of all the

values

M

(
m(Γε)

inf
Γε

aε

)1/2

,

where Γε is any of the intervals [ζj−1,ε, ζ
′
j−1,ε], [ζ ′j−1,ε, ξ

′
j,ε], [ξ′j,ε, ξj,ε], j ∈ [1. . n].

For j ∈ [1. . n] Lemma 3.1 implies that

sup
v∈B̃ε,M

sup
x,y∈Kj,ε

|v(x)− v(y)| ≤ 3βε.
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Now Assumption 2.1 implies that βε → 0 as ε→ 0. This proves the second part

of the lemma. �

Lemma 3.4. Let (εm)m be a null sequence in ]0, ε0[. Let (um)m, (vm)m
be sequences in H1 such that um ∈ B̃εm,M and vm ∈ B̃εm,M ′ for some M ,

M ′ ∈ ]0,∞[ and all m ∈ N. Let (γj,m)j∈[1..n],m∈N be such that γj,m ∈ Kj,εm for

m ∈ N and j ∈ [1. . n]. Then

〈um, vm〉L2 −
n∑
j=1

Ljum(γj,m)vm(γj,m)→ 0, as m→∞.

Proof. For each m ∈ N we have∫ 1

0

umvm dx =

n∑
j=1

∫ xj

xj−1

umvm dx

=

n∑
j=1

∫ ζj−1,εm

xj−1

umvm dx+

n∑
j=1

∫
Kj,εm

umvm dx+

n∑
j=1

∫ xj

ξj,εm

umvm dx.

It follows from Lemma 3.3 that all functions um and vm are uniformly bounded

by a common constant C. Thus Assumption 2.1 implies that

(3.4)

n∑
j=1

∫ ζj−1,εm

xj−1

umvm dx+

n∑
j=1

∫ xj

ξj,εm

umvm dx→ 0, as m→∞.

For each j ∈ [1. . n],∫
Kj,εm

umvm dx = m(Kj,εm)um(γj,m)vm(γj,m)

+

∫
Kj,εm

(
umvm − um(γj,m)vm(γj,m)

)
dx.

For x ∈ Kj,εm we have

|um(x)vm(x)− um(γj,m)vm(γj,m)|

≤ |um(x)− um(γj,m)| · |vm(x)|+ |vm(x)− vm(γj,m)| · |um(γj,m)|

≤C(|um(x)− um(γj,m)|+ |vm(x)− vm(γj,m)|).

Again, Lemma 3.3 implies that

sup
x∈Kj,εm

(|um(x)− um(γj,m)|+ |vm(x)− vm(γj,m)|)→ 0, as m→∞.

Therefore

(3.5)

∫
Kj,εm

(
umvm − um(γj,m)vm(γj,m)

)
dx→ 0, as m→∞.

Moreover, it follows from Assumption 2.1 that m(Kj,εm)− Lj → 0, as m→∞,

for each j ∈ [1. . n]. This together with (3.4) and (3.5) implies the assertion of

the lemma. �
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Corollary 3.5. Let M ′ ∈ ]0,∞[ and (εm)m be a null sequence in ]0, ε0[.

Let (vm)m and (γj,m)m, j ∈ [1. . n], be sequences such that vm ∈ B̃εm,M ′ and

γj,m ∈ Kj,εm for m ∈ N and j ∈ [1. . n]. Then, for each j ∈ [1. . n],

〈ψj,εm , vm〉L2 − Ljvm(γj,m)→ 0, as m→∞.

Proof. Lemma 3.2 and the fact that the functions um = ψj,εm , j ∈ [1. . n],

m ∈ N, are nonnegative and bounded by 1 imply that um ∈ B̃εm,M for some

constant M ∈ ]0,∞[ and for all m ∈ N. Hence the assumptions of Lemma 3.4

are satisfied. Now that lemma implies that, for each j ∈ [1. . n],∫ 1

0

ψj,εmvm dx−
n∑
l=1

Llψj,εm(γl,m)vm(γl,m)→ 0, as m→∞.

The definition of the map ψj,εm , m ∈ N, implies that ψj,εm(γl,m) = 1 if j = l

and ψj,εm(γl,m) = 0 otherwise and so

n∑
l=1

Llψj,εm(γl,m)vm(γl,m) = Ljvm(γj,m)

and this completes the proof. �

Lemma 3.6. Let ε′2 ∈ ]0, ε0[ be as in Lemma 3.3. Then for every M ∈ ]0,∞[

there is an ε′3 = ε′3(M) ∈ ]0, ε′2] such that v /∈ W⊥ε for all v ∈ B̃ε,M with

‖v‖L2 = 1 and ε ∈ ]0, ε′3]. (Here, the orthogonal complement is taken with

respect to the L2-scalar product.)

Proof. Suppose the conclusion of the lemma does not hold. Then, for some

M ∈ ]0,∞[, there exists a null sequence (εm)m in ]0, ε′2] such that for each m ∈ N
there exists a vm ∈ B̃εm,M ∩W⊥εm with ‖vm‖L2 = 1. Thus 〈vm, ψj,εm〉L2 = 0 for

all m ∈ N and j ∈ [1. . n].

For each j ∈ [1. . n] choose γj ∈ ]xj−1, xj [ independently of m ∈ N. Then

there exists an m0 ∈ N such that γj ∈ Kj,εm for all j ∈ [1. . n] and m ≥ m0. Now

Corollary 3.5 implies that, for each j ∈ [1. . n],

vm(γj)→ 0, as m→∞

and so Lemma 3.3 implies that

vm(x)→ 0 as m→∞ for each x ∈ ]0, 1[ \
n−1⋃
j=1

{xj}.

Moreover, it follows from Lemma 3.3 that there exists an m1 ∈ N such that the

functions vm, for all m ≥ m1, are pointwise bounded by the same constant. This

implies that ∫ 1

0

v2
m dx→ 0 as m→∞.

However, this is a contradiction as
∫ 1

0
v2
m dx = 1 for all m ∈ N. �
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Lemma 3.7. The following statements hold:

(a) λn+1,ε →∞ as ε→ 0.

(b) There exists an ε′4 ∈ ]0, ε0[ and a C ′3 ∈ ]0,∞[ such that

λn,ε ≤ C ′3 for all ε ∈ ]0, ε′4].

Proof. For each positive integer p and ε ∈ ]0, ε0[ let Up,ε be the span of

the eigenfunctions ϕl,ε, for l ∈ [1. . p]. Moreover, let U0,ε = {0} ⊂ L2. If the

first assertion is not true, then there is a null sequence (εm)m in ]0, ε0[ such that

(λn+1,εm)m is bounded by some C ∈ ]0,∞[.

We claim that Un+1,εm ∩ W⊥εm = {0} for all m ∈ N large enough. If this

is not true, then there is a subsequence (ε1
m)m of (εm)m such that for each

m ∈ N there is a vm in Un+1,ε1m
∩ W⊥ε1m with ‖vm‖L2 = 1. It easily follows

that bε1m(vm, vm) ≤ C so, (as b̃ε1m(vm, vm) ≤ bε1m(vm, vm)), vm ∈ B̃ε1m,K for all

m ∈ N, where K2 = C + 1. However, this contradicts Lemma 3.6 and the claim

is proved.

The claim implies that n + 1 ≤ n, a contradiction which implies the first

assertion. Let D be the set of all nonnegative integers `1 such that, for some

ε̂ ∈ ]0, ε0[ the eigenvalue family (λ`1,ε)ε∈]0,ε̂] is bounded by some C1 ∈ ]0,∞[.

Let ` be the supremum of D if D is nonempty and ` = 0 otherwise. From what

we have proved so far, we have ` ≤ n. If ` < n, then U⊥`,ε ∩Wε 6= {0} for each

ε ∈ ]0, ε0[ and so there is a wε 6= 0 lying in U⊥`,ε∩Wε. It follows from Lemmas 3.2

and 3.3 that there exist a constant C ′ ∈ ]0,∞[ and an ε′ ∈ ]0, ε0[ such that

λ`+1,ε = inf
w∈Z\{0}, w∈U⊥`,ε

bε(w,w)

‖w‖2L2

≤ bε(wε, wε)

‖wε‖2L2

≤ b̃ε(wε, wε) + δ0wε(0)2 + δ1wε(1)2

‖wε‖2L2

≤ C ′

for all ε ∈ ]0, ε′]. This shows in particular, that D is nonempty. Moreover,

this also shows that ` + 1 ∈ D, a contradiction proving that ` = n. Since D is

nonempty and finite, we have ` ∈ D. This proves the second assertion. �

In the sequel

(3.6)
for each ε ∈ ]0, ε0[ fix an arbitrary L2-orthonormal sequence (ϕl,ε)l
such that ϕl,ε is an eigenfunction of Aε corresponding to λl,ε, l ∈ N.

