
Topological Methods in Nonlinear Analysis
Volume 51, No. 2, 2018, 345–370

DOI: 10.12775/TMNA.2017.063

c© 2018 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University

A CLASS OF DE GIORGI TYPE

AND LOCAL BOUNDEDNESS

Duchao Liu — Jinghua Yao

Abstract. Under appropriate assumptions on the N(Ω)-function, the De

Giorgi process is presented in the framework of Musielak–Orlicz–Sobolev

spaces. As the applications, the local boundedness property of the minimiz-
ers for a class of the energy functionals in Musielak–Orlicz–Sobolev spaces

is proved; and furthermore, the local boundedness of the weak solutions for

a class of fully nonlinear elliptic equations is provided.

1. Introduction

In the study of nonlinear differential equations, it is well known that more

general functional spaces can handle differential equations with more complex

nonlinearities. If one would like to study a general form of differential equations,

it is crucial to find a proper functional space in which the solutions may exist.

The Musielak–Orlicz–Sobolev (or Musielak–Sobolev) space is such a generaliza-

tion of the Sobolev space that the classical Sobolev spaces, variable exponent

Sobolev spaces and Orlicz–Sobolev spaces can be interpreted as its special cases.

The properties and applications of Orlicz–Sobolev spaces and variable expo-

nent Sobolev spaces have been studied extensively in recent years, see for example
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[3], [5], [6], [11], [16], [17]. In [3], the trace on the inner lower dimensional hy-

perplanes of Olicz–Sobolev spaces was considered. In [11], Fan investigated the

trace embedding of the variable exponent Sobolev spaces. In a recent paper [5],

the authors considered the W 1,p( · )-regularity for elliptic equations with measur-

able coefficients in nonsmooth domains. To our best knowledge, however, the

properties of Musielak–Sobolev spaces have been little studied. In [4], Benkirane

and Sidi presented an embedding theorem in Musielak–Sobolev spaces. In [12],

[13], Fan established some properties of these functional spaces, including an

embedding theorem, and a compact embedding theorem in a bounded domain.

And in [14], Fan and Guan studied the uniform convexity of Musielak–Sobolev

spaces and presented some applications. As an application of the embedding

results in [13], the authors in [20] showed the existence of solutions to a class of

fully nonlinear elliptic equation via variational methods. Very recently the au-

thors of [19] studied the trace regularities of Musielak–Sobolev spaces, including

both the trace on the inner lower dimensional hyperplanes and the trace on the

boundary; also they established some compact trace embedding results.

Our aim here is to study the local boundedness of the minimizers for func-

tionals defined on Musielak–Sobolev spaces and the local boundedness of weak

solutions for the associated fully nonlinear elliptic equations. Recall first some

important classical regularity results for the minimizers of integral functionals

within the Sobolev, variable exponent, Orlicz and Musielak–Sobolev framework

settings in the literature. In an early work [1], Acerbi and Fusco proved that

for any W 1,p
loc (Ω;RN )-local minimizer u with 1 < p < 2 of the integral functional∫

f(x, v(x), Dv(x)) dx, its gradient Du is locally λ-Hölder continuous for some

λ > 0 when f fulfills some uniformly p-exponent increasing conditions. Some

regularity results in the variable exponent spaces framework can be found in

the work of Diening, Hästö, Roudenko [7]. They also performed an important

study [7] of Triebel–Lizorkin spaces with variable smoothness and integrabil-

ity, including a trace theorem in the variable indices case. In [2], Adamowicz

and Toivanen showed the continuity of quasiminimizers of the energy function-

als
∫
f(x, u,∇u) dx when f satisfies some uniformly p( · )-exponent monotonicity

assumptions. In [8], [9], the authors proved a series of regularity results in Orlicz

spaces. More precisely, they proved in [8] the C1,α-regularity for local minimizers

of functionals with ϕ-growth including the decay estimate, where ϕ is a convex

C1-function independent of the parameter x ∈ Ω ⊂ RN ; in [9], a local Lipschitz

result for the local minimizers of asymptotically convex variational integrals was

established. For regularity results in the Musielak–Sobolev setting, the authors

of [18] showed that Harnack’s inequality still holds for quasi-minimizers in the

Musielak–Sobolev spaces without any polynomial growth or coercivity condi-

tions, which yields the local Hölder continuity of quasi-minimizers. Comparing
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with our current study, it is interesting to notice that we propose a different

monotonicity assumption for the function Φ from that in [18]. Also we propose a

more general uniform monotonicity condition on the function N(Ω). Moreover,

with the regularity results of the key Lemma 3.6, we can prove not only the

local boundedness property of the minimizers for a more general class of energy

functionals (see Section 4), but also the local boundedness of a kind of weak

solutions for a class of fully nonlinear elliptic equations (see Section 5).

In our study, the strong nonlinear nature of the problems brings fundamental

technical complexity in computations. In order to make computations and expo-

sition more transparent, we explore and develop deep connections between the

function N(Ω), its Young’s complementary function, and its Sobolev’s conjugate

function, see Lemma 3.1. The key lemma of the paper is Lemma 3.4, which

is an important fully nonlinear iteration lemma in the De Giorgi process. The

lemma is a much more general case for the iteration process. It is our belief that

the lemmas established here supply a crucial set of tools in the future studies

of regularity properties for critical points of integral functional and the associ-

ated weak solutions of fully nonlinear equations in the Musielak–Orlicz–Sobolev

spaces framework.

Our results have wide applicability. We claim that not only variable exponent

Sobolev spaces satisfy the conditions of Theorems 4.1 and 5.2 (see Example 6.1 in

Section 6), but also some more complex cases do (see Example 6.2 in Section 6).

The paper is organized as follows. In Section 2, for the readers’ convenience

we recall some definitions and properties about Musielak–Orlicz–Sobolev spaces.

In Section 3, we establish some crucial lemmas in order to prove main results of

this paper. In Section 4, we prove the local boundedness of the minimizers of

a class of the energy functionals in Musielak–Orlicz–Sobolev spaces. In Section 5,

the local boundedness of the weak solution to a class of fully nonlinear elliptic

equations is provided.

2. The Musielak–Orlicz–Sobolev spaces

In this section, we list some definitions and propositions related to Musielak–

Orlicz–Sobolev spaces. Firstly, we give the definition of an N -function and

generalized N -function.

Definition 2.1. A function A : R → [0,+∞) is called an N -function, de-

noted by A ∈ N , if A is even and convex, A(0) = 0, 0 < A(t) ∈ C0 for t 6= 0,

and the following conditions hold:

lim
t→0+

A(t)

t
= 0 and lim

t→+∞

A(t)

t
= +∞.
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Let Ω be a smooth domain in Rn. A function A : Ω × R → [0,+∞) is called

a generalized N -function, denoted by A ∈ N(Ω), if for each t ∈ [0,+∞), the

function A( · , t) is measurable, and for almost every x ∈ Ω, we have A(x, · ) ∈ N .

Let A ∈ N(Ω), the Musielak–Orlicz space LA(Ω) is defined by

LA(Ω) :=

{
u : u is a measurable real function, and ∃λ > 0

such that

∫
Ω

A

(
x,
|u(x)|
λ

)
dx < +∞

}
with the (Luxemburg) norm

‖u‖LA(Ω) = ‖u‖A := inf

{
λ > 0 :

∫
Ω

A

(
x,
|u(x)|
λ

)
dx ≤ 1

}
.

