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In memory of Marek Burnat

Abstract. We establish existence of strong solutions to the stationary

Navier–Stokes–Fourier system for compressible flows with density depen-

dent viscosities in regime of heat conducting fluids with very high densities.
In comparison to the known results considering the low Mach number case,

we work in the Lp-setting combining the methods for the weak solutions

with the method of decomposition. Moreover, the magnitude of gradient
of the density as well as other data are not limited, our only assumption is

the given total mass must be sufficiently large.
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1. Introduction and the main result

Let us consider the following steady version of the Navier–Stokes–Fourier

system for the compressible heat-conducting fluid in a bounded domain Ω ⊂ R3

div(%u) = 0,(1.1)

div(%u⊗ u)− div S +∇p(%, θ) = %F,(1.2)

div(%eu) + div q = S : D(u)− p(%, θ) div u,(1.3)

with unknowns: the density % : Ω → (0,∞), velocity field u : Ω → R3, and the

absolute temperature θ : Ω→ (0,∞) of the fluid. The viscous part of the stress

tensor S, pressure p, internal energy e as well as the heat flux q are assumed

to be given functions of unknowns. The fluid is assumed to be Newtonian with

density dependent viscosity

(1.4) S(%,∇u) = %
(
∇u +∇Tu

)
= 2%D(u),

where we denoted by D(u) =
(
∇u +∇Tu

)
/2 the symmetric part of the velocity

gradient. It is possible to consider more general dependency of the viscosity on

the density than (1.4), but it would lead to unnecessary technicalities. In fact,

the only important assumption concerning the viscosity is the linear growth.

The required form of the tensor S is connected to shallow water models (see [5],

[6] and references therein), where viscosity coefficients are linear functions of the

density.

The pressure is assumed to be the sum of the so-called cold pressure and the

ideal gas law

p(%, θ) = pc(%) + %θ = %γ + %θ,(1.5)

e(%, θ) =
1

γ − 1
%γ−1 + cvθ with γ > 1.(1.6)

For the general form of pressure we refer to [11], [12]. Here we choose a sim-

ple form of the constitutive equations in order to avoid unnecessary technical

complications and in the considerations we put just cv = 1. The system is con-

sidered in a bounded domain Ω ⊂ R3 with a C2- smooth boundary. We impose

the partial slip boundary condition for the velocity field and we allow the heat

flux through the boundary

u · n = 0 at ∂Ω,(1.7)

n · S(%,∇u) · τ k + fu · τ k = 0 at ∂Ω,(1.8)

q · n = L(%, θ)(θ −Θ0) at ∂Ω,(1.9)

where τ k, k = 1, 2 are two linearly independent tangent vectors to ∂Ω, n denotes

the normal vector. The friction is given by

(1.10) f = f0%(x) with f0 > 0, while Θ0(x) ≥ Θ∗ > 0
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stands for the temperature of the boundary from outside.

The heat flux satisfies the Fourier law

q = −κ(%, θ)∇θ.

The transport coefficients are assumed in the form

(1.11) κ(%, θ) = %k1(θ), L(%, θ) = %k2(θ),

with ki being bounded continuously differentiable functions bounded away from

zero. Note that we consider the viscosities independent of the temperature, hence

the only influence of the thermal effects on the momentum equation is coming

from the pressure. We could consider also some sublinear growth in temperature,

but it would lead to unnecessary technicalities (see [11], [16]).

Our main result is stated in the following way.

Theorem 1.1. Let γ > 1. Let Ω ⊂ R3 be a C2 bounded domain, let p > 3,

F ∈ Lp(Ω), Θ0 ∈ W 1−1/p,p(∂Ω). Then there exists m0 sufficiently large with

respect to ‖F‖p and ‖Θ0‖W 1−1/p,p(∂Ω) in the sense of condition (3.7) such that for

any m ≥ m0, where m = (1/Ω)
∫

Ω
% dx is the average of the density, there exists

a strong stationary solution to the Navier–Stokes–Fourier system (1.1)–(1.9).

Moreover, it possesses the regularity (%,u, θ) ∈W 1,p(Ω)×W 2,p(Ω;R3)×W 2,p(Ω)

and there exists a constant CF depending on ‖F‖p and ‖Θ0‖W 1−1/p,p(∂Ω) such

that

mγ−2‖r‖1,p + ‖u‖2,p + ‖θ‖2,p +mγ−1‖ div u‖p ≤ CF.

The estimate in Theorem 1.1 determines, in particular, the smallness of div u,

making the constructed flow slightly compressible. However for γ ∈ (1, 2) the

magnitude of the perturbation of the density r is of order m2−γ , what does not

allow to look at the system as a perturbation of a constant density flow. On

the other hand, the condition imposed on CF and m excludes the possibility of

creation of vacuum regions.

Remark 1.2. If we replace assumption (1.10) by f = f0 ≥ 0 we get the same

result as in Theorem 1.1 assuming that domain Ω is not axially symmetric. This

is connected with the validity of the Korn inequality, i.e. for u · n = 0 on ∂Ω we

have either

(1.12) ‖u‖1,p ≤ C(‖D(u)‖p + ‖u‖L2(∂Ω))

or, if Ω is additionally not axially symmetric,

‖u‖1,p ≤ C‖D(u)‖p.

The result is a generalization of our previous work [3], where the isother-

mal case was treated. Similar results were obtained by Choe and Jin [7] in the

isothermal case and by Dou et al. [8] in the heat-conducting case. The authors
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study there the low Mach number problem for the steady system with Dirichlet

boundary conditions. Working in the Hm framework, they obtain also large so-

lutions as a perturbation of corresponding incompressible flows. The connection

to the low Mach number limit problem is through parameter m, which can be

compared to the inverse of the Mach number — see [3] for details. In our case

the main troublemaker is the equation of energy. The problem is not located in

the pressure, where we find an explicit dependence on the temperature, but in

energy production term S : D(u). We shall underline that dependence on order

of parameter m does not neglect this term from main considerations. The only

way to treat it comes from the theory of weak solutions [16]. Namely, we have

to employ here the entropy type estimate. Roughly speaking, this type of bound

is obtained by testing of the energy equation by −θ−δ (the physical entropy is

related to δ = 1). Note that the magnitude of the velocity field is of order of

‖F‖p and ‖Θ0‖W 1−1/p,p(∂Ω), hence it can be arbitrary large. Therefore, we can

not expect to obtain the uniqueness property for our system.

The strong solutions for the compressible Navier–Stokes equations were in-

tensively studied in eighties, in the papers by M. Padula [19], [20] or A. Valli [24],

[25] in the context of energy method and in the second half of eighties in the

papers by H. Beirão da Veiga [4] and M. Padula [21] in the Lp-setting. Later,

in the first half of nineties, many further results appeared, considering different

situations as bounded or unbounded domains, different methods of proof (energy

method, Lp-estimates or method of decomposition) and/or different boundary

conditions, see e.g. [2], [7], [9], [10], [14], [18] or [22].

The rest of the article is devoted to the proof of Theorem 1.1. In the next

section we derive available a priori estimates for the solutions of the system,

provided we work within the class (2.2). Next, inspired by the a priori bounds,

we define suitable function class in which we look for the solution. We also

introduce a linearized problem, and show its solvability within this class. We

finish the proof by a series of fixed point arguments. Throughout the article we

will denote generic constants by C, their value can change from line to line or

even in the same formula. Nevertheless, we will be more precise when necessary,

especially for the formulation of our assumption for the mean density. We will

use the following abbreviate notation for the norms of the Lebesgue and Sobolev

spaces over Ω: ‖f‖p = ‖f‖Lp(Ω), ‖f‖k,p = ‖f‖Wk,p(Ω).

2. A priori estimates

Here we derive the a priori estimate for sought solutions. First we introduce

notation which allows to keep the dependence from parameter m. Assume

% = m+ r, with

∫
Ω

r dx = 0 and
1

|Ω|

∫
Ω

% dx = m, with m large enough.
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Define for p > d = 3

(2.1) Ξ = mγ−2‖r‖1,p + ‖u‖2,p + ‖θ‖2,p +mγ−1‖ div u‖p

and consider solutions satisfying the following structure conditions

(2.2) m� Ξ, m > 2‖r‖∞ and ‖div u‖p � 1.