Lemma 3.8. Let (εm)m be a null sequence in ]0, ε0[ and (γj,m)m be a (double)

sequence with γj,m ∈ Kj,εm , for m ∈ N and j ∈ [1. . n]. For each i, j ∈ [1. . n],

we then have

(a) 〈ψj,εm , ϕi,εm〉L2 − Ljϕi,εm(γj,m)→ 0 as m→∞.

(b)
n∑
j=1

Ljϕi,εm(γj,m)ϕk,εm(γj,m)→ δi,k as m→∞.

Proof. This follows from Lemma 3.7, Corollary 3.5 and Lemma 3.4. �
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Notation. For each ε ∈ ]0, ε0[, define Ψε : Wε → Rn by

Ψε(u) := û := (uj)j∈[1..n], for u =

n∑
j=1

ujψj,ε ∈Wε.

Consider the n× n matrix Bε = (bi,j,ε)
n
i,j=1 given by

bi,j,ε = 〈ψi,ε, ψj,ε〉L2 , for i, j ∈ [1. . n].

Assume that

(3.7)
(αj,ε)(j,ε)∈[1..n]×]0,ε0[ is an arbitrary family such that αj,ε ∈ Kj,ε, for

(j, ε) ∈ [1. . n]× ]0, ε0[.

Let ‖ · ‖L be the norm on Rn induced by the scalar product 〈 · , · 〉L. In what

follows 〈 · , · 〉 (respectively, ‖ · ‖) denotes the canonical inner product (respec-

tively, the induced norm) on Rn. Let a, b ∈ ]0,∞[ be such that

a‖z‖L ≤ ‖z‖ ≤ b‖z‖L, for all z ∈ Rn.

Lemma 3.9. Let ε′4 ∈ ]0, ε0[ be as in Lemma 3.7. There is an ε′5 ∈ ]0, ε′4]

such that for each ε ∈ ]0, ε′5], there are constants cε, Cε ∈ ]0,∞[ such that

cε‖Ψε(u)‖L ≤ ‖u‖L2 ≤ Cε‖Ψε(u)‖L, u ∈Wε.

Moreover, cε → 1, Cε → 1 as ε→ 0.

Proof. Let ε ∈ ]0, ε′4] and u =
n∑
j=1

uj,εψj,ε ∈Wε. Hence

∫ 1

0

u2 dx =

n∑
l,p=1

ul,εup,ε

∫ 1

0

ψl,εψp,ε dx =

n∑
l,p=1

ul,εup,ε〈ψl,ε, ψp,ε〉L2 = 〈Bεû, û〉.

Let (εm)m be an arbitrary null sequence in ]0, ε0[. For each m ∈ N and j ∈ [1. . n]

define γj,m = αj,εm and vm = ψj,εm . It follows as in the proof of Corollary 3.5

that there is a constant M ∈ ]0,∞[ such that vm ∈ B̃εm,M for all m ∈ N. Now

Corollary 3.5 implies that for each i, j ∈ [1. . n],

〈ψi,εm , ψj,εm〉L2 − Liψj,εm(αi,εm)→ 0, as m→∞

and so bi,j,εm = 〈ψi,εm , ψj,εm〉L2 → Liδi,j as m → ∞. Therefore, for each

i, j ∈ [1. . n],

(3.8) bi,j,ε = 〈ψi,ε, ψj,ε〉L2 → Liδi,j , as ε→ 0.

Recall that L = diag(L1, . . . , Ln). It follows from formula (3.8) that ‖Bε −
L‖L(Rn,Rn) → 0 as ε→ 0. Therefore,

(3.9) |〈Bεû, û〉 − 〈Lû, û〉| ≤ ‖Bε − L‖L(Rn,Rn)‖û‖2 ≤ b2‖Bε − L‖L(Rn,Rn)‖û‖2L.



646 M.C. Carbinatto — K.P. Rybakowski

Define βε := b2‖Bε − L‖L(Rn,Rn). Therefore βε → 0 as ε → 0. Therefore,

βε < 1 for some ε′5 ∈ ]0, ε′4] and all ε ∈ ]0, ε′5]. Moreover, it follows from (3.9)

that

(1− βε)‖û‖2L = 〈Lû, û〉 − βε‖û‖2L ≤ 〈Bεû, û〉 ≤ 〈Lû, û〉+ βε‖û‖2L = (1 + βε)‖û‖2L.

Define c2ε = 1− βε and C2
ε = 1 + βε for ε ∈ ]0, ε′5]. Thus

cε‖Ψε(u)‖L = cε‖û‖L ≤ ‖u‖L2 ≤ Cε‖û‖L = Cε‖Ψε(u)‖L,

with cε → 1, Cε → 1 as ε→ 0. �

Notation. Define the n×n matrix Gε = (gi,j,ε)
n
i,j=1 by gi,j,ε = 〈ϕi,ε, ψj,ε〉L2

for i, j ∈ [1. . n] and ε ∈ ]0, ε0[. Clearly,

(3.10) GεΨε(u) = (〈u, ϕi,ε〉L2)i∈[1..n], ε ∈ ]0, ε0[ , u ∈Wε.

Lemma 3.10. There exists an ε′6 ∈ ]0, ε′5] and for each k ∈ [1. . n] there exists

a family (vk,ε)ε∈]0,ε′6] such that vk,ε ∈Wε, ‖vk,ε‖L2 = 1 for ε ∈ ]0, ε′6] and

〈vk,ε, ϕi,ε〉 = 0 for i 6= k.

Moreover, if (3.7) holds, then vk,ε(αj,ε)− ϕk,ε(αj,ε)→ 0 as ε→ 0.

Proof. Let i, j ∈ [1. . n]. It follows from Corollary 3.5 that

〈ψj,ε, ϕi,ε〉L2 − Ljϕi,ε(αj,ε)→ 0, as ε→ 0.

Lemmas 3.7 and 3.3 imply that sup
ε∈]0,ε′4]

sup
x∈[0,1]

|ϕk,ε(x)| < ∞. Therefore for each

k ∈ [1. . n] we have

〈ψj,ε, ϕi,ε〉L2ϕk,ε(αj,ε)− Ljϕi,ε(αj,ε)ϕk,ε(αj,ε)→ 0, as ε→ 0

and so
n∑
j=1

〈ψj,ε, ϕi,ε〉L2ϕk,ε(αj,ε)−
n∑
j=1

Ljϕi,ε(αj,ε)ϕk,ε(αj,ε)→ 0, as ε→ 0.

Thus Lemma 3.8 implies that

(3.11)

n∑
j=1

〈ψj,ε, ϕi,ε〉L2ϕk,ε(αj,ε)→ δi,k, as ε→ 0.

Define the n × n matrix G̃ε = (g̃i,j,ε)
n
i,j=1 by g̃i,j,ε = ϕj,ε(αi,ε) for i, j ∈ [1. . n]

and ε ∈ ]0, ε0[. Since

n∑
j=1

〈ψj,ε, ϕi,ε〉L2ϕk,ε(αj,ε) =

n∑
j=1

gi,j,εg̃j,k,ε

for all i, k ∈ [1. . n], it follows that ‖GεG̃ε − Id ‖L(Rn,Rn) → 0 as ε→ 0, where Id

is the identity matrix. Hence

detGε · det G̃ε → 1, as ε→ 0.
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Since the entries of the matrices Gε and G̃ε are uniformly bounded in ε ∈ ]0, ε′4],

it follows that there exist a constant C ∈ ]0,∞[ and an ε′6 ∈ ]0, ε′5] such that

detGε ≥ C, for all ε ∈ ]0, ε′6].

This implies by the formula for inverse matrices that

(3.12)
Gε : Rn → Rn is bijective and there is a constant C ′4 ∈ ]0,∞[ such

that ‖G−1
ε ‖op ≤ C ′4, for all ε ∈ ]0, ε′6],

where ‖·‖op is operator norm with respect to the norm ‖·‖L in Rn. In particular,

given k ∈ [1. . n] and ε ∈ ]0, ε′6] there exists a unique ûε = ûk,ε ∈ Rn with

Gεûε = ek, where ek is the k-th vector of the canonical basis of Rn. Set

ũε = ũk,ε = (ϕk,ε(αj,ε))j∈[1..n].

It follows from (3.11) that Gεũε → ek as ε→ 0 and so Gε(ûε− ũε)→ 0 as ε→ 0.

Notice that

‖ûε − ũε‖L ≤ ‖G−1
ε ‖op‖Gε(ûε − ũε)‖L ≤ C ′4‖Gε(ûε − ũε)‖L.