The Musielak–Sobolev space W 1,A(Ω) is defined by

W 1,A(Ω) := {u ∈ LA(Ω) : |∇u| ∈ LA(Ω)}

with the norm

‖u‖W 1,A(Ω) = ‖u‖1,A := ‖u‖A + ‖∇u‖A,
where ‖∇u‖A := ‖ |∇u| ‖A.

A is called locally integrable if A( · , t0) ∈ L1
loc(Ω) for every t0 > 0.

Definition 2.2. We say that a(x, t) is the Musielak derivative of A(x, t) ∈
N(Ω) at t if for x ∈ Ω and t ≥ 0, a(x, t) is the right-hand derivative of A(x, · )
at t; and for x ∈ Ω and t ≤ 0, a(x, t) := −a(x,−t).

Define Ã : Ω× R→ [0,+∞) by

Ã(x, s) = sup
t∈R

(st−A(x, t)) for x ∈ Ω and s ∈ R.

Ã is called the complementary function to A in the sense of Young. It is well

known that if A ∈ N(Ω), then Ã ∈ N(Ω) and A is also the complementary

function to Ã.

For x ∈ Ω and s ≥ 0, we denote by a−1
+ (x, s) the right-hand derivative of

A′(x, · ) at s, at the same time define a−1
+ (x, s) = −a−1

+ (x,−s) for x ∈ Ω and

s ≤ 0. Then for x ∈ Ω and s ≥ 0, we have

a−1
+ (x, s) = sup{t ≥ 0 : a(x, t) ≤ s} = inf {t > 0 : a(x, t) > s}.

Proposition 2.3 (see [12], [21]). Let A ∈ N(Ω). Then the following asser-

tions hold:

(a) A(x, t) ≤ a(x, t)t ≤ A(x, 2t) for x ∈ Ω and t ∈ R;

(b) A and Ã satisfy the Young inequality

st ≤ A(x, t) + Ã(x, s) for x ∈ Ω and s, t ∈ R,

and the equality holds if s = a(x, t) or t = a−1
+ (x, s).
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Let A,B ∈ N(Ω). We say that A is weaker than B, denoted by A 4 B, if

there exist positive constants K1, K2 and h ∈ L1(Ω) ∩ L∞(Ω) such that

(2.1) A(x, t) ≤ K1B(x,K2t) + h(x) for x ∈ Ω and t ∈ [0,+∞).

Proposition 2.4 (see [12], [21]). Let A,B ∈ N(Ω) and A 4 B. Then

B̃ 4 Ã, LB(Ω) ↪→ LA(Ω) and LÃ(Ω) ↪→ LB̃(Ω).

Definition 2.5. We say that a function A : Ω× [0,+∞)→ [0,+∞) satisfies

the ∆2(Ω) condition, denoted by A ∈ ∆2(Ω), if there exist a positive constant

K > 0 and a nonnegative function h ∈ L1(Ω) such that

A(x, 2t) ≤ KA(x, t) + h(x) for x ∈ Ω and t ∈ [0,+∞).

If A(x, t) = A(t) is an N -function and h(x) ≡ 0 in Ω in Definition 2.5, then

A ∈ ∆2(Ω) if and only if A satisfies the well-known ∆2 condition defined in [3]

and [10].

Proposition 2.6 (see [12]). Let A ∈ N(Ω) satisfy ∆2(Ω). Then the following

assertions hold:

(a) LA(Ω) ={u : u is a measurable function, and
∫

Ω
A(x, |u(x)|) dx < +∞};

(b)
∫

Ω
A(x, |u|) dx < 1 (resp. = 1; > 1) if and only if ‖u‖A < 1 (resp. = 1;

> 1), where u ∈ LA(Ω);

(c)
∫

Ω
A(x, |un|) dx → 0 (resp. 1; +∞) if and only if ‖un‖A → 0 (resp. 1;

+∞), where {un} ⊂ LA(Ω);

(d) if un → u in LA(Ω) then
∫

Ω
|A(x, |un|) dx−A(x, |u|)| dx→ 0 as n→∞;

(e) if A′ also satisfies ∆2, then∣∣∣∣ ∫
Ω

u(x)v(x) dx

∣∣∣∣ ≤ 2‖u‖A‖v‖Ã for all u ∈ LA(Ω), v ∈ LÃ(Ω);

(f) a( · , |u( · )|) ∈ LÃ(Ω) for every u ∈ LA(Ω).

The following assumptions will be used:

(C1) inf
x∈Ω

A(x, 1) = c1 > 0.

(C2) For every t0 > 0, there exists c = c(t0) > 0 such that

A(x, t)

t
≥ c and

Ã(x, t)

t
≥ c for all t ≥ t0, x ∈ Ω.

Remark 2.7. Obviously, (C2) ⇒ (C1). If A(x, t) = A(t) is an N -function,

then (C1) and (C2) hold automatically, and A is automatically locally integrable.

Proposition 2.8 (see [12]). If A ∈ N(Ω) satisfies (C1), then LA(Ω) ↪→
L1(Ω) and W 1,A(Ω) ↪→W 1,1(Ω).
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Proposition 2.9 (see [12]). Let A ∈ N(Ω), both A and Ã be locally integrable

and satisfy ∆2(Ω) and (C2). Then the space LA(Ω) is reflexive, and the mapping

J : LÃ(Ω)→ (LA(Ω))∗ defined by

〈J(v), w〉 =

∫
Ω

v(x)w(x) dx for all v ∈ LÃ(Ω), w ∈ LA(Ω)

is a linear isomorphism, and ‖J(v)‖(LA(Ω))∗ ≤ 2‖v‖LÃ(Ω).

Let A ∈ N(Ω) be locally integrable. We will denote

W 1,A
0 (Ω) := C∞0 (Ω)

‖ · ‖
W1,A(Ω) , D1,A

0 (Ω) := C∞0 (Ω)
‖∇ · ‖LA(Ω) .

In the case that ‖∇u‖A is an equivalent norm in W 1,A
0 (Ω), W 1,A

0 (Ω) = D1,A
0 (Ω).

Proposition 2.10 (see [12]). Let A ∈ N(Ω) be locally integrable and sat-

isfy (C1). Then

(a) the spaces W 1,A(Ω),W 1,A
0 (Ω) and D1,A

0 (Ω) are separable Banach spaces,

and

W 1,A
0 (Ω) ↪→W 1,A(Ω) ↪→W 1,1(Ω),

D1,A
0 (Ω) ↪→ D1,1

0 (Ω) = W 1,1
0 (Ω);

(b) the spaces W 1,A(Ω),W 1,A
0 (Ω) and D1,A

0 (Ω) are reflexive provided LA(Ω)

is reflexive.

Proposition 2.11 (see [12]). Let A,B ∈ N(Ω) and A be locally integrable.

If there is a compact imbedding W 1,A(Ω) ↪→↪→ LB(Ω) and A 4 B, then there

holds the following Poincaré inequality

‖u‖A ≤ c‖∇u‖A for all u ∈W 1,A
0 (Ω),

which implies that ‖∇ · ‖A is an equivalent norm in W 1,A
0 (Ω) and W 1,A

0 (Ω) =

D1,A
0 (Ω).

The following assumptions will be used:

(P1) Ω ⊂ Rn, n ≥ 2, is a bounded domain with the cone property, and

A ∈ N(Ω);

(P2) A : Ω× R→ [0,+∞) is continuous and A(x, t) ∈ (0,+∞) for x ∈ Ω and

t ∈ (0,+∞).

