Topological Methods in Nonlinear Analysis Volume 52, No. 2, 2018, 613–629 DOI: 10.12775/TMNA.2018.024

© 2018 Juliusz Schauder Centre for Nonlinear Studies

CONVENIENT MAPS FROM ONE-RELATOR MODEL TWO-COMPLEXES INTO THE REAL PROJECTIVE PLANE

MARCIO COLOMBO FENILLE

ABSTRACT. Let f be a map from a one-relator model two-complex $K_{\mathcal{P}}$ into the real projective plane. The composition $\varrho \circ f_{\#}$ of the homomorphism $f_{\#}$ induced by f on fundamental groups with the action ϱ of $\pi_1(\mathbb{R}P^2)$ over $\pi_2(\mathbb{R}P^2)$ provides a local integer coefficient system $f_{\#}^{\varrho}$ over $K_{\mathcal{P}}$. We prove that if the twisted integer cohomology group $H^2(K_{\mathcal{P}};_{f_{\#}^{\varrho}}\mathbb{Z}) = 0$, then f is homotopic to a non-surjective map. As an intermediary step for the proof, we show that if $H^2(K_{\mathcal{P}};_{\beta}\mathbb{Z}) = 0$ for some local integer coefficient system β over $K_{\mathcal{P}}$, then $K_{\mathcal{P}}$ is aspherical.

1. Introduction

The existence of strong surjections from a finite and connected n-dimensional CW complex K (a n-complex, to shorten) into a closed n-manifold Y has been investigated for at least a decade, specially from the viewpoint of the topological root theory.

For a strong surjection from K into Y we mean a (continuous) map $f: K \to Y$ whose free homotopy class $[f] \in [K; Y]$ has just surjective maps. In this case, we say also that f is strongly surjective. In the context of topological root theory, a map $f: K \to Y$ which is not strongly surjective is said to be root free.

²⁰¹⁰ Mathematics Subject Classification. Primary: 55M20; Secondary: 55M25. Key words and phrases. Convenient maps; strong surjections; two-dimensional complexes; aspherical complexes; cohomology with local coefficients.