Topological Methods in Nonlinear Analysis Volume 52, No. 2, 2018, 631–664 DOI: 10.12775/TMNA.2018.025

© 2018 Juliusz Schauder Centre for Nonlinear Studies

ON SPECTRAL CONVERGENCE FOR SOME PARABOLIC PROBLEMS WITH LOCALLY LARGE DIFFUSION

Maria C. Carbinatto — Krzysztof P. Rybakowski

ABSTRACT. In this paper, which is a sequel to [1], we extend the spectral convergence result from [5] to a larger class of singularly perturbed families of scalar linear differential operators. This also extends the Conley index continuation principles from [1].

1. Introduction

In the important paper [5], Carvalho and Pereira approached a problem previously considered by Fusco [6] from the point of view of spectral convergence. Specifically, they considered a family of linear differential operators $u \mapsto -(a_{\varepsilon}u_x)_x$ on the interval]0,1[with boundary conditions

$$\begin{cases} \rho u - (1 - \rho) a_{\varepsilon} u_x = 0, & x = 0, \\ \sigma u + (1 - \sigma) a_{\varepsilon} u_x = 0, & x = 1, \end{cases}$$

and made the following

Assumption 1.1. $n \in \mathbb{N}$, $\varepsilon_0 \in]0,\infty]$, $(e_j)_{j \in [1..n]}$, $(l_j)_{j \in [0..n]}$, $(b_j)_{j \in [0..n]}$ are sequences of positive constants and $(l'_j)_{j \in [0..n]}$, $(b'_j)_{j \in [0..n]}$ are sequences of positive functions defined on $]0,\varepsilon_0[$ such that $l'_j(\varepsilon) > l_j$ and $b'_j(\varepsilon) > b_j$ for $j \in [0,\infty]$

 $^{2010\} Mathematics\ Subject\ Classification.$ Primary: 35P99, 35K57; Secondary: 37B30, 35B25.

 $Key\ words\ and\ phrases.$ Spectral convergence; localized large diffusion; singular perturbations; Conley index.