Now we state the expected bounds for the solutions.

Lemma 2.1. Let (ρ,u, θ) be sufficiently smooth solution to (1.1)–(1.3). Let

m be so big that(2.2) is fulfilled, then there exists constants H, E, CF depending

only on ‖F‖p and ‖Θ0‖W 1−1/p,p(∂Ω) such that

(2.3)

‖θ‖3(1−δ) + ‖u‖21,6(1−δ)/(3−2δ) + ‖∇θ‖1/23(1−δ)/(2−δ) ≤ H for δ ∈ (0, 1/3),

‖u‖1,2 ≤ E,

mγ−2‖r‖1,p + ‖u‖2,p + ‖θ‖2,p +mγ−1‖ div u‖p ≤ CF.

The rest of this section is devoted to the proof of this lemma. First, we

test the internal energy equation by −θ−δ. Suitable δ ∈ (0, 1/3) will be chosen

later. In further considerations we will require to fix δ small, but the choice will

depend only on the power of integrability of solutions p – see the end of the

proof of Lemma 3.2, indeed in the construction of solutions we will require that

δ ∈ (0, δ0(p)) by relation (3.31). Hence one can treat δ as given in comparison

to the magnitude of ‖div u‖p. The choice δ = 1 would correspond to the usual

entropy estimate. However, this leads only to certain logarithmic estimate for

temperature, which is not sufficient. In addition, thanks to (2.2) one can es-

timate % by m/2 from below and 3m/2 from above. Hence, we obtain after a

straightforward computation

(2.4)

∫
Ω

(
− κ(%, θ)∇θ · ∇(θ−δ) +

S : ∇u

θδ

)
dx+

∫
∂Ω

L(%, θ)Θ0

θδ
dS

=

∫
∂Ω

L(%, θ)θ1−δ dS +

∫
Ω

%u · ∇θ θ−δ dx+

∫
Ω

%θ1−δ div u dx,

whence using the assumptions on S, Θ0, κ, and L

mδ

∫
Ω

|∇θ|2

θ1+δ
dx+m

∫
Ω

|D(u)|2

θδ
dx+m

∫
∂Ω

1

θδ
dS

≤ C
(
m

∫
∂Ω

θ1−δ dS +

∫
Ω

%u · ∇(θ1−δ)

1− δ
dx+m

∫
Ω

θ1−δ|div u| dx
)
.
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Therefore, using the continuity equation in the second term on the right-hand

side we have

mδ‖∇(θ(1−δ)/2)‖22 +m

∥∥∥∥D(u)

θδ/2

∥∥∥∥2

2

(2.5)

≤Cm
(∫

∂Ω

θ1−δ dS +

∫
Ω

θ1−δ|div u| dx
)

≤Cm
(∫

∂Ω

θ1−δ dS + ‖θ‖1−δ3(1−δ)‖div u‖p
)
.

Besides,

‖θ‖1−δ3(1−δ) =
∥∥θ(1−δ)/2∥∥2

6
≤ C

∥∥θ(1−δ)/2∥∥2

1,2
(2.6)

≤ C
(∥∥θ(1−δ)/2∥∥2

L2(∂Ω)
+ ‖∇(θ(1−δ)/2)‖22

)
= C

(∫
∂Ω

θ1−δ dS +
∥∥∇(θ(1−δ)/2)

∥∥2

2

)
,

and since ‖ div u‖p � 1, we put the second term on the right-hand side of (2.5)

to the left-hand side. It is possible to do so, since the magnitude of δ depends

only on p (see (3.31)). Further,

‖u‖6(1−δ) ≤ C
(
‖D(u)‖6(1−δ)/(3−2δ) + ‖u‖L2(∂Ω)

)
(2.7)

≤ C
(∥∥∥∥D(u)

θδ/2

∥∥∥∥
2

∥∥θδ/2∥∥
6(1−δ)/δ + ‖u‖L2(∂Ω)

)
= C

(∥∥∥∥D(u)

θδ/2

∥∥∥∥
2

‖θ‖δ/23(1−δ) + ‖u‖L2(∂Ω)

)
.

Thus, combining (2.7) with (2.5) and (2.6) we get

(2.8) ‖u‖6(1−δ) ≤ C
((
‖θ‖1−δL1(∂Ω)

)1/2+δ/(2(1−δ))
+ ‖u‖L2(∂Ω)

)
= C

(
‖θ‖1/2L1(∂Ω) + ‖u‖L2(∂Ω)

)
.

Further, integrating the internal energy over Ω and testing the momentum equa-

tion by u we obtain for δ < 1/2 the following total energy equality∫
∂Ω

f |u× n|2 + L(%, θ)θ dS =

∫
Ω

%u · F dx+

∫
∂Ω

L(%, θ)Θ0 dS

≤ Cm
(
‖u‖6(1−δ)‖F‖(6−6δ)/(5−6δ) + ‖Θ0‖L1(∂Ω)

)
.

Therefore,

(2.9) mf0‖u‖2L2(∂Ω) +m‖θ‖L1(∂Ω)

≤ Cm
(
‖u‖6(1−δ)‖F‖(6−6δ)/(5−6δ) + ‖Θ0‖L1(∂Ω)

)
.
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Now, as ‖div u‖p � 1, using the Korn inequality (1.12), we combine (2.4) with

(2.9) in order to get

‖θ‖3(1−δ) + ‖u‖21,6(1−δ)/(3−2δ) ≤ C
(
‖θ‖L1(∂Ω) + ‖u‖2L2(∂Ω) + 1

)
≤ C

(
‖u‖6(1−δ)‖F‖(6−6δ)/(5−6δ)+‖Θ0‖L1(∂Ω)+1

)
,

‖θ‖3(1−δ) + ‖u‖21,6(1−δ)/(3−2δ) ≤ C
(
‖F‖2(6−6δ)/(5−6δ) + ‖Θ0‖L1(∂Ω) + 1

)
= C(F,Θ0).

Thus, we obtained the first a priori bound. Further we estimate from (2.5) and

(2.6)

‖∇θ‖3(1−δ)/(2−δ) ≤
∥∥∥∥ ∇θ
θ(1+δ)/2

∥∥∥∥
2

∥∥θ(1+δ)/2
∥∥

6(1−δ)/(1+δ)
≤ C.

Thus, there exists constant H depending only on the given data (independent

from m) such that

(2.10) ‖θ‖3(1−δ) + ‖u‖21,6(1−δ)/(3−2δ) + ‖∇θ‖1/23(1−δ)/(2−δ) ≤ H.

Furthermore, we go back to the momentum equation, and test it by the velocity

field, and get

m‖∇u‖22 +m‖u‖2L2(∂Ω) ≤ C
∣∣∣∣∫

Ω

(∇(%θ) · u + %F · u) dx

∣∣∣∣
≤ C‖%‖∞(‖θ‖2‖ div u‖2 + ‖F‖6/5‖u‖6),

hence due to the previous estimate, note that 3(1− δ) > 2 for δ < 1/3, we have

(2.11) ‖u‖1,2 ≤ C(‖θ‖2 + ‖F‖6/5) ≤ C(F,Θ0) =: E.

Here we underline that E and H are independent of m.

The above information is not sufficient, we are required to improve the reg-

ularity. Further, we use the ideas of the method of decomposition from [18], in

the same spirit as in [3]. More precisely, we use the Helmholtz decomposition for

functions in Lp(Ω) with values in R3. Let us decompose g = PH(g) +∇P∇(g)

and denote the corresponding linear operators by

(2.12) P∇ : Lp(Ω)→W 1,p(Ω) and PH : Lp(Ω)→ Lpdiv(Ω).