Let A satisfy (P1) and (P2). Denote by A−1(x, · ) the inverse function of

A(x, · ). We always assume that the following condition holds:

(P3) A ∈ N(Ω) and

(2.2)

∫ 1

0

A−1(x, t)

t(n+1)/n
dt < +∞ for all x ∈ Ω.
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Under assumptions (P1)–(P3), for each x ∈ Ω, the function

A(x, · ) : [0,+∞)→ [0,+∞)

is a strictly increasing homeomorphism.

Define a function A−1
∗ : Ω× [0,+∞)→ [0,+∞) by

A−1
∗ (x, s) =

∫ s

0

A−1(x, τ)

τ (n+1)/n
dτ for x ∈ Ω and s ∈ [0,+∞).

Then, under assumption (P3), A−1
∗ is well defined, and A−1

∗ (x, · ) is strictly

increasing, A−1
∗ (x, · ) ∈ C1((0,+∞)), and the function A−1

∗ (x, · ) is concave for

each x ∈ Ω. Set

(2.3) T (x) = lim
s→+∞

A−1
∗ (x, s) for all x ∈ Ω.

Then 0 < T (x) ≤ +∞. Define an even function A∗ : Ω× R→ [0,+∞) by

A∗(x, t) =

s if x ∈ Ω, |t| ∈ [0, T (x)) and A−1
∗ (x, s) = |t|,

+∞ for x ∈ Ω and |t| ≥ T (x).

Then, if A ∈ N(Ω) and T (x) = +∞ for any x ∈ Ω, it is well known that

A∗ ∈ N(Ω) (see [3]). A∗ is called the Sobolev conjugate function of A (see [3]

for the case of Orlicz functions).

Let X be a metric space and f : X → (−∞,+∞] be an extended real-valued

function. For x ∈ X with f(x) ∈ R, the continuity of f at x is well defined. For

x ∈ X with f(x) = +∞, we say that f is continuous at x if, given any M > 0,

there exists a neighbourhood U of x such that f(y) > M for all y ∈ U . We say

that f : X → (−∞,+∞] is continuous on X if f is continuous at every x ∈ X.

Define Dom(f) = {x ∈ X : f(x) ∈ R} and denote by C1−0(X) the set of all

locally Lipschitz continuous real-valued functions defined on X.

The following assumptions will also be used:

(P4) T : Ω→ [0,+∞] is continuous on Ω and T ∈ C1−0(Dom(T ));

(P5) A∗ ∈ C1−0(Dom(A∗)) and there exist three positive constants δ0, C0

and t0 with δ0 < 1/n, 0 < t0 < min
x∈Ω

T (x) such that

|∇xA∗(x, t)| ≤ C0(A∗(x, t))
1+δ0 , j = 1, . . . , n,

for x ∈ Ω and |t| ∈ [t0, T (x)) provided ∇xA∗(x, t) exists.

Let A,B ∈ N(Ω). We say that A� B if, for any k > 0,

lim
t→+∞

A(x, kt)

B(x, t)
= 0 uniformly for x ∈ Ω.

Remark 2.12. Suppose that A,B ∈ N(Ω), then A� B ⇒ A 4 B.

Next we give two embedding theorems for Musielak–Sobolev spaces recently

established by Fan in [13].
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Theorem 2.13 (see [13], [20]). Let (P1)–(P5) hold. Then:

(a) There is a continuous imbedding W 1,A(Ω) ↪→ LA∗(Ω).

(b) Suppose that B ∈ N(Ω), B : Ω× [0,+∞) → [0,+∞) is continuous, and

B(x, t) ∈ (0,+∞) for x ∈ Ω and t ∈ (0,+∞). If B � A∗, then there is

a compact imbedding W 1,A(Ω) ↪→↪→ LB(Ω).

By Theorem 2.13, Remark 2.12 and Proposition 2.11, we have the following:

Theorem 2.14 (see [13], [20]). Let (P1)–(P5) hold and furthermore, A,A∗ ∈
N(Ω). Then:

(a) A� A∗, and there is a compact imbedding W 1,A(Ω) ↪→↪→ LA(Ω).

(b) There holds the Poincaré-type inequality

‖u‖A ≤ C‖∇u‖A for u ∈W 1,A
0 (Ω),

i.e. ‖∇u‖A is an equivalent norm on W 1,A
0 (Ω).

3. Some lemmas

Suppose Ω ⊂ Rn is a bounded smooth domain, and A ∈ N(Ω) satisfies the

following condition (A ), denoted by A ∈ A .

(A ) A ∈ N(Ω) satisfies assumptions (P1)–(P3), (P5) in Section 2 and the

following:

(P̃4) T (x) defined in (2.3) satisfies T (x) = +∞ for all x ∈ Ω.

Lemma 3.1. Suppose that A ∈ N(Ω), and there exists a strictly increasing

differentiable function A : [0,+∞)→ [0,+∞) such that

(3.1) A(x, αt) ≥ A(α)A(x, t) for all α ≥ 0, t ∈ R, x ∈ Ω.

(a) Then there exists a strictly increasing differentiable function Â : [0,+∞)

→ [0,+∞), defined by

(3.2) Â(σ) =


1

A(1/σ)
for σ > 0,

0 for σ = 0,

such that

(3.3) A(x, βt) ≤ Â(β)A(x, t), for all β > 0, t ∈ R, x ∈ Ω,

and furthermore
̂̂
A = A.

(b) If A satisfies

(3.4) nA(α) > αA′(α),
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then A∗ ∈ N(Ω), and there exists a strictly increasing differentiable func-

tion A∗ : [0,+∞)→ [0,+∞), defined by

(3.5) A−1
∗ (σ) =


1

σ1/n A−1(σ−1)
for σ > 0,

0 for σ = 0,

such that

(3.6) A∗(x, βt) ≤ A∗(β)A∗(x, t) for all β > 0, t ∈ R, x ∈ Ω.

(c) If A satisfies

(3.7) αA′(α) > A(α),

then Ã ∈ N(Ω), and there exists a strictly increasing differentiable func-

tion Ã : [0,+∞)→ [0,+∞), defined by

(3.8) Ã−1(σ) =

σ(A−1(σ))−1 for σ > 0,

0 for σ = 0,

such that

(3.9) Ã(x, βt) ≤ Ã(β)Ã(x, t) for all β > 0, t ∈ R, x ∈ Ω.

Proof. (a) To prove (3.3), we set t = s/α and β = 1/α in (3.1). Then we

can see that (3.3) holds with

Â(β) =
1

A(β−1)
,

which is a strictly increasing differentiable function in the variable β.

(b) It is clear that A∗ ∈ N(Ω) by [3]. To prove (3.6), we set

t = A−1

(
x,

s

A(α)

)
in (3.1). Then, for α > 0, we have

A

(
x, αA−1

(
x,

s

A(α)

))
≥ A(α)A

(
x,A−1

(
x,

s

A(α)

))
= s,

or equivalently,

αA−1

(
x,

s

A(α)

)
≥ A−1(x, s),

which implies that

α

(A(α))1/n

A−1(x, s/A(α))

(s/A(α))(n+1)/n

1

A(α)
≥ A−1(x, s)

s(n+1)/n
.

Integrating the above inequality with respect to s from 0 to t, we have

α

(A(α))1/n

∫ t/A(α)

0

A−1(x, r)

r(n+1)/n
dr ≥

∫ t

0

A−1(x, s)

s(n+1)/n
ds,
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where r = s/A(α). Then the definition of A∗ yields that

(3.10)
α

(A(α))1/n
A−1
∗

(
x,

t

A(α)

)
≥ A−1

∗ (x, t).