Therefore ‖ûε − ũε‖L → 0 as ε → 0. Notice that Lemma 3.8 implies that

‖ũε‖L → 1 as ε → 0. Hence ‖ûε‖L → 1 as ε → 0. This and Lemma 3.9 imply

that ‖uε‖L2 → 1 as ε→ 0, where uε = Ψ−1
ε (ûε). Since

ûε
‖uε‖L2

− ûε =
1− ‖uε‖L2

‖uε‖L2

ûε,

it follows that
ûε
‖uε‖L2

− ûε → 0, as ε→ 0

and so
ûε
‖uε‖L2

− ũε → 0, as ε→ 0.

Set vε = vk,ε = uε/‖uε‖L2 . It follows that

〈vε, ϕi,ε〉 =

〈 n∑
j=1

ûε,j
‖uε‖L2

ψj,ε, ϕi,ε

〉
=

1

‖uε‖L2

n∑
j=1

ûε,j〈ψj,ε, ϕi,ε〉 =
1

‖uε‖L2

δi,k.

In particular, 〈vε, ϕi,ε〉 = 0 for i 6= k. Moreover, for each j ∈ [1. . n]

vε(αj,ε) =
1

‖uε‖L2

ûε,j .

Hence vε(αj,ε)− ũε,j → 0 as ε→ 0 and so vε(αj,ε)− ϕk,ε(αj,ε)→ 0 as ε→ 0.�

Lemma 3.11. Let ε′4 ∈ ]0, ε0[ be as in Lemma 3.7 and let (uε)ε∈]0,ε′4] be such

that uε ∈Wε and ‖uε‖L2 = 1 for each ε ∈ ]0, ε′4]. Then

bε(uε, uε)− b0(Ψε(uε),Ψε(uε))→ 0, as ε→ 0.
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Proof. Set ûε = Ψε(uε), where uε =
n∑
j=1

ûε,jψj,ε ∈ Wε. Thus, ûε =

(ûε,j)j∈[1..n]. We have

bε(uε, uε) =

∫ ζ0,ε

0

aε · (u′ε)2 dx+

n−1∑
j=1

∫ ζj,ε

ξj,ε

aε · (u′ε)2 dx

+

∫ 1

ξn,ε

aε · (u′ε)2 dx+ δ0uε(0)2 + δ1uε(1)2

≤ sup
[0,ζ0,ε]

aε

∫ ζ0,ε

0

(u′ε)
2 dx+

n−1∑
j=1

sup
[ξj,ε,ζj,ε]

aε

∫ ζj,ε

ξj,ε

(u′ε)
2 dx

+ sup
[ξn,ε,1]

aε

∫ 1

ξn,ε

(u′ε)
2 dx+ δ0uε(0)2 + δ1uε(1)2

= sup
[0,ζ0,ε]

aε

∫ ζ0,ε

0

(ûε,1ψ
′
1,ε)

2 dx

+

n−1∑
j=1

sup
[ξj,ε,ζj,ε]

aε

∫ ζj,ε

ξj,ε

(ûε,jψ
′
j,ε + ûε,j+1ψ

′
j+1,ε)

2 dx

+ sup
[ξn,ε,1]

aε

∫ 1

ξn,ε

(ûε,nψ
′
n,ε)

2 dx+ δ0uε(0)2 + δ1uε(1)2.

Notice that

ψ′1,ε(x) =
ρ

ρζ0,ε + (1− ρ)aε(0)
for x ∈ [0, ζ0,ε],

ψ′j,ε(x) = − 1

ζj,ε − ξj,ε
for x ∈ [ξj,ε, ζj,ε] and j ∈ [1. . n− 1],

ψ′j+1,ε(x) =
1

ζj,ε − ξj,ε
for x ∈ [ξj,ε, ζj,ε] and j ∈ [1. . n− 1]

and

ψ′n,ε(x) = − σ

σ(1− ξn,ε) + (1− σ)aε(1)
for x ∈ [ξn,ε, 1].

Moreover,

uε(0) = ûε,1ψ1,ε(0) = ûε,1

(
1− ρζ0,ε

ρζ0,ε + (1− ρ)aε(0)

)
= ûε,1

(1− ρ)aε(0)

ρζ0,ε + (1− ρ)aε(0)

and

uε(1) = ûε,n
(1− σ)aε(1)

σ(1− ξn,ε) + (1− σ)aε(1)
.

Therefore bε(uε, uε) ≤ cε, where

cε =

sup
[0,ζ0,ε]

aε

ζ0,ε

ρ2

(ρ+ (1− ρ)aε(0)/ζ0,ε)2
û2
ε,1 +

n−1∑
j=1

sup
[ξj,ε,ζj,ε]

aε

ζj,ε − ξj,ε
(ûε,j+1 − ûε,j)2
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+

sup
[ξn,ε,1]

aε

1− ξn,ε
σ2

(σ + (1− σ)aε(1)/(1− ξn,ε))2
û2
ε,n

+ δ0

(
(1− ρ)aε(0)/ζ0,ε

ρ+ (1− ρ)aε(0)/ζ0,ε

)2

û2
ε,1 + δ1

(
(1− σ)aε(1)/(1− ξn,ε)

σ + (1− σ)aε(1)/(1− ξn,ε)

)2

û2
ε,n

= (τ0 + h2,ε)

(
ρ2

(ρ+ (1− ρ)τ0)2
+ h3,ε

)
û2
ε,1 +

n−1∑
j=1

(τj + h1,j,ε)(ûε,j+1 − ûε,j)2

+ (τn + h4,ε)

(
σ2

(σ + (1− σ)τn)2
+ h5,ε

)
û2
ε,n

+ δ0

(
(1− ρ)2τ2

0

(ρ+ (1− ρ)τ0)2
+ h6,ε

)
û2
ε,1 + δ1

(
(1− σ)2τ2

n

(σ + (1− σ)τn)2
+ h7,ε

)
û2
ε,n

so

cε =
τ0ρ

2

(ρ+ (1− ρ)τ0)2
û 2
ε,1 +

n−1∑
j=1

τj(ûε,j+1 − ûε,j)2 +
τnσ

2

(σ + (1− σ)τn)2
û 2
ε,n

+
δ0(1− ρ)2τ2

0

(ρ+ (1− ρ)τ0)2
û2
ε,1 +

δ1(1− σ)2τ2
n

(σ + (1− σ)τn)2
û 2
ε,n + h8,ε

= τ̃0û
2
ε,1 +

n−1∑
j=1

τj(ûε,j+1 − ûε,j)2 + τ̃nû
2
ε,n + h8,ε,

with h1,j,ε → 0, j ∈ [1. . n− 1], and hi,ε → 0, i ∈ [2. . 8], as ε → 0. This

follows from Assumption 2.1, the hypothesis that ‖uε‖L2 = 1, for ε ∈ ]0, ε′4], and

Lemma 3.9. Similarly, working with ‘inf’ instead of ‘sup’, we show that

bε(uε, uε) ≥ τ̃0û 2
ε,1 +

n−1∑
j=1

τj(ûε,j+1 − ûε,j)2 + τ̃nû
2
ε,n + h9,ε,

with h9,ε → 0 as ε→ 0. Therefore

(3.13) bε(uε, uε)−
(
τ̃0û

2
ε,1 +

n−1∑
j=1

τj(ûε,j+1 − ûε,j)2 + τ̃nû
2
ε,n

)
→ 0, as ε→ 0.

Now estimate (3.13) and the definition of b0 and ûε imply the assertion. �

Corollary 3.12. Let ε′6 ∈ ]0, ε0[ be as in Lemma 3.10 and k ∈ [1. . n] be

arbitrary. Then

{ bε(u, u) | u ∈Wε, ‖u‖L2 = 1, u ∈ U⊥k−1,ε } 6= ∅,

{ b0(Ψε(u),Ψε(u)) | u ∈Wε, ‖u‖L2 = 1, u ∈ U⊥k−1,ε } 6= ∅,

for all ε ∈ ]0, ε′6]. Moreover, the following holds:

inf{bε(u, u) | u ∈Wε, ‖u‖L2 = 1, u ∈ U⊥k−1,ε}

− inf{b0(Ψε(u),Ψε(u)) | u ∈Wε, ‖u‖L2 = 1, u ∈ U⊥k−1,ε} → 0, as ε→ 0. �
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Lemma 3.13. Let ε′6 ∈ ]0, ε0[ and for k ∈ [1. . n] let the family (vk,ε)ε∈]0,ε′6]

be as in Lemma 3.10. Then

λk,ε − inf{ b0(Ψε(u),Ψε(u)) | u ∈Wε, ‖u‖L2 = 1, u ∈ U⊥k−1,ε } → 0,

as ε→ 0, and λk,ε − bε(vk,ε, vk,ε)→ 0, as ε→ 0.

