Topological Methods in Nonlinear Analysis Volume 52, No. 2, 2018, 515–540 DOI: 10.12775/TMNA.2018.014

© 2018 Juliusz Schauder Centre for Nonlinear Studies

POINTWISE ESTIMATES IN THE FILIPPOV LEMMA AND FILIPPOV–WAŻEWSKI THEOREM FOR FOURTH ORDER DIFFERENTIAL INCLUSIONS

Grzegorz Bartuzel — Andrzej Fryszkowski

ABSTRACT. In this work we give a generalization of the Filippov–Ważewski Theorem to the fourth order differential inclusions in a separable complex Banach space $\mathbb X$

$$\mathcal{D}y = y'''' - (A^2 + B^2)y'' + A^2B^2y \in F(t, y),$$

with the initial conditions in $c \in [0, T]$

$$(0.1) y(c) = \alpha, y'(c) = \beta, y''(c) = \gamma, y'''(c) = \delta,$$

We assume that the multifunction $F:[0,T]\times\mathbb{X}\leadsto c(\mathbb{X})$ is Lipschitz continuous in y with the integrable Lipschitz constant $l(\,\cdot\,)$, while $A^2,B^2\in B(\mathbb{X})$ are the infinitesimal generators of two cosine families of operators. The main result is the following version of Filippov Lemma:

Theorem. Let $y_0 \in W^{4,1} = W^{4,1}([0,T],\mathbb{X})$ be such function with (0.1) that

$$dist(\mathcal{D}y_0(t), F(t, y_0(t))) \le p_0(t)$$
 a.e. in $[c, d] \subset [0, T]$,

where $p_0 \in L^1[0,T]$. Then there are σ_0 (depending on p_0) and φ such that for each $\varepsilon > 0$ there exists a solution $y \in W^{4,1}$ of the above problem such that almost everywhere in $t \in [c,d]$ we have $|\mathcal{D}y(t) - \mathcal{D}y_0(t)| \leq \sigma_0(t)$,

$$\begin{aligned} |y(t) - y_0(t)| &\leq (\varphi *_c \sigma_0)(t), & |y'(t) - y_0'(t)| &\leq (\varphi' *_c \sigma_0 t)(t), \\ |y''(t) - y_0''(t)| &\leq (\varphi'' *_c \sigma_0)(t) & |y'''(t) - y_0'''(t)| &\leq (\varphi''' *_c \sigma_0)(t), \end{aligned}$$

where $*_c$ stands for the convolution started at c.

Our estimates are constructive and more precise then those in the known versions of Filippov Lemma. $\,$

²⁰¹⁰ Mathematics Subject Classification. 26A24, 28A15, 46G05, 39A05, 28A05. Key words and phrases. Differential inclusion; beam differential operator; cosine family (of operators); Lipschitz multifunction; Filippov Lemma; Filippov-Ważewski Theorem.