If we set

t = A(α)A∗

(
x,

(A(α))1/n

α
z

)
,

then we conclude that

z ≥ A−1
∗

(
x,A(α)A∗

(
x,

(A(α))1/n

α
z

))
,

or equivalently,

(3.11) A∗(x, z) ≥ A(α)A∗

(
x,

(A(α))1/n

α
z

)
.

Set β = (A(α))1/n/α. Then, by basic computation and assumption (3.4), we

have

dβ

dα
=

(A(α))1/n−1

nα2
(αA′(α)− nA(α)) < 0 for all α > 0,

which implies, by the implicit function theorem, that we can interpret α as

a function of β. Denote α = α(β). So inequality (3.11) implies that there exists

a function A∗(β) := (A(α(β)))−1 such that

A∗(x, βz) ≤ A∗(β)A∗(x, z) for all β > 0, z ∈ R.

Set σ = 1/A(α), we can get (3.5). To see that A∗(β) is strictly increasing with

respect to the variable β, we compute to obtain

d

dβ
(A∗(β)) =

d

dα

(
1

A(α)

)
dα

dβ
=

nα2 A′(α)

A1+1/n(α)(nA(α)− αA′(α))
> 0.

The above inequality completes the proof of (b).

(c) By the definition of Ã and (3.1), we deduce that

Ã(x, αs) = sup
t∈R

(αst−A(x, t)) ≥ sup
t∈R

(
sαt− 1

A(α)
A(x, αt)

)
=

1

A(α)
sup
t∈R

(A(α)st−A(x, t)) =
1

A(α)
Ã(x,A(α)s).

Setting s = t/α and β = A(α)/α, we obtain that

(3.12) Ã(x, βt) ≤ A(α)Ã(x, t).

In view of (3.7) and by direct computation, we conclude that

dα

dβ
=

α2

αA′(α)− A(α)
> 0 for all α > 0.
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Then, by the implicit function theorem, we can interpret α as a function of β.

Denote α = α(β). So inequality (3.12) implies that there exists a function

Ã(β) := A(α(β)) such that

Ã(x, βt) ≤ Ã(β)Ã(x, t).

Set σ = 1/A(α), we can get (3.8). To see that Ã(β) is strictly increasing with

respect to the variable β, we compute to obtain

d

dβ
(Ã(β)) = A′α(α)

dα

dβ
=

α2 A′(α)

αA′(α)− A(α)
> 0.

The above inequality completes the proof of (c). �

Definition 3.2. We say that C : R+ → R+ satisfies the condition ∆R+ ,

denoted by C ∈ ∆R+ , if there exists a constant M0 > 0 such that

(3.13) C(αβ) ≤M0 C(α)C(β) for all α, β > 0.

By equations (3.2), (3.5) and (3.8), it is clear that the following remark holds.

Remark 3.3. Under assumptions in Lemma 3.1, if A,A−1 ∈ ∆R+ , Â, A−1
∗ ,

Ã−1,
̂̃
A
−1

∈ ∆R+ .

Now we are in a position to prove the following result.

Lemma 3.4. Let {yh} ⊂ R be a sequence satisfying

(3.14) yh+1 ≤
1

β
A∗

(
A−1(β)

β1/n
c 2hA−1(cA∗(2

h+2)yh)

)
for all β > 0,

where c is a positive constant. If A,A−1,A∗ ∈ ∆R+ , then there exists y∗0 > 0

such that, for y0 ≤ y∗0 , yh → 0 as h→∞.

Proof. Denote ah := c2h+2, sh := cA∗(ah), kh := A−1(M̃sh), where M̃ is

a constant to be determined later and set β = βh := (khah)n in (3.14).

Claim. For y0 small enough, we have

(3.15) yh ≤
A(kh/A

−1(βh))

sh
.

Indeed, we can prove (3.15) by induction on h. Suppose (3.15) holds for

some h. We will prove that (3.15) holds for h+ 1. By (3.14), we have

(3.16) yh+1 ≤
1

βh
A∗

(
A−1(βh)

β
1/n
h

ah A
−1(shyh)

)
≤ A∗(1)

(ahkh)n
.

At the same time since A,A−1,A∗ ∈ ∆R+ , there exist constants M1,M2,M3 > 0

such that

(3.17) A

(
A−1(Mα)

A−1(β)

)
≥ α

β
for all M ≥M1, α, β > 0,
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A−1(α)

A−1(β)
≤M2 A

−1

(
α

β

)
for all α, β > 0,

and
A∗(α)

A∗(β)
≤M3 A∗

(
α

β

)
for all α, β > 0.

Then

kh+1

kh
=

A−1(cM̃A∗(ah+1))

A−1(cM̃A∗(ah))
≤M2A

−1

(
A∗(ah+1)

A∗(ah)

)
≤M2A

−1

(
M3A∗

(
ah+1

ah

))
= M2A

−1(M3A∗(2)) := 2−1M
1/n
4 .

By (3.17), we can choose M̃ = M1M4A∗(1). Then

A

(
kh+1

A−1((kh+1ah+1)n)

)
sh+1

=

A

(
A−1(M̃sh+1)

A−1((kh+1ah+1)n)

)
sh+1

(3.18)

≥ M4A∗(1)

(kh+1ah+1)n
≥ A∗(1)

(khah)n
.

Together with (3.16) and (3.18), we conclude

yh+1 ≤
A

(
kh+1

A−1((kh+1ah+1)n)

)
sh+1

,

which completes the induction on h of the claim. Furthermore, by the claim we

have

yh+1 ≤
A∗(1)

(ahkh)n
.

Then for

y0 ≤
A

(
k0

A−1(β0)

)
s0

=

A

(
A−1(M̃cA∗(4c))

A−1((4cA−1(M̃cA∗(4c)))n)

)
cA∗(4c)

:= y∗0

we conclude yh → 0 as h→∞. �

Lemma 3.5. Let f(t) be a nonnegative bounded function defined on [r0, r1],

r0 ≥ 0. Suppose that for r0 ≤ s < t ≤ r1 we have

(3.19) f(s) ≤ [A((t− s)−1) +B] + θf(t),

where B, θ are nonnegative constants with 0 ≤ θ < 1 and A : [0,+∞)→ [0,+∞)

is a function satisfying

(3.20) A(αt) ≤ A(α)A(t),
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where A : [0,+∞) → [0,+∞) is a strictly increasing continuous function with

A(0) = 0 and there exists a T0 ∈ R with T0 ≥ 1 such that A(T0) = 1. Then for

all r0 ≤ ρ < R ≤ r1 we have

(3.21) f(ρ) ≤ C[A((R− ρ)−1) +B],

where C is a constant depending on θ and A.

Proof. For fixed ρ and R, consider the sequence {ti}+∞i=1 defined by

t0 = ρ, ti+1 − ti =

(
1− r

T0

)(
r

T0

)i
(R− ρ),

where 0 < r < 1 ≤ T0. By iteration from (3.19) and (3.20) we get

f(t0) ≤ θkf(tk) +

[
A

((
1− r

T0

)−1

(R− ρ)−1

)
+B

] k−1∑
i=0

(
θA

(
T0

r

))i
≤ θkf(tk)

+ max

{
A

((
1− r

T0

)−1)
, 1

}
[A((R− ρ)−1) +B]

k−1∑
i=0

(
θA

(
T0

r

))i
.