They possess the following properties
∫

Ω
P∇g dx = 0, div g = ∆P∇(g), and

n · PH(g) = 0 on ∂Ω. The main idea of the method of decomposition is to esti-

mate the solenoidal and the gradient part of the momentum equation separately.

We are allowed to follow this procedure thanks to properties of slip boundary

conditions put on the velocity field. In what follows, we denote

G = −%u · ∇u + 2 div(rD(u)) + %F

for the sake of clarity. First, we apply curl-operator on (1.2) yielding, for ω =

curl u,

−m∆ω = curlG in Ω
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with the boundary conditions

divω = 0, ω · τ 1 = (f/(m+ r)− 2χ2)u · τ 2, ω · τ 2 = (2χ1− f/(m+ r))u · τ 2

on ∂Ω, where χi stand for the curvatures corresponding to the vectors τ i, tangent

to ∂Ω. Note that f/(m+ r) = f0 is constant. The form of boundary conditions

in the system above can be deduced by differentiation of (1.7), see [17], [13].

Thus, due to Lemma A.2 (see Appendix)

m‖ω‖1,p ≤ C
(
‖ curlG‖(W 1,p′(Ω))∗ +m‖u‖W 1−1/p,p(∂Ω)

)
,

where (W 1,p′(Ω))∗ denotes the dual space to W 1,p′

0 (Ω). Note that

‖u‖W 1−1/p,p(∂Ω) ≤ C‖u‖1,p.

Further, PHu satisfies the overdetermined system

(2.13)

curlPHu = ω in Ω,

divPHu = 0 in Ω,

PHu · n = 0 on ∂Ω,

so by Theorem A.5 (in the Appendix)

(2.14) ‖∇2PHu‖p ≤ C‖ω‖1,p, thus ‖∇2PHu‖p ≤
C

m

(
‖G‖p +m‖∇u‖p

)
.

Similarly, the potential part of the momentum equation (1.2) reads

(2.15) p(%)− {p(%)}Ω − 2mdiv u = P∇
(
G +m∆PHu

)
.

Here we introduce the notation: {g}Ω = (1/|Ω|)
∫

Ω
g dx for any g integrable.

In our considerations we keep in mind that P∇(∆u) = ∆P∇u + P∇(∆PHu)

and ∆P∇u = div u. Observe (Taylor’s expansion) that

(2.16) pc(%) = %γ = (m+ r)γ = mγ + γmγ−1r +Rm(r),

where Rm(r) = p′′c (ξ)r2/2 and ξ is between m and m + r, whence |Rm(r)| =

|p′′c (ξ)r2|/2 ≤ Cmγ−2r2. Subtracting the average from (2.16) yields

(2.17) p(%)− {p(%)}Ω = γmγ−1r +Rm(r)− {Rm(r)}Ω + %θ − {%θ}Ω.

Then we combine

(2.18) γmγ−1r−2m div u+Rm(r)−{Rm(r)}Ω+%θ−{%θ}Ω = P∇(G+m∆PHu)

with the continuity equation

(2.19) mdiv u + u · ∇r + r div u = 0,

in order to get

(2.20) γmγ−1r + 2u · ∇r = −2r div u + P∇(G +m∆PHu)

−Rm(r) + {Rm(r)}Ω − %θ + {%θ}Ω.
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Further, by differentiating (2.20), we obtain

(2.21) γmγ−1∇r + 2u · ∇∇r = −2∇r div u− 2r∇div u− 2∇u∇r

−∇Rm(r)− θ∇r − %∇θ +∇P∇(G +m∆PHu).

Note that P∇ is continuous from Lp to W 1,p, so ∇P∇ is actually a zero order

operator. Thus, to obtain from (2.21) the required information about ∇r, we

test the k-th component of (2.21) by ∂kr|∂kr|p−2. The second term on the left

hand side can be then rewritten using integration by parts as∫
Ω

u · ∇∂kr|∂kr|p−2∂kr dx = −1

p

∫
Ω

div u|∂kr|p dx;

|∇Rm(r)| ≤ Cmγ−2|r||∇r|. Thus, we get due to the Poincaré inequality and the

fact that ‖θ‖∞ + ‖∇u‖1,p � mγ−1 following from (2.2)

mγ−1‖r‖1,p ≤C
(
‖∇r‖p‖∇u‖1,p + ‖θ∇r‖p +m‖∇θ‖p(2.22)

+ ‖G‖p +m‖∇2PHu‖p
)

≤C
(
m‖∇θ‖p + ‖G‖p +m‖∇2PHu‖p

)
.

Furthermore, using (2.18), we bound the potential part of the velocity. Since

2m∇ div u = γmγ−1∇r +∇
(
Rm(r)− {Rm(r)}Ω

+ %θ − {%θ}Ω
)
−∇P∇

(
G +m∆PHu

)
,

we obtain for the quantity ∇ div u a similar estimate, namely

(2.23) m‖∇ div u‖p ≤ C
(
mγ−1‖∇r‖p + ‖G‖p

+ ‖θ∇r‖p +m‖∇θ‖p +m‖∇2PHu‖p
)
.

Putting together (2.14), (2.22) and (2.23) yields

mγ−2‖r‖1,p + ‖u‖2,p ≤ C
(

1

m
‖G‖p + ‖∇u‖p + ‖∇θ‖p

)
.

Recalling that

G = −%u · ∇u + 2D(u)∇r + r∆u + r∇ div u + %F,

it is easy to see that the most restrictive term is, except the external force, the

convective term. The rest can be put to the left-hand side by means of the Young

inequality due to the fact ‖∇r‖p � m, like ‖D(u)∇r/m‖p � ‖u‖1,∞ ≤ ‖u‖2,p.
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We estimate the convective term by means of the Gagliardo–Nirenberg inter-

polation inequality (A.1) (see Appendix) and energy inequality (2.11) as follows

‖%u · ∇u‖p ≤‖%‖∞‖u‖∞‖∇u‖p,

‖u‖∞ ≤C‖u‖2/36 ‖u‖
1/3
1,∞,

‖∇u‖p ≤C‖∇u‖2p/(5p−6)
2 ‖∇u‖(3p−6)/(5p−6)

1,p ,

‖%u · ∇u‖p ≤C(m+ ‖r‖∞)‖u‖2/36 ‖∇u‖2p/(5p−6)
2 ‖u‖1/31,∞‖∇u‖(3p−6)/(5p−6)

1,p

≤CmE(16p−12)/(15p−18)‖u‖(14p−24)/(15p−18)
2,p .

Note that (14p− 24)/(15p− 18) < 1 for p > 18/15, and E is defined by (2.11).

Hence the decomposition method applied on the momentum equation eventually

yields

‖u‖2,p +mγ−2‖r‖1,p ≤ C(‖F‖p + ‖∇θ‖p).

Interpolation (A.1) allows us to estimate the term with the gradient of the tem-

perature

(2.24) ‖∇θ‖p ≤ C‖∇θ‖1−α3(1−δ)/(2−δ)‖∇θ‖
α
1,p with α =

2p− 3 + δ(3− p)
3p− 3 + δ(3− 2p)

< 1.

Thus, we have from (2.24) with α

(2.25) ‖u‖2,p +mγ−2‖r‖1,p ≤ C(‖∇θ‖α1,p + 1),

where C depends only on given data.

Therefore, it remains to bound the second gradient of the temperature. State

the energy equation in the following form

−div(κ(%, θ)∇θ) = %|∇u|2 − %u · ∇θ − %θ div u in Ω,

−κ(%, θ)∇θ · n = L(%, θ)(θ −Θ0) on ∂Ω.

By Lemma A.3 (after dividing by m) we conclude

(2.26) ‖θ‖2,p ≤ C
(
‖∇u‖22p + ‖θ‖∞‖ div u‖p

+ ‖u · ∇θ‖p + ‖θ −Θ0‖W 1−1/p,p(∂Ω)

)
= C(I1 + I2 + I3 + I4).