Proof. Lemma 3.10 implies that { b0(Ψε(u),Ψε(u)) | u ∈ Wε, ‖u‖L2 = 1,

u ∈ U⊥k−1,ε } 6= ∅ for all ε ∈ ]0, ε′6]. It follows from Lemma 3.10, choosing

first αj,ε = ξj,ε for (j, ε) ∈ [1. . n] × ]0, ε0[ and then αj,ε = ζj−1,ε for (j, ε) ∈
[1. . n]× ]0, ε0[, that

(3.14)
vk,ε(ξj,ε)− ϕk,ε(ξj,ε) → 0 as ε→ 0, j ∈ [1. . n],

vk,ε(ζj,ε)− ϕk,ε(ζj,ε) → 0 as ε→ 0, j ∈ [0. . n− 1].

Thus

bε(ϕk,ε, ϕk,ε) ≥
∫ ζ0,ε

0

aε · (ϕ′k,ε)2 dx+

n−1∑
j=1

∫ ζj,ε

ξj,ε

aε · (ϕ′k,ε)2 dx

+

∫ 1

ξn,ε

aε · (ϕ′k,ε)2 dx+ δ0ϕk,ε(0)2 + δ1ϕk,ε(1)2

≥ inf
[0,ζ0,ε]

aε

∫ ζ0,ε

0

(ϕ′k,ε)
2 dx+

n−1∑
j=1

inf
[ξj,ε,ζj,ε]

aε

∫ ζj,ε

ξj,ε

(ϕ′k,ε)
2 dx

+ inf
[ξn,ε,1]

aε

∫ 1

ξn,ε

(ϕ′k,ε)
2 dx+ δ0ϕk,ε(0)2 + δ1ϕk,ε(1)2.

Thus

bε(ϕk,ε, ϕk,ε) ≥
inf

[0,ζ0,ε]
aε

ζ0,ε

(∫ ζ0,ε

0

ϕ′k,ε dx

)2

+

n−1∑
j=1

inf
[ξj,ε,ζj,ε]

aε

ζj,ε − ξj,ε

(∫ ζj,ε

ξj,ε

ϕ′k,ε dx

)2

+

inf
[ξn,ε,1]

aε

1− ξn,ε

(∫ 1

ξn,ε

ϕ′k,ε dx

)2

+ δ0ϕk,ε(0)2 + δ1ϕk,ε(1)2

=

inf
[0,ζ0,ε]

aε

ζ0,ε

(
ϕk,ε(ζ0,ε)− ϕk,ε(0)

)2
+

n−1∑
j=1

inf
[ξj,ε,ζj,ε]

aε

ζj,ε − ξj,ε
(
ϕk,ε(ζj,ε)− ϕk,ε(ξj,ε)

)2
+

inf
[ξn,ε,1]

aε

1− ξn,ε
(
ϕk,ε(1)− ϕk,ε(ξn,ε)

)2
+ δ0ϕk,ε(0)2 + δ1ϕk,ε(1)2.
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Define h1,j,ε, j ∈ [1. . n], h2,j,ε, j ∈ [0. . n− 1] h3,j,ε, j ∈ [1. . n− 1], h4,ε and h5,ε

such that ϕk,ε(ξj,ε) = vk,ε(ξj,ε) + h1,j,ε, ϕk,ε(ζj,ε) = vk,ε(ζj,ε) + h2,j,ε,

inf
[ξj,ε,ζj,ε]

aε

ζj,ε − ξj,ε
= τj + h3,j,ε,

inf
[0,ζ0,ε]

aε

ζ0,ε
= τ0 + h4,ε,

inf
[ξn,ε,1]

aε

1− ξn,ε
= τn + h5,ε.

Assumption 2.1 and (3.14) imply that h1,j,ε → 0, h2,j,ε → 0, h3,j,ε → 0, h4,ε → 0

and h5,ε → 0 as ε→ 0. Therefore

bε(ϕk,ε, ϕk,ε) ≥ (τ0 + h4,ε)(vk,ε(ζ0,ε) + h2,0,ε − ϕk,ε(0))2

+

n−1∑
j=1

(τj + h3,j,ε)(vk,ε(ζj,ε) + h2,j,ε − vk,ε(ξj,ε)− h1,j,ε)
2

+ (τn + h5,ε)(ϕk,ε(1)− vk,ε(ξn,ε)− h1,n,ε)
2 + δ0ϕk,ε(0)2 + δ1ϕk,ε(1)2

= τ0(vk,ε(ζ0,ε)− ϕk,ε(0))2 +

n−1∑
j=1

τj(vk,ε(ζj,ε)− vk,ε(ξj,ε))2

+ τn(ϕk,ε(1)− vk,ε(ξn,ε))2 + δ0ϕk,ε(0)2 + δ1ϕk,ε(1)2 + h6,ε,

where h6,ε → 0 as ε → 0. Notice that if ρ = 1, then δ0 = 0 and vk,ε(0) =

ϕk,ε(0) = 0 and if σ = 1, then δ1 = 0 and vk,ε(1) = ϕk,ε(1) = 0.

Suppose ρ < 1, then δ0 = ρ/(1− ρ). Notice that the function

α 7→ τ0(vk,ε(ζ0,ε)− α)2 +
ρ

1− ρ
α2

assumes its minimum at the point αε = τ0(1− ρ)vk,ε(ζ0,ε)/(ρ+ τ0(1− ρ)). Since

vk,ε(0) = vk,ε(ζ0,ε)

(
1− ρζ0,ε

ρζ0,ε + (1− ρ)aε(0)

)
= vk,ε(ζ0,ε)

(1− ρ)aε(0)/ζ0,ε
ρ+ (1− ρ)aε(0)/ζ0,ε

,

it follows from Assumption 2.1 and Lemma 3.10 that αε = vk,ε(0) + h7,ε, with

h7,ε → 0 as ε→ 0. Therefore,

τ0(vk,ε(ζ0,ε)− ϕk,ε(0))2 + δ0ϕk,ε(0)2 ≥ τ0(vk,ε(ζ0,ε)− αε)2 + δ0α
2
ε

= τ0(vk,ε(ζ0,ε)− vk,ε(0))2 + δ0vk,ε(0)2 + h8,ε,

with h8,ε → 0 as ε→ 0. Similarly if σ < 1 then

τn(vk,ε(ξn,ε)−ϕk,ε(1))2 +δ1ϕk,ε(1)2 ≥ τn(vk,ε(ξn,ε)−vk,ε(1))2 +δ1vk,ε(1)2 +h9,ε,

with h9,ε → 0 as ε→ 0. Thus in all cases we have,

bε(ϕk,ε, ϕk,ε) ≥ τ0(vk,ε(ζ0,ε)− ϕk,ε(0))2 +

n−1∑
j=1

τj(vk,ε(ζj,ε)− vk,ε(ξj,ε))2

+ τn(ϕk,ε(1)− vk,ε(ξn,ε))2 + δ0ϕk,ε(0)2 + δ1ϕk,ε(1)2 + h6,ε

≥ τ0(vk,ε(ζ0,ε)− vk,ε(0))2 +

n−1∑
j=1

τj(vk,ε(ζj,ε)− vk,ε(ξj,ε))2



652 M.C. Carbinatto — K.P. Rybakowski

+ τn(vk,ε(ξn,ε)− vk,ε(1))2 + δ0vk,ε(0)2 + δ1vk,ε(1)2 + h10,ε

= τ̃0vk,ε(ζ0,ε)
2 +

n−1∑
j=1

τj(vk,ε(ζj,ε)− vk,ε(ξj,ε))2 + τ̃nvk,ε(ξn,ε)
2 + h11,ε

= τ̃0v̂
2
k,ε,1 +

n−1∑
j=1

τj(v̂k,ε,j+1 − v̂k,ε,j)2 + τ̃nv̂
2
k,ε,n + h11,ε,

with h10,ε → 0 and h11,ε → 0 as ε→ 0. Here, we write v̂k,ε = Ψε(vk,ε) and v̂k,ε,l
is the l-th component of v̂k,ε ∈ Rn. By Lemma 3.11,

τ̃0v̂
2
k,ε,1 +

n−1∑
j=1

τj(v̂k,ε,j+1 − v̂k,ε,j)2 + τ̃nv̂
2
k,ε,n = b0(Ψε(vk,ε),Ψε(vk,ε))

= bε(vk,ε, vk,ε) + h12,ε

with h12,ε → 0 as ε→ 0. Thus,

(3.15) bε(ϕk,ε, ϕk,ε)− h13,ε ≥ bε(vk,ε, vk,ε)

with h13,ε → 0 as ε → 0. For ε ∈ ]0, ε0[ small enough and for all k ∈ [1. . n] we

have

bε(ϕk,ε, ϕk,ε) = inf{ bε(ϕ,ϕ) | ϕ ∈ Z, ‖ϕ‖L2 = 1, ϕ ∈ U⊥k−1,ε }

≤ inf{ bε(u, u) | u ∈Wε, ‖u‖L2 = 1, u ∈ U⊥k−1,ε }.

