Topological Methods in Nonlinear Analysis Volume 52, No. 2, 2018, 585–597 DOI: 10.12775/TMNA.2018.021

© 2018 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Congruicus University

EXISTENCE OF SOLUTIONS FOR THE SEMILINEAR CORNER DEGENERATE ELLIPTIC EQUATIONS

JAE-MYOUNG KIM

ABSTRACT. In this paper, we are concerned with the following elliptic equations:

$$\begin{cases} -\Delta_{\mathbb{M}} u = \lambda f & \text{in } z := (r, x, t) \in \mathbb{M}_0, \\ u = 0 & \text{on } \partial \mathbb{M}. \end{cases}$$

Here, $\lambda>0$ and $M=[0,1)\times X\times [0,1)$ as a local model of stretched cornermanifolds, that is, the manifolds with corner singularities with dimension $N=n+2\geq 3$. Here X is a closed compact submanifold of dimension n embedded in the unit sphere of \mathbb{R}^{n+1} . We study the existence of nontrivial weak solutions for the semilinear corner degenerate elliptic equations without the Ambrosetti and Rabinowitz condition via the mountain pass theorem and fountain theorem.

1. Introduction

In this paper, we are concerned with some results about the existence and multiplicity of weak solutions for elliptic equations in a domain M:

(1.1)
$$\begin{cases} -\Delta_{\mathbb{M}} u = \lambda f & \text{in } z := (r, x, s) \in \mathbb{M}_0, \\ u = 0 & \text{on } \partial \mathbb{M}. \end{cases}$$

²⁰¹⁰ Mathematics Subject Classification. 35J20, 58J05, 35J75.

Key words and phrases. Semilinear; corner; degenerate elliptic.

The author was supported by BK21 PLUS SNU Mathematical Sciences Division and the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2016R1D1A1B03930422).