By the definition of A there exists a 0 < r < T0 such that θA(T0/r) < 1, then

from (3.20) we can get (3.21) by sending k →∞ with

C = max

{
A

((
1− r

T0

)−1)
, 1

}(
1− θA

(
T0

r

))−1

. �

In the following lemma A ∈ N(Ω) ∩A satisfies the following assumptions:

(A1) There exists a strictly increasing differentiable function A : [0,+∞) →
[0,+∞) satisfying

(3.22) nA(α) > αA′(α)

such that

(A11) A(x, αt) ≥ A(α)A(x, t) for all α ≥ 0, t ∈ R, x ∈ Ω;

(A12) A,A−1,A∗ ∈ ∆R+ .

If u ∈ W 1,A(Ω) and BR = BR(x) := {y ∈ Rn : |y − x| < R} ⊂ Ω is any ball,

we denote Ωk,R := {x ∈ BR : u(x) > k}, where k is a real number.

Lemma 3.6. Let A ∈ N(Ω) ∩ A satisfy (A1), B ∈ N(Ω) satisfy B 4 A∗,

and u ∈ W 1,A(Ω) satisfy for any BR ⊂ Ω, R ≤ R0, any σ ∈ (0, 1) and any

k ≥ ts = a given constant > 0,

(3.23)

∫
Ωk,σR

A(x, |∇u|) dx ≤ c
∫

Ωk,R

A∗

(
x,

u− k
(1− σ)R

)
dx+ c

∫
Ωk,R

B(x, k) dx.

Then u is locally bounded above in Ω.
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Proof. Fix BR ⊂ Ω with R < R0, k ≥ ts and set

ρh =
R

2
+

R

2h+1
, ρh =

ρh + ρh+1

2
,

kh = k

(
1− 1

2h+1

)
, h = 0, 1, 2, . . .

It is clear that ρh ↓ R/2, kh ↑ k, ρh+1 < ρh < ρh. Define

Jh =

∫
Ωkh,ρh

A∗(x, |u(x)− kh|) dx,

and fix ξ(t) ∈ C1([0,+∞)), with 0 ≤ ξ(t) ≤ 1, such that

ξ(t) =

1 for t ≤ 1/2,

0 for t ≥ 3/4,

and ξ′(t) ≤ c. Denote

ξh = ξ

(
2h+1

R

(
|x| − R

2

))
.

Then

ξh(x) =

1 for x ∈ Bρh+1
,

0 for x 6∈ Bρh .

Then we have

Jh+1 ≤
∫

Ωkh+1,ρh

A∗(x, |u(x)− kh+1|ξh) dx(3.24)

=

∫
BR

A∗(x, (u(x)− kh+1)+ξh) dx

=

∫
BR

A∗

(
x,

(u(x)− kh+1)+ξh
|(u− kh+1)+ξh|A∗;BR

|(u− kh+1)+ξh|A∗;BR

)
dx.

By (3.11), we have

A∗

(
x,

(A(α))1/n

α
s

)
≤ A∗(x, s)

A(α)
for all x ∈ Ω, s ≥ 0, α ≥ 0,

or equivalently,

A∗

(
x,

β1/n

A−1(β)
s

)
≤ A∗(x, s)

β
for all x ∈ Ω, s ≥ 0, β ≥ 0.
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Then by (3.24), the Sobolev inequality and Lemma 3.1, we can see that

Jh+1 ≤A∗

(
A−1(β)

β1/n
|(u− kh+1)+ξh|A∗;BR

)
(3.25)

·
∫
BR

A∗

(
x,

β1/n

A−1(β)

(u(x)− kh+1)+ξh
|(u− kh+1)+ξh|A∗;BR

)
dx

≤A∗

(
A−1(β)

β1/n
|(u− kh+1)+ξh|A∗;BR

)
· 1

β

∫
BR

A∗

(
x,

(u(x)− kh+1)+ξh
|(u− kh+1)+ξh|A∗;BR

)
dx

=
1

β
A∗

(
A−1(β)

β1/n
|(u− kh+1)+ξh|A∗;BR

)
≤ 1

β
A∗

(
A−1(β)

β1/n
c|∇((u− kh+1)+ξh)|A;BR

)
≤ 1

β
A∗

(
A−1(β)

β1/n

(
c|∇u|A;Ωkh+1

,ρh + c2h|u− kh+1|A;Ωkh+1
,ρh

))
=

1

β
A∗

(
A−1(β)

β1/n

[
cA−1

(
A(|∇u|A;Ωkh+1

,ρh)

·
∫

Ωkh+1
,ρh

A

(
x,

|∇u(x)|
|∇u|A;Ωkh+1

,ρh

)
dx

)
+ c 2h A−1

(
A(|u− kh+1|A;Ωkh+1

,ρh)

·
∫

Ωkh+1
,ρh

A

(
x,

|u(x)− kh+1|
|u− kh+1|A;Ωkh+1

,ρh

)
dx

)])
≤ 1

β
A∗

(
A−1(β)

β1/n

[
cA−1

(∫
Ωkh+1

,ρh

A(x, |∇u(x)|) dx
)

+ c 2h A−1

(∫
Ωkh+1

,ρh

A(x, |u(x)− kh+1|) dx
)])

:=
1

β
A∗

(
A−1(β)

β1/n
[cA−1(I) + c 2h A−1(II)]

)
,

for any β > 0. By inequality (3.23), we have in the right-hand side of the above

inequality that

I ≤ c
∫

Ωkh+1,ρh

A∗

(
x,

2h+2

R
(u(x)− kh+1)

)
dx(3.26)

+ c

∫
Ωkh+1,ρh

B(x, kh+1) dx

≤ cA∗
(

1

R

)
A∗(2

h+2)

∫
Ωkh+1,ρh

A∗(x, u(x)− kh+1) dx
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+ c

∫
Ωkh+1,ρh

B(x, k) dx

≤ cA∗(2h+2)Jh + c

∫
Ωkh+1,ρh

B(x, k) dx.

Note that

Jh ≥
∫

Ωkh+1,ρh

A∗(x, |u(x)− kh|) dx ≥
∫

Ωkh+1,ρh

A∗(x, kh+1 − kh) dx

≥ Â∗

(
kh+1 − kh

k

)∫
Ωkh+1,ρh

A∗(x, k) dx = Â∗

(
1

2h+2

)∫
Ωkh+1,ρh

A∗(x, k) dx.

Then, by equation (3.2), we have

(3.27)

∫
Ωkh+1,ρh

A∗(x, k) dx ≤ A∗(2
h+2)Jh

and since B 4 A∗, we obtain

(3.28)

∫
Ωkh+1,ρh

B(x, k) dx ≤ c
∫

Ωkh+1,ρh

A∗(x, k) dx ≤ cA∗(2h+2)Jh.

Together with (3.26) and (3.28), we conclude that

(3.29) I ≤ cA∗(2h+2)Jh.

On the other hand, by Theorem 2.14, we have A� A∗. Then

II ≤
∫

Ωkh+1
,ρh

A∗(x, |u(x)− kh+1|) dx+

∫
Ωkh+1

,ρh

c dx(3.30)

≤ Jh + c|Ωkh+1,ρh |.

By (3.27), we have

|Ωkh+1,ρh | ≤ |Ωkh+1,ρh | ≤ c
∫

Ωkh+1,ρh

A∗(x, ts) dx

≤ c
∫

Ωkh+1,ρh

A∗(x, k) dx ≤ A∗(2
h+2)Jh,

from which, together with (3.30), we conclude that

(3.31) II ≤ (1 + A∗(2
h+2))Jh ≤ cA∗(2h+2)Jh.