It follows from (3.15) that

bε(ϕk,ε, ϕk,ε)− h13,ε ≥ bε(vk,ε, vk,ε)

≥ inf{ bε(u, u) | u ∈Wε, ‖u‖L2 = 1, u ∈ U⊥k−1,ε }.

Since bε(ϕk,ε, ϕk,ε) = λk,ε, we conclude that

λk,ε − inf{ bε(u, u) | u ∈Wε, ‖u‖L2 = 1, u ∈ U⊥k−1,ε } → 0, as ε→ 0,

and λk,ε−bε(vk,ε, vk,ε)→ 0, as ε→ 0. Now Corollary 3.12 completes the proof.�

Lemma 3.14. Let ε′6 ∈ ]0, ε0[ be as in Lemma 3.10. Let (εm)m be a null

sequence in ]0, ε′6] and suppose that there exists a sequence (zl)l∈[1..n] in Rn such

that for each l ∈ [1. . n] and j ∈ [1. . n],

sup
x∈Kj,εm

|ϕl,εm(x)− zl,j | → 0, as m→∞.

Here zl = (zl,j)j∈[1..n] ∈ Rn. Then (zl)l∈[1..n] is an 〈 · , · 〉L-orthonormal se-

quence. Define Y0 = {0} ⊂ Rn and for each p ∈ [1. . n], let Yp be the span of the

vectors zl, for l ∈ [1. . p]. Moreover, let Y ⊥p , p ∈ [0. . n], be the 〈 · , · 〉L-orthogonal
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complement of Yp. Then, for each k ∈ [1. . n],

(3.16) inf{ b0(Ψεm(u),Ψεm(u)) | u ∈Wεm , ‖u‖L2 = 1, u ∈ U⊥k−1,εm }

− inf{ b0(y, y) | y ∈ Rn, ‖y‖L = 1 and y ∈ Y ⊥k−1 } → 0, as m→∞.

Moreover, λk,εm → b0(zk, zk), as m→∞.

Proof. Let k, j ∈ [1. . n]. It follows that

(3.17) ϕk,εm(αj,εm)→ zk,j , as m→∞.

Lemma 3.8 part (b) with γj,m = αj,εm , for j ∈ [1. . n] and m ∈ N, implies that

‖zk‖L = 1 and 〈zk, zl〉L = 0 for all k, l ∈ [1. . n] with k 6= l. Therefore (zl)l∈[1..n]

is an 〈 · , · 〉L-orthonormal sequence.

Now let k ∈ [1. . n] be arbitrary. For each m ∈ N define

Em = { y ∈ Rn | ‖y‖L = 1 and y ∈ Y ⊥k−1 },

Ẽm = { ỹ ∈ Rn | ∃ u ∈Wεm , ‖u‖L2 = 1, u ∈ U⊥k−1,εm and ỹ = Ψεm(u) }.

Note that all these sets are nonempty. It is clear that the (constant) family

(Em)m∈N is bounded. Lemma 3.9 implies that the family (Ẽm)m∈N is also

bounded. Notice that the map F : Rn → R, y 7→ b0(y, y) is bounded below

and Lipschitzian on bounded subset of Rn.

Thus, in order to establish (3.16), we only have to show that

(3.18)

for each (ỹm)m ∈
∏
m∈N

Ẽm there is a (ym)m ∈
∏
m∈N

Em such that

ỹm − ym → 0 as m → ∞ and, conversely, that for each (ym)m ∈∏
m∈N

Em there is a (ỹm)m ∈
∏
m∈N

Ẽm such that ỹm − ym → 0 as

m→∞.

Consider first the case k = 1. In this case for each m ∈ N

Em = { y ∈ Rn | ‖y‖L = 1 },

Ẽm = { ỹ ∈ Rn | there exists a u ∈Wεm , ‖u‖L2 = 1 and ỹ = Ψεm(u) }.

Let (ỹm)m ∈
∏
m∈N

Ẽm. Then, for each m ∈ N, there is a um ∈ Wεm with

‖um‖L2 = 1 and ỹm = Ψεm(um). It follows that ỹm 6= 0.

Since ‖um‖L2 = 1, it follows from Lemma 3.9 that ‖Ψεm(um)‖L → 1, as

m→∞ and so ‖ỹm‖L → 1, as m→∞. Set ym = ỹm/‖ỹm‖L, for m ∈ N. Hence,

(ym)m ∈
∏
m∈N

Em and

(3.19) ym − ỹm → 0, as m→∞,

proving the first half of (3.18). Conversely, let (ym)m ∈
∏
m∈N

Em. Then, for each

m ∈ N, ym ∈ Rn with ‖ym‖L = 1. Let wm = Ψ−1
εm(ym), m ∈ N. It follows that

wm 6= 0.
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Since ‖ym‖L = 1, it follows from Lemma 3.9 that ‖wm‖L2 → 1 as m→∞.

For each m∈N define um=wm/‖wm‖L2 . It follows that um∈Wεm , ‖um‖L2 =1.

Set ỹm = Ψεm(um). Then

ỹm − ym =
1

‖wm‖L2

ym − ym, m ∈ N,

and this implies that

(3.20) ỹm − ym → 0, as m→∞,

proving the second half of (3.18). This proves (3.18) and thus (3.16) for k = 1.

Now let k ∈ [2. . n]. Let (ỹm)m ∈
∏
m∈N Ẽm. Then, for each m ∈ N there is

a um ∈Wεm with ‖um‖L2 = 1, um ∈ U⊥k−1,εm
and ỹm = Ψεm(um). Define

ŷm = ỹm −
k−1∑
l=1

〈Ψεm(um), zl〉Lzl.

Since (zl)l∈[1..k−1] is an orthonormal basis of Yk−1 with respect to the inner

product 〈 · , · 〉L, it follows that ŷm ∈ Y ⊥k−1. Moreover,

‖ŷm − ỹm‖2L =

k−1∑
l=1

|〈Ψεm(um), zl〉L|2.

Now, for l ∈ [1. . k − 1] Lemma 3.4 with γj,m = αj,εm , for j ∈ [1. . n] and m ∈ N
implies that

〈um, ϕl,εm〉L2 −
n∑
j=1

Lj(Ψεm(um))jϕl,εm(αj,εm)→ 0, as m→∞.

Since 〈um, ϕl,εm〉L2 = 0 and for j ∈ [1. . n], ϕl,εm(αj,εm) − zl,j → 0, as m → ∞,

it follows that
n∑
j=1

Lj(Ψεm(um))jzl,j → 0, as m→∞

so 〈Ψεm(um), zl〉L → 0, as m → ∞. Thus ‖ŷm − ỹm‖2L → 0, as m → ∞. Since

‖um‖L2 = 1, it follows from Lemma 3.9 that ‖Ψεm(um)‖L → 1, as m→∞ and

so ‖ỹm‖L → 1, as m → ∞. Therefore, ‖ŷm‖L → 1, as m → ∞. In particular,

ŷm 6= 0 for some m0 ∈ N and all m ≥ m0. Set ym = ŷm/‖ŷm‖L, if m ≥ m0 and

ym = ym0
otherwise. Hence, (ym)m ∈

∏
m∈N

Em and

(3.21) ym − ỹm → 0, as m→∞,

proving the first half of (3.18).

Now let (ym)m ∈
∏
m∈N

Em be arbitrary. Then for each m ∈ N, ym ∈ Rn with

‖ym‖L = 1 and ym ∈ Y ⊥k−1.

For each m ∈ N, let %m be the vector in Rn such that ρm,l = 0 for l ∈
[1. . k − 1] and ρm,l = 〈Ψ−1

εm(ym), ϕl,εm〉L2 , for l ∈ [k. . n].
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Set wm = Ψ−1
εm(G−1

εm(%m)), m ∈ N. Thus Gεm(Ψεm(wm)) = %m, m ∈ N. On

the other hand, in view of (3.10), for each l ∈ [1. . n] we have (Gεm(Ψεm(wm)))l =

〈wm, ϕl,εm〉L2 . Therefore 〈wm, ϕl,εm〉L2 = 0 for l ∈ [1. . k − 1] and

〈wm, ϕl,εm〉L2 = 〈Ψ−1
εm(ym, ), ϕl,εm〉L2 , for l ∈ [k. . n].

This implies that wm ∈ U⊥k−1,εm
.

In order to show that Ψεm(wm)− ym → 0 as m→∞ it is enough, by (3.12),

to prove that Gεm(Ψεm(wm) − ym) → 0 as m→∞. Notice that Gεm(ym) =

Gεm(Ψεm(Ψ−1
εm(ym))) so

(Gεm(ym))l = 〈Ψ−1
εm(ym), ϕl,εm〉L2 , for l ∈ [1. . n].