Let us estimate the right-hand side of (2.26) term by term. To start, I2 can

be directly put to the left-hand side due to smallness of div u. Next, in order to

bound ∇u in Lq for q > 2, we interpolate between the energy norm and higher

order estimate of ∇2u, namely

‖∇u‖2p ≤ C‖∇u‖1−β2 ‖∇u‖β1,p with β =
3p− 3

5p− 6
,

so I1 ≤ CE2−2β‖∇u‖2β1,p, where

2αβ = 2 · 2p− 3 + δ(3− p)
3p− 3 + δ(3− 2p)

· 3p− 3

5p− 6
< 1 for any p > 3, δ <

1

2
.
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Hence we put the term to the left-hand side of (2.25) by means of the Young

inequality. For term I3 we again interpolate, see (A.1)

(2.27) ‖u‖∞ ≤ C‖u‖1−λ6 ‖u‖λ2,p

with λ = p/(5p− 6). Thus, using (2.24) and (2.27)

I3 ≤ ‖u‖∞‖∇θ‖p ≤ CE1−λ(‖∇2u‖λp + Eλ)H1−α(‖∇2θ‖αp +Hα).

In order to move the highest terms to the left-hand side of (2.25) and (2.26), we

need λα+ α < 1, so

λα

1− α
=

p

5p− 6
· 2p− 3 + δ(3− p)

p(1− δ)
< 1,

which is definitely satisfied for any p > 3 and δ < 1/3. Finally, note

‖θ −Θ0‖W 1−1/p,p(∂Ω) ≤ C(1 + ‖θ‖1,p)

≤ C(1 + ‖∇θ‖1−α3(1−δ)/(2−δ)‖∇θ‖
α
1,p) ≤ C(1 +H1−α‖∇θ‖α1,p).

Therefore, from (2.10), (2.11), (2.25), and analysis for (2.26) we conclude

Ξ ≤ CF.

We set m� CF and it guarantees that we will work in the announced regularity

class. Finally, looking at the continuity equation which can be stated as

m div u = −r div u− u · ∇r,

we obtain

(2.28)
(m− ‖r‖∞)‖div u‖p ≤ ‖u · ∇r‖p,

m‖ div u‖p ≤ 2‖u · ∇r‖p ≤ 2C2
Fm

2−γ .

3. Approximation, construction of solutions

In this part we prove the main theorem. The construction of solutions is

done in spaces described by Section 2. Let us denote classes of functions, where

solutions to (1.1)–(1.3) are constructed.

Mr(m) =

{
f ∈W 1,p(Ω),

∫
Ω

f dx = 0, mγ−2(‖f‖∞ + ‖∇f‖p) ≤ CF

}
,

Mu(m) =
{
f ∈W 2,p(Ω;R3), f · n = 0 on ∂Ω, ‖∇f‖2 ≤ E,

‖∇f‖∞ + ‖f‖∞ + ‖∇2f‖p ≤ CF, m
γ−1‖div f‖p ≤ 2C2

F

}
,

Mθ(m) =
{
f ∈W 1,∞(Ω), f > 0 in Ω,

‖f‖3(1−δ) + ‖∇f‖1/23(1−δ)/(2−δ) ≤ H, ‖f‖∞ + ‖∇f‖∞ ≤ CF

}
,

where CF, E and H depend only on given data Ω, p, F, Θ0 and δ ∈ (0, δ0(p))

— see (3.31).
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Note that Mu(m) is not a compact subset of W 2,p(Ω). Therefore, to perform

a fixed point argument, there is a need to introduce additionally another set,

which is a closed subset of W 1,∞(Ω), Mu(m) ⊂Mdiv u, namely

Mdiv u =
{
f ∈W 1,∞(Ω;R3), f · n = 0 on ∂Ω,∥∥∇f
∥∥

2
≤ E, ‖∇f‖∞ + ‖f‖∞ ≤ CF, m

γ−1‖div f‖p ≤ 2C2
F

}
.

In order to explain the definition of Mθ(m) let us note that the part bounded

by H comes from the entropy type estimate (one with δ) and the second one is

coming from the full regularity obtained for the solution to the heat law.

Our general strategy, which heavily depends on the fact that the temperature

occurs in the momentum equation only through the pressure, is the following.

First, we solve for fixed U ∈Mdiv u and θ̃ ∈Mθ(m) the system

m div u + div(ru) = 0 in Ω,(3.1)

(m+ r) U · ∇u− div(2(m+ r)D(u)) +∇p
(
m+ r, θ̃

)
= (m+ r)F in Ω,(3.2)

with boundary conditions (1.7)–(1.8). Then, for the resulting %,u we look at he

problem for the temperature

− div(κ(%, θ̃)∇θ) = − div(%eu) + S : D(u)− p(%, θ) div u in Ω,(3.3)

−κ(%, θ̃)∇θ · n = L(%, θ̃)(θ −Θ0) on ∂Ω.(3.4)

This linearization enables to show easily the uniqueness as well as the comparison

principle for the resulting temperature. Finally, we verify that the mapping

(U, θ̃) 7→ (u, θ)

maps continuously Mdiv u ×Mθ into its compact subset Mu × (Mθ ∩W 2,p(Ω))

thus we will be able to find a fixed point of this mapping via the Schauder fixed

point theorem.

Lemma 3.1. Suppose U∈Mdiv u(m), and θ̃∈Mθ(m) for m sufficiently large,

then problem (3.1)–(3.2) with boundary conditions (1.7)–(1.9) admits a unique

solution (r,u) in the class Mr(m)×Mu(m).

Proof. The proof follows ideas from [3, Proposition 4.1]. From that reason

we point here only the main estimate. The only difference is hidden in the

pressure which is temperature dependent. Additional term ∇(%θ̃) is bounded

in L∞(Ω), hence it is treated in the same way as the right-hand side F. Let

us briefly explain the construction of solutions to (3.1)–(3.2) done in [3]. The

main troublemaker is the hyperbolic equation and so lack of compactness for

the perturbation of density r. Here we apply the well-known approach from the

theory of weak solutions to the compressible Navier–Stokes equations [16]. It is

based on the regularization of the continuity equation by adding −ε∆r. Then for

given ε > 0, there is no problem to construct solutions. Then, having a sequence
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depending on ε with suitable estimates, we pass to limit ε → 0 by standard

arguments. For details we refer to [3]. The proof is based on several fixed point

arguments within the regularity classes Mr(m) and Mu(m).

Crucial are the precise estimates. The energy estimate reads in our case

m‖∇u‖22 ≤
∣∣∣∣∫

Ω

%F · u− u · ∇(%θ̃) dx

∣∣∣∣ ≤ Cm(‖F‖6/5‖u‖6 + ‖div u‖2‖θ̃‖2
)

≤ Cm
(
‖F‖26/5 + ‖θ̃‖22

)
+
m

2
‖∇u‖22.

Therefore

‖∇u‖22 ≤ C
(
‖F‖26/5 +H2

)
=: E2.

Further, following the a priori approach, we get

mγ−2‖r‖1,p + ‖u‖2,p ≤ C(‖F‖p + ‖∇θ̃‖p).

We interpolate

(3.5)
∥∥∇θ̃∥∥

p
≤
∥∥∇θ̃∥∥1−α′

3(1−δ)/(2−δ)

∥∥∇θ̃∥∥α′∞
with α′ = 1− 3(1− δ)

p(2− δ)
=

2p− 3 + δ(3− p)
2p− δp

< 1.

Therefore,

(3.6) mγ−2‖r‖1,p + ‖u‖2,p ≤ C
(
‖F‖p +H1−α′Cα

′

F

)
=: CF

for CF sufficiently large. At this stage we choose m sufficiently larger than CF.

Namely, we obtain the restriction on the magnitude of parameter m in terms of

E and CF defined in Section 2 as follows

(3.7) min
(
m,m(γ−1)/4

)
> max

(
CF(1 + E2), C2

F(1 + E2)
)
CΩ,

where CΩ represents constant depending purely on Ω by means of the constants

from the Korn, Poincaré, and embedding inequalities. Note that we can later on

redefine CF and consequently m, as inequality (3.6) is satisfied for any larger CF.