Combining (3.29), (3.31) and (3.25), we see that, for all β > 0,

Jh+1 ≤
1

β
A∗

(
A−1(β)

β1/n

[
cA−1(cA∗(2

h+2)Jh) + c 2hA−1(cA∗(2
h+2)Jh)

])
≤ 1

β
A∗

(
A−1(β)

β1/n
c 2hA−1(cA∗(2

h+2)Jh)

)
.
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Since we can choose k big enough so that

J0 =

∫
Ωk/2,ρ0

A∗

(
x,

∣∣∣∣u(x)− k

2

∣∣∣∣) dx
is small enough, by Lemma 3.4, we conclude that Jh → 0 as h → ∞. Hence,

u(x) ≤ k for a almost every x ∈ BR/2, which completes the proof. �

4. Local boundedness of the minimizer

In this section we consider the local boundedness of the minimizers for a

class of functionals defined in W 1,A(Ω). Since we consider only local properties

of minimizers, without loss of generality, we can assume that Ω is a bounded

smooth domain in Rn.

Consider the integral functionals as follows:

(4.1) E(v) = E(v,Ω) =

∫
Ω

f(x, v(x),∇v(x)) dx,

where v ∈ W 1,A(Ω) and f(x, s, z) is a Carathéodory function on Ω × R × Rn

satisfying

(4.2) A

(
x,

n∑
i=1

|zi|
)
−B(x, s)−c ≤ f(x, s, z) ≤ C

(
A

(
x,

n∑
i=1

|zi|
)

+B(x, s)+c

)
with c and C being non-negative constants; A ∈ N(Ω) ∩A satisfying (A1) (see

Section 3); A∗ induced by A∗ satisfying that there exists a T0 ∈ R with T0 ≥ 1

such that A∗(T0) = 1; N(Ω) 3 B 4 A∗ satisfying the following (B1)–(B2):

(B1) There exists a strictly increasing differentiable function B : [0,+∞) →
[0,+∞) such that

B(x, αt) ≥ B(α)B(x, t) for all α ≥ 0, t ∈ R, x ∈ Ω.

(B2) There exists a constant TB,Ω > 0 such that B(x, TB,Ω) ≥ 1 for any x ∈ Ω.

We say that u is a local minimizer for the integral functional E if for any

ϕ ∈W 1,A
0 (Ω),

(4.3) E(u; suppϕ) ≤ E(u+ ϕ; suppϕ).

Our main result is the following.

Theorem 4.1. Let f satisfy the growth condition (4.2). If u ∈ W 1,A(Ω) is

a local minimizer for the functional (4.1), then u ∈ L∞loc(Ω).

The proof of the above theorem is a direct consequence of the following

lemma.



362 D. Liu — J. Yao

Lemma 4.2. Let f satisfy (4.2). If u ∈W 1,A(Ω) is a local minimizer for the

functional (4.3), then for any ball BR ⊂ Ω (R ≤ 1), any k ≥ TB,Ω, and any

0 < σ < 1, we have∫
Ωk,σR

A(x, |∇u|) dx ≤ c
∫

Ωk,R

A∗

(
x,

u− k
(1− σ)R

)
dx+ c

∫
Ωk,R

B(x, k) dx,

where c is a constant independent of k,R, σ and u.

Proof. Fix k ≥ TB,Ω, BR for R ≤ 1 and 0 < σ < 1. For any s and t

satisfying σR < s < t < R, let us denote by η a C1-function such that η ≡ 1

on Bs, 0 ≤ η ≤ 1, supp η ⊂ Bt, |Dη| ≤ 2/(t− s). Taking ϕ = −ηmax{u− k, 0},
from (4.3), we have∫

Ωk,t

f(x, u,∇u) dx ≤
∫

Ωk,t

f(x, u+ ϕ,∇u+∇ϕ) dx,

which implies by Lemma 3.1 (a) that∫
Ωk,t

A(x, |∇u|) dx−
∫

Ωk,t

B(x, |u|) dx−
∫

Ωk,t

c dx

≤C
[ ∫

Ωk,t

A(x, |(1− η)∇u− (u− k)∇η|) dx

+

∫
Ωk,t

B(x, |u− η(u− k)|) dx+

∫
Ωk,t

c dx

]
≤C max{Â(2), B̂(2)}

[ ∫
Ωk,t

A(x, |∇u|(1− η)) dx

+

∫
Ωk,t

A(x, |∇η|(u− k)) dx

+

∫
Ωk,t

B(x, |u|) dx+

∫
Ωk,t

B(x, |η(u− k)|) dx+

∫
Ωk,t

c dx

]
.

By k ≥ TB,Ω and 0 < t − s < R ≤ R0 = 1, from the above inequality and

Lemma 3.1 we have∫
Ωk,t

A(x, |∇u|) dx ≤ C1 max{Â(2), B̂(2)}
[ ∫

Ωk,t

A(x, |∇u|(1− η)) dx

+

∫
Ωk,t

A(x, |∇η|(u− k)) dx+

∫
Ωk,t

B(x, |u|) dx

+

∫
Ωk,t

B(x, |η|(u− k)) dx+

∫
Ωk,t

1 dx

]
≤C2 max{Â(2), B̂(2)} Â(2)

[ ∫
Ωk,t\Ωk,s

A(x, |∇u|) dx

+

∫
Ωk,t

A

(
x,
u− k
t− s

)
dx+

∫
Ωk,t

B(x, (u− k) + k) dx



A Class of De Giorgi Type and Local Boundedness 363

+

∫
Ωk,t

B(x, u− k) dx+

∫
Ωk,t

1 dx

]
≤C3 max{Â(2), B̂(2)} Â(2) B̂(2)

[ ∫
Ωk,t\Ωk,s

A(x, |∇u|) dx

+

∫
Ωk,t

A∗

(
x,
u− k
t− s

)
dx+

∫
Ωk,t

B(x, u− k) dx

+

∫
Ωk,t

B(x, k) dx+

∫
Ωk,t

1 dx

]
≤ c
∫

Ωk,t\Ωk,s
A(x, |∇u|) dx

+ c

∫
Ωk,t

A∗

(
x,
u− k
t− s

)
dx+ c

∫
Ωk,t

B(x, k) dx,

where c = c(A,B) is a positive constant. Adding c
∫

Ωk,s
A(x, |∇u|) to both sides

of the above inequality, we have∫
Ωk,s

A(x, |∇u|) dx ≤ θ
∫

Ωk,t

A(x, |∇u|) dx

+ c

∫
Ωk,R

A∗

(
x,
u− k
t− s

)
dx+ c

∫
Ωk,R

B(x, k) dx,

where θ = c/(c+ 1) < 1 is a constant depending on the N(Ω)-functions A and B.

By Lemma 3.5, we conclude that∫
Ωk,σR

A(x, |∇u|) dx ≤ C
[ ∫

Ωk,R

A∗

(
x,

u− k
(1− σ)R

)
dx+ c

∫
Ωk,R

B(x, k) dx

]
,

where C = C(A,B) is a constant. �

Proof of Theorem 4.1. By Lemmas 4.2 and 3.6 (taking R0 = 1), the

local minimizer u is locally bounded above in Ω. And similarly −u is also locally

bounded above in Ω. Then the conclusion of Theorem 4.1 follows. �

5. Local boundedness of weak solutions

to a kind of fully nonlinear elliptic equations

In this section, we consider the local bounded regularity of weak solutions of

a kind of fully nonlinear elliptic equation. Since we consider only local proper-

ties of the weak solutions, without loss of generality, we can suppose that Ω is

a bounded smooth domain in Rn.

Consider the second order fully nonlinear elliptic equation as follows:

(5.1) divL(x, u,∇u) + F (x, u,∇u) = 0 for all x ∈ Ω,

where L : Ω× R× Rn → Rn, F : Ω× R× Rn → R1, u : Ω→ R.