Thus (Gεm(Ψεm(wm)− ym))l = 0 for l ∈ [k. . n]. For l ∈ [1. . k − 1] we have

(Gεm(Ψεm(wm)− ym))l = 0− 〈Ψ−1
εm(ym), ϕl,εm〉L2

and

〈Ψ−1
εm(ym), ϕl,εm〉L2 −

n∑
j=1

Lj(Ψεm(Ψ−1
εm(ym)))jϕl,εm(αj,εm)→ 0, as m→∞.

Since ϕl,εm(αj,εm)→ zl,j as m→∞ and ‖ym‖L = 1, it follows that

n∑
j=1

Lj(Ψεm(Ψ−1
εm(ym)))jϕl,εm(αj,εm)−

n∑
j=1

Ljym,jzl,j → 0, as m→∞.

Now
n∑
j=1

Ljym,jzl,j = 〈ym, zl〉L = 0. Therefore, 〈Ψ−1
εm(ym), ϕl,εm〉L2 → 0 as

m→∞. We conclude that Ψεm(wm)− ym → 0 as m→∞.

Since ‖ym‖L = 1, it follows that ‖Ψεm(wm)‖L → 1 as m → ∞. And this

implies that ‖Ψ−1
εm(Ψεm(wm))‖L2 → 1 as m→∞. Thus ‖wm‖L2 → 1 as m→∞.

In particular, wm 6= 0 for some m0 ∈ N and all m ≥ m0.

For m ≥ m0 define um = wm/‖wm‖L2 and for m < m0 let um be an arbitrary

element of Wεm ∩ U⊥k−1,εm
with ‖um‖L2 = 1 (e.g. um = vk,εm). It follows that

um ∈ Wεm , ‖um‖L2 = 1, um ∈ U⊥k−1,εm
for m ∈ N. Set ỹm = Ψεm(um). Then,

for m ≥ m0,

ỹm− ym = Ψεm

(
wm
‖wm‖L2

)
− ym =

(
Ψεm(wm)

‖wm‖L2

−Ψεm(wm

)
+ (Ψεm(wm)− ym)

and this implies that

(3.22) ỹm − ym → 0, as m→∞,

proving the second half of (3.18). This proves (3.18) and thus (3.16).

By estimate (3.17) and Lemma 3.10 together with the definition of Ψε we

have, for j ∈ [1. . n]

(Ψεm(vk,εm))j → zk,j , as m→∞.
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Hence, b0(Ψεm(vk,εm),Ψεm(vk,εm)) − b0(zk, zk) → 0, as m → ∞. This together

with Lemma 3.11 implies that

bεm(vk,εm , vk,εm)− b0(zk, zk)→ 0, as m→∞.

Now, Lemma 3.13 implies that

λk,εm − b0(zk, zk)→ 0, as m→∞.

The proof is complete. �

Lemma 3.15. Let (εm)m be a null sequence in ]0, ε0[ and suppose that there

exists a sequence (zl)l∈[1..n] in Rn such that, for all l ∈ [1. . n] and j ∈ [1. . n],

sup
x∈Kj,εm

|ϕl,εm(x)− zl,j | → 0, as m→∞.

For each k ∈ [1. . n] consider the following statement (Pk):

(Pk) For each l ∈ [1. . k], zl is an eigenvector corresponding to λl,0.

Then (Pk) holds for each k ∈ [1. . n]. Moreover, for each k ∈ [1. . n],

λk,εm → λk,0, as m→∞.

Proof. Let k ∈ [1. . n]. Lemma 3.13 implies that

(3.23)

lim
m→∞

(
λk,εm − inf{ b0(Ψεmu,Ψεmu) | u ∈Wεm , ‖u‖L2 = 1, u ∈ U⊥k−1,εm }

)
= 0.

Now the estimates (3.16) and (3.23) imply that

λk,εm − inf{ b0(y, y) | y ∈ Rn, ‖y‖L = 1, y ∈ Y ⊥k−1 } → 0, as m→∞.

Therefore, Lemma 3.14 implies

(3.24) b0(zk, zk) = inf{ b0(y, y) | y ∈ Rn, ‖y‖L = 1, y ∈ Y ⊥k−1 }.

Now let k = 1. Then inf{ b0(y, y) | y ∈ Rn, ‖y‖L = 1 } = λ1,0. Esti-

mate (3.24) implies that b0(z1, z1) = λ1,0. It follows that z1 is an eigenvector

corresponding to λ1,0. Thus (P1) holds.

Let k ∈ [2. . n] be such that (Pk−1) holds. This implies that

λk,0 = inf{ b0(y, y) | y ∈ Rn, ‖y‖L = 1, y ∈ Y ⊥k−1 }.

Moreover, estimate (3.24) implies that b0(zk, zk) = λk,0. Therefore zk is an

eigenvector corresponding to λk,0. Thus (Pk) holds for all k ∈ [1. . n] and the

lemma is proved. �

Lemma 3.16. For every null sequence (εm)m in ]0, ε0[ there are a subsequence

(ε1
m)m of (εm)m and a sequence (zl)l∈[1..n] in Rn such that, for each l ∈ [1. . n]

and j ∈ [1. . n],

sup
x∈Kj,ε1m

|ϕl,ε1m(x)− zl,j | → 0, as m→∞.
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Proof. Since sup
m∈N

sup
x∈[0,1]

|ϕl,εm(x)| < ∞ for each l ∈ [1. . n], there exists

a subsequence (ε1
m)m of (εm)m and zl = (zl,j)j∈[1..n] ∈ Rn such that for each

l, j ∈ [1. . n]

(3.25) ϕl,ε1m(αj,ε1m)→ zl,j , as m→∞.

Now estimate (3.25) and Lemma 3.3 imply that, for each l, j ∈ [1. . n],

sup
x∈Kj,ε1m

|ϕl,ε1m(x)− zl,j | → 0, as m→∞. �

Corollary 3.17. For each null sequence (εm)m in ]0, ε0[ there exist a sub-

sequence (ε1
m)m of (εm)m and an 〈 · , · 〉L-orthonormal sequence (zl)l∈[1..n] such

that, for each l ∈ [1. . n], zl is an eigenvector of A0 corresponding to λl,0 and

such that for each j ∈ [1. . n]

sup
x∈Kj,ε1m

|ϕl,ε1m(x)− zl,j | → 0, as m→∞,

where zl,j is the j-th component of the vector zl.

Proof. This follows from Lemma 3.16, Lemma 3.14 and statement (Pn)

from Lemma 3.15. �

Proof of Theorem 2.6. Notice that part (a) of the theorem was estab-

lished in Lemma 3.7.

To prove part (c) fix an arbitrary L-orthonormal sequence (ϕl,0)l∈[1..n] in Rn

such that ϕl,0 is an eigenvector of A0 corresponding to λl,0. Fix l ∈ [1. . n]. There

exists a jl ∈ [1. . n] such that ϕl,0,jl 6= 0. Define ϕ̂l,0 = νlϕl,0, where νl = 1 if

ϕl,0,jl > 0 and νl = −1 if ϕl,0,jl < 0.

We claim that there exists an ε̂l ∈ ]0, ε0[ such that ϕl,ε(ζjl,ε) 6= 0 for all

ε ∈ ]0, ε̂l[. Indeed, suppose the claim does not hold. Then there exists a null

sequence (εm)m in ]0, ε0[ such ϕl,εm(ζjl,εm) = 0 for each m ∈ N. It follows

from Corollary 3.17 that there exist a subsequence (ε1
m)m of (εm)m and an

〈 · , · 〉L-orthonormal sequence (zk)k∈[1..n] such that, for each k ∈ [1. . n], zk is an

eigenvector of A0 corresponding to λk,0 and such that for each j ∈ [1. . n]

sup
x∈Kj,ε1m

|ϕk,ε1m(x)− zk,j | → 0, as m→∞,

so, in particular, 0 ≡ ϕl,εm(ζjl,εm) → zl,jl as m → ∞. Thus zl,jl = 0 a contra-

diction, as zl = ±ϕl,0. This proves the claim. Set ε̂ = min
l∈[1..n]

ε̂l.

Let ε ∈ ]0, ε0[. Define ϕ̂l,ε = (signϕl,ε(ζjl,ε))ϕl,ε if l ∈ [1. . n] and ε ∈ ]0, ε̂[

and ϕ̂l,ε = ϕl,ε otherwise.

It follows that for each ε ∈ ]0, ε0[, (ϕ̂l,ε)l is a L2-orthonormal sequence such

that ϕ̂l,ε is an eigenfunction of Aε corresponding to λl,ε, l ∈ N. We claim that
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for all l, j ∈ [1. . n]

sup
x∈Kj,ε

|ϕ̂l,ε(x)− ϕ̂l,0,j | → 0, as ε→ 0.