We also recall (2.28). �

Lemma 3.2. Suppose u ∈Mu(m) and r ∈Mr(Ω) are from Lemma 3.1, then

for m sufficiently large there exists a unique solution θ to problem (3.3) in the

class Mθ(m) ∩W 2,p(Ω).

Proof. To begin, we rewrite the equation for the internal energy using

constitutive relations (1.5)–(1.6), the continuity equation in the following way

(3.8) −div(κ(%, θ̃)∇θ) = S : D(u)− %u · ∇θ − %θ div u in Ω.

Let us first consider for fixed θ ∈W 1,∞(Ω) the problem

−div(κ(%, θ̃)∇θ) = S : D(u)− %u · ∇θ − %θ div u in Ω,(3.9)

−κ(%, θ̃)∇θ · n = L(%, θ̃)(θ −Θ0) at ∂Ω,(3.10)



272 Š. Axmann — P.B. Mucha — M. Pokorný

it can be uniquely solved in W 2,p(Ω). Indeed, the coefficient of the elliptic

operator is in W 1,p(Ω) ↪→ C1,α(Ω) with some α > 0 and the right-hand side

of (3.9) is bounded in Lp(Ω), see (3.29). Moreover, the mapping θ 7→ θ is for

fixed u, % continuous in W 1,2(Ω) and since W 2,p(Ω) is compactly embedded into

W 1,∞(Ω), also compact. Therefore, the map has a fixed point. Let us show that

it is positive everywhere and unique. A rough idea is that the right-hand side

of (3.8) is non-negative plus some perturbation which is in some sense small,

because we are close to the incompressibility.

For the comparison principle, we use the following standard approach. For

a solution θ we denote θ− = min(0, θ −Θ∗) with Θ∗ from (1.10) and test equa-

tion (3.8) by θ−. We obtain

(3.11)

∫
Ω

− div
(
κ(%, θ̃)∇θ

)
θ− dx =

∫
Ω

S : D(u)θ− dx

−
∫

Ω

%u · ∇θ θ− dx−
∫

Ω

% θ div u θ− dx,

(3.12)

∫
Ω

κ
(
%, θ̃
)
∇θ · ∇θ− dx+

∫
∂Ω

L
(
%, θ̃
)
(θ −Θ0)θ− dS

=

∫
Ω

S : D(u)θ− dx−
∫

Ω

%u · ∇|θ
−|2

2
dx−

∫
Ω

%div u|θ−|2 dx,

thus using the constitutive assumptions on S, L, κ

(3.13)

∫
Ω

m|∇θ−|2 dx+

∫
∂Ω

m|θ−|2 dS ≤ C
(∫

∂Ω

mΘ0θ
− dS

+

∫
Ω

m|D(u)|2θ− dx+

∫
Ω

|div(%u)| |θ
−|2

2
dx+

∫
Ω

|%div u||θ−|2 dx
)
.

The first two terms on the right-hand side of (3.13) are non-positive by definition

of θ−, the third one vanishes due to the continuity equation, while the last one

can be estimated

m‖θ−‖21,2 ≤ Cm‖ div u‖p‖θ−‖26,

but since m‖div u‖p � m, we conclude ‖θ−‖1,2 ≤ 0, θ− = 0, and thus θ ≥ Θ∗
in Ω.

The proof of the uniqueness follows similar lines as before. We consider two

solutions θ1, θ2 satisfying for i = 1, 2

−div(κ(%, θ̃)∇θi) = S : D(u)− %u · ∇θi − %θi div u in Ω,(3.14)

−κ(%, θ̃)∇θi · n = L(%, θ̃)(θi −Θ0) on ∂Ω,(3.15)
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hence taking the difference

−div
(
κ(%, θ̃)∇(θ1−θ2)

)
= −%u · ∇(θ1 − θ2)− %(θ1 − θ2) div u in Ω,(3.16)

−κ(%, θ̃)∇(θ1 − θ2) · n = L(%, θ̃)(θ1 − θ2) on ∂Ω.(3.17)

Testing (3.16) by (θ1 − θ2) yields as before

m‖∇(θ1 − θ2)‖22 +m‖θ1 − θ2‖2L2(∂Ω)

≤ C
∫

Ω

div(%u)
|θ1 − θ2|2

2
dx+ Cm‖ div u‖p‖θ1 − θ2‖26,

since ‖ div u‖p � 1, ‖θ1 − θ2‖1,2 = 0 and the uniqueness is proved.

Let us now show that the resulting θ is in Mθ(m). It is a solution to

− div(κ(%, θ̃)∇θ) = S : D(u)− %u · ∇θ − %θ div u,(3.18)

−κ(%, θ̃)∇θ · n = L(%, θ̃)(θ −Θ0) at ∂Ω,(3.19)

where r and u satisfy (3.1)–(3.2) with (1.7)–(1.8). We follow the heuristic ap-

proach; we test (3.18) by −θ−δ. This yields

(3.20)

∫
Ω

(
−κ(%, θ̃)∇θ · ∇(θ−δ) +

S : ∇u

θδ

)
dx+

∫
∂Ω

L(%, θ̃)Θ0

θδ
dS

=

∫
∂Ω

L(%, θ̃)θ1−δ dS +

∫
Ω

%u · ∇θ θ−δ dx+

∫
Ω

%θ1−δ div u dx,

(3.21) mδ

∫
Ω

|∇θ|2

θ1+δ
dx+m

∫
Ω

|D(u)|2

θδ
dx

≤ C
(∫

∂Ω

L(%, θ̃)θ1−δ dS +

∫
Ω

%u · ∇(θ1−δ)

1− δ
dx+m

∫
Ω

θ1−δ|div u| dx
)
.

Hence

mδ
∥∥∇(θ(1−δ)/2)

∥∥2

2
+m

∥∥∥∥D(u)

θδ/2

∥∥∥∥2

2

(3.22)

≤C
(∫

∂Ω

L(%, θ̃)θ1−δ dS +m

∫
Ω

θ1−δ|div u| dx
)

≤Cm
(∫

∂Ω

θ1−δ dS + ‖θ‖1−δ3(1−δ)‖div u‖p
)
.

Besides,

‖θ‖1−δ3(1−δ) = ‖θ(1−δ)/2‖26 ≤ C‖θ(1−δ)/2‖21,2

≤ C
(∥∥θ(1−δ)/2∥∥2

L2(∂Ω)
+ ‖∇(θ(1−δ/2)‖22

)
= C

(∫
∂Ω

θ1−δ dS + ‖∇(θ(1−δ)/2)‖22
)
,
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and since ‖ div u‖p � 1, we put the second term on the right-hand side of (3.22)

to the left-hand side. Further,

‖u‖6(1−δ) ≤ C
(
‖D(u)‖6(1−δ)/(3−2δ) + ‖u‖L2(∂Ω)

)
(3.23)

≤ C
(∥∥∥∥D(u)

θδ/2

∥∥∥∥
2

∥∥θδ/2∥∥
6(1−δ)/δ + ‖u‖L2(∂Ω)

)
= C

(∥∥∥∥D(u)

θδ/2

∥∥∥∥
2

‖θ‖δ/23(1−δ) + ‖u‖L2(∂Ω)

)
.

Thus, combining (3.23) with (3.22) we get

(3.24) ‖u‖6(1−δ) ≤ C
((
‖θ‖1−δL1(∂Ω)

)1/2+δ/(2(1−δ))
+ ‖u‖L2(∂Ω)

)
= C

(
‖θ‖1/2L1(∂Ω) + ‖u‖L2(∂Ω)

)
.