The following assumptions on A,B ∈ N(Ω) will be used:
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(A+
1 ) There exists a strictly increasing differentiable function A : [0,+∞) →

[0,+∞) satisfying

(5.2) nA(α) > αA′(α) > A(α)

such that

(A11) A(x, αt) ≥ A(α)A(x, t) for all α ≥ 0, t ∈ R, x ∈ Ω;

(A12) A,A−1,A∗ ∈ ∆R+ .

(B+
1 ) There exists a strictly increasing differentiable function B : [0,+∞) →

[0,+∞) satisfying

(5.3) αB′(α) > B(α)

such that B(x, αt) ≥ B(α)B(x, t) for all α ≥ 0, t ∈ R, x ∈ Ω.

(B2) There exists a constant TB,Ω > 0 such that B(x, TB,Ω) ≥ 1 for any x ∈ Ω.

Suppose equation (5.1) satisfies the following growth conditions:

L(x, u, z)z ≥ a0A(x, |z|)− bB(x, u)− c,(5.4)

|L(x, u, z)| ≤ a1Ã
−1A(x, |z|) + bÃ−1B(x, u) + c,(5.5)

|F (x, u, z)| ≤ a2B̃
−1A(x, |z|) + bB̃−1B(x, u) + c,(5.6)

where a0, a1, a2, b, c are positive constants, A ∈ N(Ω) ∩ A satisfies (A+
1 ), and

N(Ω) 3 B 4 A∗ satisfies (B+
1 ) and (B2).

Definition 5.1. u ∈W 1,A(Ω) is said to be a weak solution of (5.1) if

(5.7)

∫
Ω

L(x, u,∇u)∇v dx−
∫

Ω

F (x, u,∇u)v dx = 0

for any v ∈W 1,A
0 (Ω).

Theorem 5.2. Let the growth conditions (5.4)–(5.6) hold. If u ∈ W 1,A(Ω)

is a weak solution of (5.1), then u ∈ L∞loc(Ω).

Lemma 5.3. Let equations (5.4)–(5.6) hold. If u ∈ W 1,A(Ω) is a weak so-

lution of (5.1), then for any ball BR ⊂ Ω (R ≤ 1), any k ≥ TB,Ω, and any

0 < σ < 1, we have∫
Ωk,σR

A(x, |∇u|) dx ≤ c
∫

Ωk,R

A∗

(
x,

u− k
(1− σ)R

)
dx+ c

∫
Ωk,R

B(x, k) dx,

where c is a constant independent of k,R, σ and u.

Proof. Let u be a weak solution of (5.1). For arbitrary balls Bs(x̃) ⊂
Bt(x̃) ⊂ Ω, let ξ be a C∞-function such that

0 ≤ ξ ≤ 1, supp ξ ⊂ Bt, ξ = 1 on Bs, |∇ξ| ≤ 2

t− s
.
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For k ≥ TB,Ω set v = A(ξ) max{u− k, 0} ∈W 1,A
0 (Ω). Then by (5.7), we obtain

(5.8)

∫
Ωk,t

A(ξ)L(x, u,∇u) · ∇u dx+

∫
Ωk,t

(u− k)L(x, u,∇u) · ∇A(ξ) dx

−
∫

Ωk,t

A(ξ)(u− k)F (x, u,∇u) dx = 0.

From (5.5), (5.6) and (5.8) it follows that

a0

∫
Ωk,t

A(x, |∇u|)A(ξ) dx ≤ b
∫

Ωk,t

B(x, |u|)A(ξ) dx+ c

∫
Ωk,t

A(ξ) dx(5.9)

+ a1

∫
Ωk,t

Ã−1A(x, |∇u|)|∇A(ξ)|(u− k) dx

+ b

∫
Ωk,t

Ã−1B(x, |u|)|∇A(ξ)|(u− k) dx

+ c

∫
Ωk,t

|∇A(ξ)|(u− k) dx

+ a2

∫
Ωk,t

B̃−1A(x, |∇u|)A(ξ)(u− k) dx

+ b

∫
Ωk,t

B̃−1B(x, |u|)A(ξ)(u− k) dx+ c

∫
Ωk,t

A(ξ)(u− k) dx.

Now let us estimate each term of the right-hand side of (5.9). As t− s < R ≤ 1

we obtain ∫
Ωk,t

B(x, |u|)A(ξ) dx ≤ A(1)

∫
Ωk,t

B(x, (u− k) + k) dx(5.10)

≤ A(1)

∫
Ωk,t

B(x, 2 max{u− k, k}) dx

≤ A(1)B̂(2)

∫
Ωk,t

B(x,max{u− k, k}) dx

≤ c
∫

Ωk,t

B(x, u− k) dx+ c

∫
Ωk,t

B(x, k) dx

≤ c
∫

Ωk,t

A∗(x, u− k) dx+ c|Ωk,t|+ c

∫
Ωk,t

B(x, k) dx

≤ c
∫

Ωk,t

A∗

(
x,
u− k
t− s

)
dx+ c

∫
Ωk,t

B(x, k) dx.

Obviously,

(5.11)

∫
Ωk,t

A(ξ) dx ≤ A(1)

∫
Ωk,t

B(x, k) dx.
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By the Young inequality, and taking ε > 0 such that a1Ã(nε) = a0/4, we deduce

from the assumption nA(α) > αA′(α) > A(α), Lemma 3.1 (c) and (3.12) that

a1

∫
Ωk,t

Ã−1A(x, |∇u|)|∇A(ξ)|(u− k) dx(5.12)

= a1

∫
Ωk,t

Ã−1A(x, |∇u|)A′(ξ)|∇ξ|(u− k) dx

≤ a1

∫
Ωk,t

Ã
(
x, εA′(ξ) · Ã−1(A(x, |∇u|))

)
dx

+ a1

∫
Ωk,t

A(x, ε−1|∇ξ|(u− k)) dx

≤ a1

∫
Ωk,t

Ã

(
x, εn

A(ξ)

ξ
· Ã−1(A(x, |∇u|))

)
dx

+ a1

∫
Ωk,t

A(x, ε−1|∇ξ|(u− k)) dx

≤ a1 Ã(nε)

∫
Ωk,t

Ã

(
x,

A(ξ)

ξ
· Ã−1(A(x, |∇u|))

)
dx

+ a1 Â

(
2

ε

)∫
Ωk,t

A

(
x,
u− k
t− s

)
dx

≤ a0

4

∫
Ωk,t

A(ξ)A(x, |∇u|) dx+ c

∫
Ωk,t

A∗

(
x,
u− k
t− s

)
dx+ c|Ωk,t|

≤ a0

4

∫
Ωk,t

A(ξ)A(x, |∇u|) dx

+ c

∫
Ωk,t

A∗

(
x,
u− k
t− s

)
dx+ c

∫
Ωk,t

B(x, k) dx.

By the Young inequality, taking ε > 0 such that a2 B̃(ε) = a0/4 we obtain from

the assumption αB′(α) > B(α) and Lemma 3.1 (c) that

a2

∫
Ωk,t

B̃−1A(x, |∇u|)A(ξ)(u− k) dx(5.13)

≤ a2

∫
Ωk,t

A(ξ)B̃
(
x, εB̃−1A(x, |∇u|)

)
dx

+ a2

∫
Ωk,t

A(ξ)B(x, ε−1(u− k)) dx

≤ a2 B̃(ε)

∫
Ωk,t

A(ξ)A(x, |∇u|) dx+ a2 A(1)B̂

(
1

ε

)∫
Ωk,t

B(x, u− k) dx

≤ a0

4

∫
Ωk,t

A(ξ)A(x, |∇u|) dx+ c

∫
Ωk,t

A∗(x, u− k) dx+ c|Ωk,t|
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≤ a0

4

∫
Ωk,t

A(ξ)A(x, |∇u|) dx

+ c

∫
Ωk,t

A∗

(
x,
u− k
t− s

)
dx+ c

∫
Ωk,t

B(x, k) dx.