Suppose the claim does not hold. Then there exist l̂, ĵ ∈ [1. . n], a null sequence

(εm)m in ]0, ε̂[ and β > 0 such that

(3.26) sup
x∈Kĵ,εm

|ϕ̂l̂,εm(x)− ϕ̂l̂,0,̂j | > β for all m ∈ N.

An application of Corollary 3.17 to the family (ϕ̂l,ε)(l,ε)∈[1..n]×]0,ε0[ shows that

there exist a subsequence (ε1
m)m of (εm)m and an 〈 · , · 〉L-orthonormal sequence

(zl)l∈[1..n] such that, for each l ∈ [1. . n], zl is an eigenvector of A0 corresponding

to λl,0 and for each j ∈ [1. . n]

sup
x∈Kj,ε1m

|ϕ̂l,ε1m(x)− zl,j | → 0, as m→∞.

In particular, ϕ̂l̂,ε1m
(ζj

l̂
,ε1m

) → zl̂,j
l̂

as m → ∞. The definition of ϕ̂l̂,ε1m
implies

that ϕ̂l̂,ε1m
(ζj

l̂
,εlm

) > 0 for all m ∈ N. Since zl̂,j
l̂
6= 0, it follows that zl̂,j

l̂
> 0 and

so zl̂ = ϕ̂l̂,0. Hence, in particular,

sup
x∈Kĵ,ε1m

|ϕ̂l̂,ε1m(x)− ϕ̂l̂,0,̂j | → 0, as m→∞,

but this contradicts (3.26).

The last statement of part (c) follows from Lemma 3.3. This completes the

proof of part (c) of the theorem.

The arbitrariness of the sequence (εm)m in part (c) and Lemma 3.14 imply

part (b) of the theorem. The proof is complete. �

4. A case without wells at the boundary

We will now formulate Assumption 2.1 for the case in which there are no

wells close to the boundary points. This simply means that we remove in that

hypothesis the points ζ0,ε, ζ
′
0,ε, ξn,ε, ξ

′
n,ε and the numbers τ0 and τn:

Assumption 4.1.

(1a) n ∈ N, ε0 ∈ ]0,∞];

(1b) (aε)ε∈]0,ε0[ is a family of continuous positive functions defined on [0, 1];

(1c) (xj)j∈[0..n] is a strictly increasing sequence in [0, 1], with x0 = 0 and

xn = 1, (τj)j∈[1..n−1] is a sequence in ]0,∞[ and ξ′j,ε, ξj,ε and ζj,ε, ζ
′
j,ε,

j ∈ [1. . n− 1] are families in ]0, 1[ with x0 < ξ′1,ε < ξ1,ε < x1, xj−1 <

ζj−1,ε < ζ ′j−1,ε < ξ′j,ε < ξj,ε < xj , j ∈ [2. . n− 1] and xn−1 < ζn−1,ε <

ζ ′n−1,ε < xn, ε ∈ ]0, ε0[.

(1d) If (Γε)ε∈]0,ε0[ is the family ([ξ′j,ε, ζ
′
j,ε])ε∈]0,ε0[, j ∈ [1. . n− 1], then m(Γε)

→ 0 as ε→ 0.
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(2a) If (Γε)ε∈]0,ε0[ is any of the families:

([ζ ′j,ε, ξ
′
j+1,ε])ε∈]0,ε0[, j ∈ [1. . n− 2] (if n ≥ 3),

([ζj,ε, ζ
′
j,ε])ε∈]0,ε0[, ([ξ′j,ε, ξj,ε])ε∈]0,ε0[, j ∈ [1. . n− 1] ,

([x0, ξ
′
1,ε])ε∈]0,ε0[ or else the family ([ζ ′n−1,ε, xn])ε∈]0,ε0[, then

inf
Γε

aε

m(Γε)
→∞ as ε→ 0.

(2b) For each j ∈ [1. . n− 1] and ε ∈ ]0, ε0[, set Γj,ε = [ξj,ε, ζj,ε]. Then

inf
Γj,ε

aε

m(Γj,ε)
→ τj and

sup
Γj,ε

aε

m(Γj,ε)
→ τj s ε→ 0.

Notation. In this section, for n = 2 we write K1,ε = [x0, ξ1,ε] and K2,ε =

[ζ1,ε, x2]. For n ≥ 3 we write

K1,ε = [x0, ξ1,ε] , Kj,ε = [ζj−1,ε, ξj,ε] , j ∈ [2. . n− 1] , Kn,ε = [ζn−1,ε, xn] .

Moreover,

Kj = [xj−1, xj ] , Lj = m(Kj), for j ∈ [1. . n].

Again we write H1 = H1(0, 1) and L2 = L2(0, 1). Let bε = b̃ε : H1×H1 → R
be the bilinear form defined by

bε(u, v) = b̃ε(u, v) =

∫ 1

0

aε · u′ · v′ dx, u, v ∈ H1.

We also assume the Neumann case: for ε ∈ ]0, ε0[ let Aε be the set of all pairs

(u,w) with u ∈ H1 and w ∈ L2 such that aεu ∈ H1, u′(0) = u′(1) = 0 and

w = −(aεu)′.

As before, Aε is (the graph of) a densely defined nonnegative self-adjoint

linear operator in L2. Again let 〈 · , · 〉L2 be the standard scalar product on L2.

Define the ‘limit’ bilinear form b0 : Rn × Rn → R by

b0(y, z) =

n−1∑
j=1

τj(yj+1 − yj)(zj+1 − zj)

and the scalar product 〈 · , · 〉L on Rn by

〈y, z〉L =

n∑
j=1

Ljyjzj , y = (y1, . . . , yn), z = (z1, . . . , zn) ∈ Rn.

Let A0 : Rn → Rn be the linear map defined by the pair (b0, 〈 · , · 〉L).

It follows that the map A0 is 〈 · , · 〉L-symmetric and all of its eigenvalues are

simple. Denote by (λl,0)l∈[1..n] the increasing sequence of eigenvalues of A0.

We can now state the spectral convergence theorem for the case in question.

Theorem 4.2. Let Assumption 4.1 be satisfied. With the above notation and

definitions the following assertions hold:
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(a) λn+1,ε →∞ as ε→ 0.

(b) For each l ∈ [1. . n], λl,ε → λl,0 as ε→ 0.

(c) There is a family (ϕ̂l,ε)(l,ε)∈[1..n]×[0,ε0[ such that if (l, ε) ∈ [1. . n] ×
]0, ε0[ then ϕ̂l,ε is an eigenfunction of Aε corresponding to λl,ε with

‖ϕ̂l,ε‖L2 = 1, if l ∈ [1. . n] then ϕ̂l,0 is an eigenvector of A0 corresponding

to λl,0 with ‖ϕ̂l,0‖L = 1 and such that, for j ∈ [1. . n],

sup
x∈Kj,ε

|ϕ̂l,ε(x)− ϕ̂l,0,j | → 0, as ε→ 0,

where ϕ̂l,0,j is the j-th component of the vector ϕ̂l,0 ∈ Rn. Moreover,

there is an ε′ ∈ ]0, ε0[ such that

sup
ε∈[0,ε′]

sup
l∈[1..n]

sup
x∈[0,1]

|ϕ̂l,ε(x)| <∞.

Proof. The proof is very similar to (and simpler than) the proof of Theo-

rem 2.6. We omit the details. �

Remark 4.3. With appropriate modifications, other boundary conditions

may also be treated, cf also the corresponding discussion in [5].

Carvalho in [2] considers the following

Assumption 4.4. Let ε0 ∈ ]0,∞]. Let l1 be a positive constant and l′1 > l1
be a positive function of ε ∈ ]0, ε0[ such that

lim
ε→0

l′1(ε) = l1.

Let a1, a′1 and e1, e2 be positive functions of ε ∈ ]0, ε0[ such that

a1(ε) ≤ a′1(ε), for ε ∈ ]0, ε0[,

lim
ε→0

a′1(ε) = lim
ε→0

a1(ε) = 0 and lim
ε→0

ei(ε) =∞, for i = 1, 2.

Let (aε)ε∈]0,ε0[ be a family of positive C2 functions defined on [0, 1] and x1 ∈ ]0, 1[

be such that

aε(x) ≥ e1(ε), for x0 ≤ x ≤ x1 − εl′1,

aε(x) ≥ e2(ε), for x1 + εl′1 ≤ x ≤ x2,

aε(x) ≥ a1(ε), for x1 − εl′1 ≤ x ≤ x1 + εl′1,

aε(x) ≤ a′1(ε), for x1 − εl1 ≤ x ≤ x1 + εl1.

Here x0 = 0 and x2 = 1. Assume that l′1 − l1 = o(1) and and a′1 − a1 = o(1).