Further, we obtain for δ < 1/2 the following total energy inequality∫
∂Ω

(f |u× n|2 + L(%, θ̃)θ) dS = −
∫

Ω

%(U · ∇u) · u dx(3.25)

+

∫
Ω

%u · F +
(
p
(
%, θ̃
)
− p(%, θ)

)
div u dx+

∫
∂Ω

L(%, θ̃)Θ0 dS

≤C
∫

Ω

m|u|2|div U|+ |∇r||U||u|2 +m|u · F|+m|θ̃ − θ||div u| dx

+

∫
∂Ω

L(%, θ̃)Θ0 dS

≤C
(
m‖u‖26(1−δ)‖div U‖p + ‖∇r‖p‖U‖∞‖u‖26(1−δ)

+m‖u‖6(1−δ)‖F‖(6−6δ)/(5−6δ)

+m‖θ̃ − θ‖3(1−δ)‖ div u‖p +

∫
∂Ω

L(%, θ̃)Θ0 dS

)
≤Cm

(
‖u‖6(1−δ)(‖F‖(6−6δ)/(5−6δ) + 1)

+ ‖Θ0‖L1(∂Ω) + ‖θ̃ − θ‖3(1−δ)‖ div u‖p
)
,

where we have assumed that E‖ div U‖p < 1, C2
F < m, which is guaranteed by

the choice of m. Therefore,

(3.26) ‖u‖2L2(∂Ω) + ‖θ‖L1(∂Ω) ≤ C
(
‖u‖6(1−δ)(‖F‖(6−6δ)/(5−6δ) + 1)

+ ‖Θ0‖L1(∂Ω) + ‖θ̃ − θ‖3(1−δ)‖ div u‖p
)
.

Now, as ‖div u‖p � 1, we combine (3.20) and (3.26) to get

‖θ3(1−δ)‖+ ‖u‖21,6(1−δ)/(3−2δ) ≤ C‖θ‖L1(∂Ω)(3.27)

≤C
(
‖u‖6(1−δ)(‖F‖6−6δ/(5−6δ) + 1) + ‖Θ0‖L1(∂Ω) + ‖θ̃‖3(1−δ)‖ div u‖p

)
≤C

(
‖F‖2(6−6δ)/(5−6δ) + 1 + ‖Θ0‖L1(∂Ω) +H‖ div u‖p

)
≤ H(F,Θ0)
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for H sufficiently large. Further we estimate

‖∇θ‖3(1−δ)/(2−δ) ≤
∥∥∥∥ ∇θ
θ(1+δ)/2

∥∥∥∥
2

∥∥θ(1+δ)/2
∥∥

6(1−δ)/(1+δ)
≤ H2.

According to results of Lemma 3.1, we have with α′ from (3.5)

(3.28) ‖∇2u‖p +mγ−2‖∇r‖p ≤ C
(∥∥∇2θ̃

∥∥α′
p

+ 1
)
≤ C

(
Cα
′

F + 1
)
,

where C depends only on the given data.

It remains to bound the second gradient of the temperature. We have

−div
(
κ(%, θ̃)∇θ

)
= %|∇u|2 − %u · ∇θ − %θ div u in Ω,

−κ(%, θ̃)∇θ · n = L(%, θ̃)(θ −Θ0) on ∂Ω,

so, by Lemma A.2,

(3.29) ‖θ‖2,p ≤ C
(
‖∇u‖22p + ‖θ‖∞‖ div u‖p

+ ‖u · ∇θ‖p + ‖θ −Θ0‖W 1−1/p,p(∂Ω)

)
= C(I1 + I2 + I3 + I4).

We estimate the right-hand side of (3.29) term by term, analogously as in the a

priori approach. The only difference is that in (3.28) we shall interpolate only

with W 1,∞(Ω) in order to reach compactness of the resulting mapping. Term I2
is again put to the left-hand side according to smallness of divergence. For I1
we have

I1 ≤ CE2−2β‖∇u‖2β1,p with β =
3p− 3

5p− 6
,

and we need

2α′β = 2 · 2p− 3 + δ(3− p)
2p− δp

· 3p− 3

5p− 6
< 1.

This inequality can be satisfied for some δ > 0 sufficiently small only for

(3.30) p <
9 + 3

√
5

2
.

In the case of F ∈ Lp(Ω) with greater p, we have to perform the construction

first with some p satisfying (3.30) and then we study the regularity a posteriori.

Condition (3.30) looks artificial, however we shall remember that in order to

estimate I1 we use only W 1,∞, not W 2,p. And α′ given by (3.5) is essentially

different than α from (2.24).

For the term I3 we obtain

I3 ≤ ‖u‖∞‖∇θ‖p ≤ CE1−λ‖∇2u‖λpH1−α‖∇2θ‖αp
with λ = p/(5p− 6) and α from (2.24). Again, we need

(3.31)
λα′

1− α
=

p

5p− 6
· 2p− 3 + δ(3− p)

p(2− δ)
· 3p− 3 + δ(3− 2p)

p(1− δ)
< 1,

which can be satisfied for any p > 3 provided δ is chosen sufficiently small,

relation (3.31) determines δ0(p).
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To summarize, we conclude ‖θ‖2,p ≤ CF, which completes the proof. �

In order to apply the Schauder fixed point theorem on the mapping (U, θ̃) 7→
(u, θ), it remains to prove that the mapping is continuous. This is a consequence

of the following two lemmas.

Lemma 3.3. The solution operator
(
U, θ̃

)
7→ (u, r) of problem (3.1)–(3.2) is

continuous in Mdiv u(m)×Mθ(m) as a mapping from W 1,2 × L2 to W 1,2 × L2.

Proof. Let us consider a solution to (3.1)–(3.2) u1, r1 corresponding to

θ̃1,U1. Denoting %1 = m+ r1 we have

m div u1 + div(r1u1) = 0,(3.32)

(m+ r1)U1 · ∇u1 − div
(
2(m+ r1)D(u1)

)
+ γmγ−1∇r1 +∇Rm(r1)(3.33)

= %1F−∇(%1θ̃1),

and similarly, for u2, r2 corresponding to θ̃2,U2,

m div u2 + div(r2u2) = 0,(3.34)

(m+ r2)U2 · ∇u2 − div
(
2(m+ r2)D(u2)

)
+ γmγ−1∇r2 +∇Rm(r2)(3.35)

= %2F−∇(%2θ̃2).

Subtraction yields

(3.36) m div(u1 − u2) + div((r1 − r2)u1) + div(r2(u1 − u2)) = 0,

(3.37) %1(U1 −U2) · ∇u1 + %1U2 · ∇(u1 − u2)

+ (r1 − r2)U2 · ∇u2 − div
(
2%1D(u1 − u2) + 2(r1 − r2)D(u2)

)
+ γmγ−1∇(r1 − r2) +∇

(
Rm(r1)−Rm(r2)

)
= (r1 − r2)F−∇

(
(r1 − r2)θ̃1 + %2(θ̃1 − θ̃2)

)
.

Let us test equation (3.36) by difference γmγ−2(r1 − r2), this yields after some

integration by parts

(3.38)

∫
Ω

γmγ−1(u1 − u2) · ∇(r1 − r2) dx

= γmγ−2

∫
Ω

|r1 − r2|2

2
div u1 + (r1 − r2)(u1 − u2)

· ∇r2 + r2(r1 − r2) div(u1 − u2) dx.