Similarly, we have∫
Ωk,t

Ã−1B(x, |u|)|∇A(ξ)|(u− k) dx(5.14)

=

∫
Ωk,t

Ã−1B(x, |u|)A′(ξ)|∇ξ|(u− k) dx

≤
∫

Ωk,t

n
A(ξ)

ξ
Ã−1B(x, |u|)|∇ξ|(u− k) dx

≤
∫

Ωk,t

Ã

(
x, n

A(ξ)

ξ
Ã−1B(x, |u|)

)
dx+

∫
Ωk,t

A(x, |∇ξ|(u− k)) dx

≤ Ã(n)

∫
Ωk,t

A(ξ)Ã
(
x, Ã−1B(x, |u|)

)
dx+

∫
Ωk,t

A(x, |∇ξ|(u− k)) dx

≤ Ã(n)A(1)

∫
Ωk,t

B(x, (u− k) + k) dx+

∫
Ωk,t

A(x, |∇ξ|(u− k)) dx

≤ c
∫

Ωk,t

B(x, u− k) dx+ c

∫
Ωk,t

B(x, k) dx

+ A(2)

∫
Ωk,t

A

(
x,
u− k
t− s

)
dx

≤ c
∫

Ωk,t

A∗

(
x,
u− k
t− s

)
dx+ c

∫
Ωk,t

B(x, k) dx+ c|Ωk,t|

≤ c
∫

Ωk,t

A∗

(
x,
u− k
t− s

)
dx+ c

∫
Ωk,t

B(x, k) dx,

∫
Ωk,t

|∇A(ξ)|(u− k) dx ≤
∫

Ωk,t

n
A(ξ)

ξ
|∇ξ|(u− k) dx(5.15)

≤A(2n)

∫
Ωk,t

A

(
x,
u− k
t− s

)
dx+

∫
Ωk,t

Ã

(
x,

A(ξ)

ξ

)
dx

≤ c
∫

Ωk,t

A

(
x,
u− k
t− s

)
dx+

∫
Ωk,t

A(ξ)Ã(x, 1) dx

≤ c
∫

Ωk,t

A∗

(
x,
u− k
t− s

)
dx+ c|Ωk,t|

≤ c
∫

Ωk,t

A∗

(
x,
u− k
t− s

)
dx+ c

∫
Ωk,t

B(x, k) dx,

∫
Ωk,t

B̃−1B(x, |u|)A(ξ)(u− k) dx(5.16)
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≤
∫

Ωk,t

B(x, (u− k) + k) dx+

∫
Ωk,t

B(x,A(ξ)(u− k)) dx

≤ c
∫

Ωk,t

B(x, u− k) dx+ c

∫
Ωk,t

B(x, k) dx+ c|Ωk,t|

≤ c
∫

Ωk,t

A∗

(
x,
u− k
t− s

)
dx+ c

∫
Ωk,t

B(x, k) dx,

∫
Ωk,t

A(ξ)(u− k) dx ≤
∫

Ωk,t

B(x, u− k) dx+

∫
Ωk,t

B̃(x,A(ξ)) dx(5.17)

≤ c
∫

Ωk,t

A∗

(
x,
u− k
t− s

)
dx+ c|Ωk,t|

≤ c
∫

Ωk,t

A∗

(
x,
u− k
t− s

)
dx+ c

∫
Ωk,t

B(x, k) dx.

From (5.9)–(5.17), we conclude that

A(1)

∫
Ωk,s

A(x, |∇u|) dx ≤
∫

Ωk,t

A(x, |∇u|)A(ξ) dx

≤ c
∫

Ωk,t

A∗

(
x,
u− k
t− s

)
dx+ c

∫
Ωk,t

B(x, k) dx,

which implies the conclusion of the lemma. �

Proof of Theorem 5.2. By Lemmas 5.3 and 3.6 (taking R0 = 1), the

local minimizer u is locally bounded above in Ω. And similarly −u is also locally

bounded above in Ω. Then the conclusion of Theorem 5.2 follows. �

6. Examples

In this section, we give two examples of the function A which satisfy the con-

ditions in our theorems. And we claim that not only variable exponent Sobolev

spaces satisfy the conditions in Theorems 4.1 and 5.2 (see Example 6.1), but

also some more complex space also satisfies conditions of these theorems (see

Example 6.2).

Example 6.1. Let p ∈ C1−0(Ω) and 1 < q ≤ p(x) ≤ p+ := sup
x∈Ω

p(x) < n

(q ∈ R) for x ∈ Ω. Define A : Ω× R→ [0,+∞) and B : Ω× R→ [0,+∞) by

A(x, t) = |t|p(x), B(x, t) = |t|p
∗(x), where p∗(x) =

np(x)

n− p(x)
.

It is readily checked that A satisfies (P1)–(P3). It is easy to see that p ∈ C1−0(Ω)

implies A ∈ C1−0(Ω) and, for s > 0,

(6.1) A−1
∗ (x, s) =

np(x)

n− p(x)
s(n−p(x))/(np(x)).
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Then T (x) = +∞, and (P̃4) is satisfied. In addition, for x ∈ Ω,

∇xA(x, t) = |t|p(x) ln |t|∇p(x).

Since for any ε > 0, ln t/tε → 0 as t → +∞, we conclude that there exist

constants δ1 < 1/n, c1 and t1 such that∣∣∣∣∂A(x, t)

∂xj

∣∣∣∣ ≤ c1A1+δ1(x, t),

for all x ∈ Ω and t ≥ t1. Combining A ∈ ∆2(Ω), from Proposition 3.1 in [13], it

is easy to see that condition (P5) is satisfied. All growth conditions (A1), (B1),

(B2), (A+
1 ), (B+

1 ) and (B+
2 ) are easy to verify. Thus conditions in Theorems 4.1

and 5.2 are verified.

We claim that this example contains and extends in part the conclusion of

Theorems 3.1 and 4.1 in [15] and some of its corollaries.

Example 6.2. Let p ∈ C1−0(Ω) satisfy 1 < p− ≤ p(x) ≤ p+ := sup
x∈Ω

p(x) <

n− 1. Define A : Ω× R→ [0,+∞) and B : Ω× R→ [0,+∞) by

A(x, t) = |t|p(x) log(1 + |t|), B(x, t) = |t|p
∗(x)−δ,

for some δ > 0, where p∗(x) = np(x)/(n− p(x)). It is obvious that A satisfies

(P1)–(P3). Pick ε > 0 small enough such that p+ + ε < n. Then, for t > 0 big

enough, A(x, t) ≤ ctp
++ε, which implies that T (x) = +∞ for all x ∈ Ω. Then

(P̃4) is satisfied. Since p ∈ C1−0(Ω) and A ∈ C1−0(Ω × R), by Proposition 3.1

in [13], A∗ ∈ C1−0(Ω×R). Combining A ∈ ∆2(Ω), it is easy to see that condition

(P5) is satisfied. All growth conditions (A1), (B1), (B2), (A+
1 ), (B+

1 ) and (B+
2 )

are easy to verify. By now conditions in Theorems 4.1 and 5.2 are verified.
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