Assume also that

(a) a′1(ε)/(εmin{e1(ε), e2(ε)}) = o(1),

(b) ε2 min{e1(ε), e2(ε)}/a1(ε) = O(1), and
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(c) there exists an a1 ∈ R such that

lim inf
ε→0

a1(ε)

2εl1
= lim sup

ε→0

a′1(ε)

2εl1
= a1.

Under this hypothesis, Carvalho states without proof an analogue of The-

orem 4.2 for n = 2 (with τ1 = a1), see [2, Lemma 2.1 and the assumptions

preceding equation (2.5)].

We will now show that Carvalho’s Assumption 4.4 implies our Assumption 4.1

(with n = 2) but not necessarily vice versa.

Suppose Assumption 4.4 holds. For each ε ∈ ]0, ε0[, define

ξ′1,ε = x1 − εl′1(ε), ξ1,ε = x1 − εl1,

ζ ′1,ε = x1 + εl′1(ε), ζ1,ε = x1 + εl1.

Choosing ε0 smaller, if necessary, we see that parts (1a), (1b) and (1c) of As-

sumption 4.1 hold.

Notice that m([ξ′1,ε, ζ
′
1,ε]) = 2εl′1(ε)→ 0 as ε→ 0, so (1d) in Assumption 4.1

holds. Moreover, m([ζ1,ε, ζ
′
1,ε]) = m([ξ′1,ε, ξ1,ε]) = ε(l′1(ε)− l1).

For each ε ∈ ]0, ε0[, let Γε = [ζ1,ε, ζ
′
1,ε] or Γε = [ξ′1,ε, ξ1,ε]. Then aε(x) ≥ a1(ε)

for all x ∈ Γε, so inf
x∈Γε

aε(x) ≥ a1(ε) and so

inf
Γε

aε

m(Γε)
≥ a1(ε)

m(Γε)
=

a1(ε)

ε(l′1(ε)− l1)
.

Therefore,

lim inf
ε→0

inf
Γε

aε

m(Γε)
≥ lim inf

ε→0

a1(ε)

ε(l′1(ε)− l1)
= lim inf

ε→0

(
a1(ε)

2εl1

2l1
(l′1(ε)− l1)

)
.

Since

lim inf
ε→0

a1(ε)

2εl1
= a1 and lim

ε→0

2l1
(l′1(ε)− l1)

=∞,

it follows that lim inf
ε→0

a1(ε)/(2εl1) =∞ and this implies that

lim inf
ε→0

inf
Γε

aε

m(Γε)
=∞, so lim

ε→0

inf
Γε

aε

m(Γε)
=∞.

Now for Γε = [x0, ξ
′
ε] we have inf

Γε

aε ≥ e1(ε) → ∞ and m(Γε) → x1 − x0 =

x1 > 0 as ε→ 0 so
inf
Γε

aε

m(Γε)
→∞ as ε→ 0.

Analogously, the same statement holds for Γε = [ζ ′ε, x2]. This proves pro-

perty (2a) of Assumption 4.1.

Now, for each ε ∈ ]0, ε0[, let Γε = [ξ1,ε, ζ1,ε]. Then m(Γε) = 2εl1. Moreover,

(4.1) aε(x) ≥ a1(ε), for all x ∈ Γε
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and so,

lim inf
ε→0

inf
Γε

aε

m(Γε)
≥ lim inf

ε→0

a1(ε)

2εl1
= a1.

Furthermore

(4.2) aε(x) ≤ a′1(ε), for all x ∈ Γε

and so,

lim sup
ε→0

inf
Γε

aε

m(Γε)
≤ lim sup

ε→0

a′1(ε)

2εl1
= a1.

This implies that

lim
ε→0

inf
Γε

aε

m(Γε)
= a1.

It follows from (4.1) and (4.2) that

a1(ε) ≤ sup
x∈Γε

aε(x) ≤ a′1(ε).

Hence

a1 = lim inf
ε→0

a1(ε)

2εl1
≤ lim inf

ε→0

sup
Γε

aε

m(Γε)
≤ lim sup

ε→0

sup
Γε

aε

m(Γε)
≤ lim sup

ε→0

a′1(ε)

2εl1
= a1.

Thus,

lim
ε→0

sup
Γε

aε

m(Γε)
= a1

so (2b) of Assumption 4.1 holds with τ1 = a1. Thus Assumption 4.1 holds.

Now an easy adaptation of the example given in Remark 2.5 shows that,

for n = 2 and an arbitrary choice of x1 ∈ ]0, 1[, ε0 ∈ ]0,∞] and τ1 ∈ ]0,∞[

there is a family (aε)ε∈]0,ε0[ of C∞-functions such that, for ξ′1,ε = x1 − ε2 − ε3,

ξ1,ε = x1− ε2, ζ1,ε = x1 + ε2 and ζ ′1,ε = x1 + ε2 + ε3, Assumption 4.1 is satisfied,

but Assumption 4.4 cannot be satisfied with this choice of x1 and the family

(aε)ε∈]0,ε0[.

5. Conley index continuation

In this section we will briefly extend the Conley index continuation results

from [1] to the present more general case. We assume the reader’s familiarity

with the paper [1]. Moreover, recall that we suppose that Assumption 2.1 is

satisfied with the ensuing definitions and notation of Sections 2 and 3.

For each ε ∈ ]0, ε0[ define Hε = L2, 〈 · , · 〉Hε = 〈 · , · 〉L2 and Aε as in Section 2.

Define also H0 = Rn, 〈 · , · 〉H0 = 〈 · , · 〉L and A0 as in (2.3).

Consider the following norms:

(5.1)
‖u‖2ε := bε(u, u) + ‖u‖2L2 , ε ∈ ]0, ε0[ , u ∈ H1(0, 1),

‖u‖20 := b0(u, u) + ‖u‖2L, u ∈ Rn.
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Notice that for each ε ∈ ]0, ε0[, Hε
1 = H1(0, 1) and | · |Hε

1
= ‖ · ‖ε. Moreover,

H0
1 = Rn and | · |H0

1
= ‖ · ‖0.

Theorem 5.1. There exists an ε′7 ∈ ]0, ε0[ and a family (Jε)ε∈]0,ε′7] such that

the family

(Hε, 〈 · , · 〉Hε , Aε, Jε)ε∈[0,ε′7]

satisfies condition (FSpec).

Proof. This is proved exactly like [1, Theorem 4.1]. �

For the rest of this section assume the nonlinear convergence hypothesis [1,

Assumption 4.2].

Let ε ∈ ]0, ε0[. Note that each u ∈ H1(0, 1) is (uniquely represented by)

a continuous function. Hence the map ĝε(u) : [0, 1]→ R defined by

ĝε(u)(x) = gε(x, u(x)), x ∈ [0, 1] ,

is continuous and bounded. Moreover, ĝε(u) is Lebesgue measurable and so it

lies in L2(0, 1). Therefore, for each ε ∈ ]0, ε0[, we obtain a well defined map

fε : H1(0, 1) → L2 given by fε(u) = ĝε(u), u ∈ H1(0, 1). Moreover, define

f0 : Rn → Rn by f0(u) = (f0(u)1, . . . , f0(u)n), where

f0(u)j =
1

Lj

∫
Kj

g0(x, uj) dx,

u = (u1, . . . , un), for j ∈ [1. . n].

Theorem 5.2. Let (Hε, 〈 · , · 〉Hε , Aε, Jε)ε∈[0,ε′7] be as Theorem 5.1. There

exists an ε′8 ∈ ]0, ε′7] such that the family (fε)ε∈[0,ε′8] satisfies condition (Conv).

Proof. This is proved exactly as [1, Theorem 4.4] except that we use

Lemma 3.3 in place of [1, Lemma 4.3]. �

Now consider, for each ε ∈ ]0, ε′8], the abstract parabolic equation

(5.2) u̇ = −Aεu+ fε(u)

on H1(0, 1). This equation generates a local semiflow πε on H1(0, 1). Equa-

tion (5.2) is an abstract formulation of the boundary value problem

(Eε,Sε)


ut = (aεux)x + gε(x, u), 0 < x < 1, t > 0,

ρu− (1− ρ)aεux = 0, x = 0, t > 0,

σu+ (1− σ)aεux = 0, x = 1, t > 0.

Moreover, we may also consider the system of ordinary diferential equations

(5.3) ż = −A0z + f0(z)

on Rn. This system generates a local (semi)flow π0 on Rn.

Now, exactly as in [1], we obtain the following
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Theorem 5.3. The Conley index and homology index braid continuation

results, [1, Theorems 2.4 and 2.5], hold for the family (πε)ε∈[0,ε′8].

Remark 5.4. Theorem 5.3 remains valid (with the same proof) if we replace

Assumption 2.1 by Assumption 4.1 and Theorem 2.6 by Theorem 4.2.
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