Further, testing equation (3.37) by u1−u2 we obtain the kinetic energy estimate,

the second resulting term can be transformed as follows∫
Ω

(m+ r1)U2 · ∇(u1 − u2)(u1 − u2) dx =
1

2

∫
Ω

(m+ r1)U2 · ∇|u1 − u2|2 dx

= −
∫

Ω

(m+ r1) div U2
|u1 − u2|2

2
dx−

∫
Ω

|u1 − u2|2

2
U2 · ∇r1 dx,
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in order to be pushed to the left-hand side of the resulting inequality, while

for the leading term of the pressure we can use (3.38). Therefore, as in [3] we

can conclude

m‖u1 − u2‖21,2 ≤ Cmγ−2‖r1 − r2‖22‖ div u1‖∞(3.39)

+ C‖u1 − u2‖1,2
(
m‖U1 −U2‖3‖∇u1‖2 +mγ−2‖r1 − r2‖2‖∇r2‖3

+mγ−2‖r1 − r2‖2‖r2‖∞ +m
∥∥θ̃1 − θ̃2

∥∥
2

+ ‖r1 − r2‖2
(
‖U2 · ∇u2‖3 + ‖∇u2‖∞ + ‖F‖3 +

∥∥θ̃1

∥∥
∞

))
,

and with the help of the Young inequality

m‖u1 − u2‖21,2 ≤ Cmγ−2‖r1 − r2‖22‖ div u1‖∞
+ C

(
m‖U1 −U2‖23‖∇u1‖22 +m2γ−5‖r1 − r2‖22‖∇r2‖23

+m2γ−5‖r1 − r2‖22‖r2‖2∞ +m
∥∥θ̃1 − θ̃2

∥∥2

2

+m−1‖r1 − r2‖22
(
‖U2 · ∇u2‖23 + ‖∇u2‖2∞ + ‖F‖23 +

∥∥θ̃1

∥∥2

∞

))
,

and

(3.40) m‖u1 − u2‖21,2 ≤ C
(
mγ−2‖r1 − r2‖22‖ div u1‖∞ +m‖U1 −U2‖23E2

+m
∥∥θ̃1 − θ̃2

∥∥2

2
+ ‖r1 − r2‖22

(
m−1C2

F(E2 + 1) +m−1‖F‖23
))
.

To finish the estimates we need to obtain L2 estimate of the difference r1 − r2

by means of the Bogovskĭı operator from Lemma A.4. We test (3.37) by Φ =

B[%2 − %1] in order to obtain

mγ−1‖r1 − r2‖22 ≤C
(
m‖U2‖3‖u1 − u2‖1,2‖Φ‖6 +m‖U1 −U2‖3‖∇u2‖2‖Φ‖6

+ ‖r1 − r2‖2‖F‖3‖Φ‖6 + ‖r1 − r2‖2‖U2‖∞‖∇u2‖3‖Φ‖6
+ 2m‖u1 − u2‖1,2‖∇Φ‖2 + ‖r1 − r2‖2‖∇u2‖∞‖∇Φ‖2

+ ‖r1 − r2‖2
∥∥θ̃1

∥∥
∞‖∇Φ‖2 +m

∥∥θ̃1 − θ̃2

∥∥
2
‖∇Φ‖2

)
,

and using again the Young inequality and the fact that C2
F, ‖F‖3 � mγ−1

mγ−1‖r1 − r2‖22 ≤Cm3−γ(‖U2‖23‖u1 − u2‖21,2(3.41)

+ ‖U1 −U2‖23‖∇u2‖22 + ‖u1 − u2‖21,2 +
∥∥θ̃1 − θ̃2

∥∥2

2

)
≤Cm3−γ(‖u1 − u2‖21,2(E2 + 1)

+ ‖U1 −U2‖23‖∇u2‖22 +
∥∥θ̃1 − θ̃2

∥∥2

2

)
.

Then we combine (3.41) with estimate (3.40) and conclude

(3.42) mγ−2‖r1−r2‖22 +‖u1−u2‖21,2 ≤ C(F,m)
(∥∥θ̃1− θ̃2

∥∥2

2
+‖U1−U2‖21,2

)
. �
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Further, we write estimates of higher order for systems for (3.32) and (3.34),

based on analysis from Section 2,

mγ−1‖ri‖1,p + ‖ui‖2,p ≤ C(F,m)
(
‖Ui‖1,∞ +

∥∥θ̃i∥∥1,∞ + 1
)
.(3.43)

Hence, interpolation yields

‖u1 − u2‖1,∞ ≤ C‖u1 − u2‖β1,2‖u1 − u2‖1−β2,p

≤ C(F,m)
(
‖U1 −U2‖1,2 +

∥∥θ̃1 − θ̃2

∥∥
2

)β(‖U1‖1−β1,∞ + ‖θ̃1‖1−β1,∞ + 1
)

for some β ∈ (0, 1), and similarly for the density since

‖r1 − r2‖1,2 ≤ C‖r1 − r2‖1−β
′

2

(
‖r1‖β

′

1,p + ‖r2‖β
′

1,p

)
with β′ ∈ (0, 1). This implies that the mapping from Lemma 3.3 is in fact

continuous in norms

(3.44) W 1,∞(Ω)×W 1,∞(Ω)→W 1,∞(Ω)×W 1,2(Ω).

Lemma 3.4. The mapping
(
u, r, θ̃

)
7→ θ of the solution operator to (3.3) is

continuous on Mdiv u(m)×Mr(m)×Mθ(m) as a mapping from W 1,2 ×W 1,2 ×
W 1,2 to W 1,2.

Proof. Consider two solutions θi, i = 1, 2 corresponding to ui, ri, θ̃i

−div(κ(%i, θ̃i)∇θi) = S(%i,ui) : D(ui)− %iui · ∇θi − %θi div ui in Ω,

−κ(%i, θ̃i)∇θi · n = L(%i, θ̃i)(θi −Θ0) on ∂Ω.

Taking the difference of those two equations, multiplying by θ1 − θ2 and inte-

grating over Ω yields∫
Ω

(
κ(%1, θ̃1)∇θ1 − κ(%2, θ̃2)∇θ2

)
· ∇(θ1 − θ2)dx(3.45)

+

∫
∂Ω

(
L(%1, θ̃1)(θ1 −Θ0)− L(%2, θ̃2)(θ2 −Θ0)

)
(θ1 − θ2) dS

= −
∫

Ω

(
%1θ1 div u1−%2θ2 div u2+%1u1 · ∇θ1−%2u2 · ∇θ2

)
(θ1 − θ2) dx

+

∫
Ω

(
%1|D(u1)|2 − %2|D(u2)|2

)
(θ1 − θ2) dx.

We rearrange the terms in order to see the differences. The left-hand side of

(3.45) can be written

l.h.s. =

∫
Ω

κ(%1, θ̃1)|∇(θ1 − θ2)|2 +
(
(r1 − r2)k1(θ̃1)

+ %2

(
k1(θ̃1)− k1(θ̃2)

))
∇θ2 · ∇(θ1 − θ2) dx

+

∫
∂Ω

L(%1, θ̃1)|θ1 − θ2|2 +
(
(r1 − r2)k2(θ̃1)

+ %2

(
k2(θ̃1)− k2(θ̃2)

))
(θ2 −Θ0)(θ1 − θ2) dS
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and the right-hand side

r.h.s =

∫
Ω

%1

(
|D(u1)|2 − |D(u2)|2

)
(θ1 − θ2) + (r1 − r2)|D(u2)|2(θ1 − θ2)

−
∫

Ω

%1 div u1(θ1 − θ2)2

+ (r1 − r2)θ2 div u1(θ1 − θ2) + %2θ2 div(u1 − u2)(θ1 − θ2) dx

−
∫

Ω

%1u1 · ∇
(θ1 − θ2)2

2

+ (r1 − r2)u1∇θ2(θ1 − θ2) + %2(u1 − u2)∇θ2(θ1 − θ2) dx =

8∑
n=1

Jn.

The leading terms on the left-hand side give us estimate on m‖θ1− θ2‖21,2, while

the rest will be estimated. Using the Lipschitz continuity of k1 and k2∫
Ω

(
(r1 − r2)k1(θ̃1) + %2

(
k1(θ̃1)− k1(θ̃2)

))
∇θ2 · ∇(θ1 − θ2) dx

≤ C
(
‖r1 − r2‖2 +m

∥∥θ̃1 − θ̃2

∥∥
2

)
‖∇θ2‖∞‖θ1 − θ2‖1,2,

and similarly∫
∂Ω

(
(r1 − r2)k2(θ̃1) + %2

(
k2(θ̃1)− k2(θ̃2)

))
(θ2 −Θ0)(θ1 − θ2) dS

≤ C
(
‖r1 − r2‖1,2 +m

∥∥θ̃1 − θ̃2

∥∥
1,2

)(
‖θ2‖1,p + ‖Θ‖L∞(∂Ω)

)
‖θ1 − θ2‖1,2.

Further,

|J1| ≤ Cm‖u1 − u2‖1,2‖u1 + u2‖1,∞‖θ1 − θ2‖2,

|J2| ≤ C‖r1 − r2‖2‖u2‖21,∞‖θ1 − θ2‖2,

|J3| ≤ Cm‖div u1‖p‖θ1 − θ2‖21,2,

|J4| ≤ ‖r1 − r2‖2‖θ2‖∞‖ div u1‖∞‖θ1 − θ2‖2,

|J5| ≤ Cm‖θ2‖∞‖u1 − u2‖1,2‖θ1 − θ2‖2,

J6 =

∫
Ω

div(%1u1)
(θ1 − θ2)2

2
dx = 0,

|J7| ≤ C‖r1 − r2‖2‖u1‖∞‖θ2‖1,∞‖θ1 − θ2‖2,

|J8| ≤ m‖u1 − u2‖1,2‖θ2‖1,∞‖θ1 − θ2‖2.

Therefore, the term J3 can be put directly to the left-hand side, since ‖ div u1‖p
� 1, while for all the others we use the Young inequality. Thus, we conclude

‖θ1 − θ2‖21,2 ≤ C(F,Θ0,m)
(
‖u1 − u2‖21,2 + ‖r1 − r2‖21,2 +

∥∥θ̃1 − θ̃2

∥∥2

1,2

)
. �
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In order to finish the proof of the main theorem, we again use the higher

order estimate for θ with (3.43)

‖θi‖2,p ≤ C(m)
(
‖ui‖2,p+‖ri‖2,p+

∥∥θ̃i∥∥1,∞+1
)
≤ C(m)

(
‖Ui‖1,∞+

∥∥θ̃i∥∥1,∞+1
)

and interpolate with some β ∈ (0, 1)

‖θ1 − θ2‖1,∞ ≤ C‖θ1 − θ2‖β1,2
(
‖θ1‖2,p + ‖θ2‖2,p)1−β

to conclude that the mapping from the previous lemma is in fact continuous in

norms

W 1,∞ ×W 1,2 ×W 1,∞ 7→W 1,∞.

Therefore, combining with (3.44) (U, θ̃) 7→ (u, θ) continuously maps closed sub-

set Mdiv u(m) × Mθ(m) ⊂ W 1,∞ × W 1,∞ into its compact subset Mu(m) ×
(Mθ(m)∩W 2,p(Ω)). Thus, according to the Schauder theorem it possesses a fixed

point. This concludes the proof of the main theorem.

Remark 3.5. Note that we could replace the assumption that the viscosity

and the heat conductivity depend on the density by an assumption that these

quantities are constant and sufficiently large.

Remark 3.6. We proved in detail the existence of a solution only for p <

(9 + 3
√

5)/2. Note however, that if p is larger than this value (or equal to it), we

get existence of a solution in the corresponding spaces for some p0 < (9 + 3
√

5)/2.

Remember, the domain is bounded, so the imbeddings in a lower space are tri-

vial. Since the temperature is bounded strictly away from zero (see the proof

of Lemma 3.2), we can repeat the arguments from Section 2 (a priori estimates)

to show that our solution belongs not only to spaces corresponding to the inte-

grability exponent p0, but also to the spaces corresponding to the integrability

exponent p ≥ (9 + 3
√

5)/2.

Appendix A

At this place we want to state few technical lemmas, which are used through-

out the proof. We frequently use the well-known Gagliardo–Nirenberg interpo-

lation inequality

Lemma A.1. Let k ∈ N, p > 3, λ ∈ [0, 1] then we have

(A.1) ‖f‖r ≤ C‖f‖1−λq ‖f‖λk,p provided
1

r
= λ

(
1

p
− k

3

)
+ (1− λ)

1

q
.

We recall the Lp-regularity properties of an elliptic equation in a divergence

form with Neumann boundary condition

(A.2)
− div(A(x)∇u) = g in Ω,

A∇u · n = h on ∂Ω,
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where we assume A to be elliptic
(∑
i,j

aijξiξj ≥ α|ξ|2, for all ξ ∈ R3
)

with some

α > 0 and symmetric (aij = aji). The following result due to Agmon, Douglis,

Nirenberg (see [1]) holds true.

Lemma A.2. Let Ω ⊂ R3 be a bounded domain with C2 boundary, 1 < p <∞,

assume that A ∈ C1(Ω), g ∈ Lp(Ω), h ∈W 1−1/p,p(∂Ω). Then there exists C > 0

such that any solution to (A.2) satisfies

(A.3) ‖u‖2,p ≤ C
(
‖g‖p + ‖h‖W 1−1/p,p(∂Ω) + ‖u‖p

)
.

Further, we need the regularity properties of the semilinear heat equation

(A.4)
−div

(
%(x)k(u)∇u

)
= g in Ω,

−%(x)k(u)∇u · n = h on ∂Ω,

with % ≥ m/2 > 0, and k as in (1.11).

Lemma A.3. Let Ω ⊂ R3 be a bounded domain with C2 boundary, 3 < p <∞,

assume that % ∈ W 1,p(Ω), g ∈ Lp(Ω), h ∈ W 1−1/p,p(∂Ω). Then there exists

C > 0 such that any solution to (A.4) satisfies

(A.5) ‖u‖2,p ≤ C
(
‖g‖p + ‖h‖W 1−1/p,p(∂Ω) + ‖u‖p

)
.

Proof. The proof is a consequence of previous Lemma A.2 and the Kirchhoff

transform. Namely, we define

T = k̃(u) =

∫ u

0

k(s) ds,

then we have div(%k(u)∇u) = div(%∇T ) and thus (A.4) transforms to linear

equation

(A.6)
−div(%(x)∇T ) = g in Ω,

−%(x)∇T · n = h on ∂Ω,

as W 1,p(Ω) ↪→ C1,α(Ω) the equation is elliptic with regular enough coefficients

hence by previous lemma we have

m‖T‖2,p ≤ C
(
‖g‖p + ‖h‖W 1−1/p,p(∂Ω) + ‖T‖p

)
.

Finally, as k̃−1 is Lipschitz continuous, we have θ = k̃−1(T ) ∈ W 1,∞(Ω). Thus,

the whole coefficient %(x)k(u) in (A.4) possesses the regularity W 1,p(Ω), and we

can apply Lemma A.2 directly on (A.4), which finishes the proof. �

Lemma A.4 (Bogovskĭı). Let Ω ⊂ R3 be a bounded domain with Lipschitz

boundary, then there exists a bounded linear operator B

B :

{
f, f ∈ Lp(Ω),

∫
Ω

f(x) dx = 0

}
→W 1,p(Ω), 1 < p <∞

such that
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(a) div(B[f ]) = f almost everywhere in Ω, id est u = B[f ] solves the equation

div u = f with the boundary condition u = 0 on ∂Ω

(b) there exists a constant c = c(d, p,Ω) such that

‖B[f ]‖1,p ≤ c‖f‖p, for all 1 < p <∞.

We will also need the regularity properties of the solutions to the following

(overdetermined) system

(A.7)

curl u = f in Ω,

div u = 0 in Ω,

u · n = 0 on ∂Ω,

with the compatibility conditions div f = 0 in Ω, f · n = 0 on ∂Ω. The following

result holds true, see Solonnikov [23]; the assumption concerning the regularity

of the domain can be relaxed, see Mucha, Pokorný [15].

Theorem A.5. Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary,

let f ∈W 1,p(Ω), 1 < p < +∞, div f = 0 in Ω, f ·n = 0 on ∂Ω. Then there exists

a constant c = c(Ω, p) such that the unique solution u to system (A.7) satisfies

‖∇u‖p ≤ c‖f‖p, ‖∇2u‖p ≤ c‖f‖1,p.

References

[1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions

of elliptic partial differential equations satisfying general boundary conditions. I, Comm.

Pure Appl. Math. 12 (1959), 623–727.

[2] T. Alazard, Low Mach number limit of the full Navier–Stokes equations, Arch. Ration.

Mech. Anal. 180 (2006), no. 1, 1–73.
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