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A CLASS OF DE GIORGI TYPE
AND LOCAL BOUNDEDNESS

DucHAO Liu — JINGHUA YAO

ABSTRACT. Under appropriate assumptions on the N(£2)-function, the De
Giorgi process is presented in the framework of Musielak—Orlicz—Sobolev
spaces. As the applications, the local boundedness property of the minimiz-
ers for a class of the energy functionals in Musielak—Orlicz—Sobolev spaces
is proved; and furthermore, the local boundedness of the weak solutions for
a class of fully nonlinear elliptic equations is provided.

1. Introduction

In the study of nonlinear differential equations, it is well known that more
general functional spaces can handle differential equations with more complex
nonlinearities. If one would like to study a general form of differential equations,
it is crucial to find a proper functional space in which the solutions may exist.
The Musielak—Orlicz—Sobolev (or Musielak—Sobolev) space is such a generaliza-
tion of the Sobolev space that the classical Sobolev spaces, variable exponent
Sobolev spaces and Orlicz—Sobolev spaces can be interpreted as its special cases.

The properties and applications of Orlicz—Sobolev spaces and variable expo-
nent Sobolev spaces have been studied extensively in recent years, see for example
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[3], [5], 6], [11], [16], [17]. In [3], the trace on the inner lower dimensional hy-
perplanes of Olicz—Sobolev spaces was considered. In [11], Fan investigated the
trace embedding of the variable exponent Sobolev spaces. In a recent paper [5],
the authors considered the W1»()_regularity for elliptic equations with measur-
able coefficients in nonsmooth domains. To our best knowledge, however, the
properties of Musielak—Sobolev spaces have been little studied. In [4], Benkirane
and Sidi presented an embedding theorem in Musielak—Sobolev spaces. In [12],
[13], Fan established some properties of these functional spaces, including an
embedding theorem, and a compact embedding theorem in a bounded domain.
And in [14], Fan and Guan studied the uniform convexity of Musielak—Sobolev
spaces and presented some applications. As an application of the embedding
results in [13], the authors in [20] showed the existence of solutions to a class of
fully nonlinear elliptic equation via variational methods. Very recently the au-
thors of [19] studied the trace regularities of Musielak—Sobolev spaces, including
both the trace on the inner lower dimensional hyperplanes and the trace on the
boundary; also they established some compact trace embedding results.

Our aim here is to study the local boundedness of the minimizers for func-
tionals defined on Musielak—Sobolev spaces and the local boundedness of weak
solutions for the associated fully nonlinear elliptic equations. Recall first some
important classical regularity results for the minimizers of integral functionals
within the Sobolev, variable exponent, Orlicz and Musielak—Sobolev framework
settings in the literature. In an early work [1], Acerbi and Fusco proved that
for any WP

JP(Q; RY)-local minimizer u with 1 < p < 2 of the integral functional

J f(z,v(z), Dv(x)) dz, its gradient Du is locally A\-Holder continuous for some
A > 0 when f fulfills some uniformly p-exponent increasing conditions. Some
regularity results in the variable exponent spaces framework can be found in
the work of Diening, Hést6, Roudenko [7]. They also performed an important
study [7] of Triebel-Lizorkin spaces with variable smoothness and integrabil-
ity, including a trace theorem in the variable indices case. In [2], Adamowicz
and Toivanen showed the continuity of quasiminimizers of the energy function-
als [ f(z,u, Vu)dz when f satisfies some uniformly p( - )-exponent monotonicity
assumptions. In [8], [9], the authors proved a series of regularity results in Orlicz
spaces. More precisely, they proved in [8] the C'1“-regularity for local minimizers
of functionals with p-growth including the decay estimate, where ¢ is a convex
Cl-function independent of the parameter z € Q C R¥; in [9], a local Lipschitz
result for the local minimizers of asymptotically convex variational integrals was
established. For regularity results in the Musielak—Sobolev setting, the authors
of [18] showed that Harnack’s inequality still holds for quasi-minimizers in the
Musielak—Sobolev spaces without any polynomial growth or coercivity condi-
tions, which yields the local Holder continuity of quasi-minimizers. Comparing
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with our current study, it is interesting to notice that we propose a different
monotonicity assumption for the function ® from that in [18]. Also we propose a
more general uniform monotonicity condition on the function N(Q2). Moreover,
with the regularity results of the key Lemma 3.6, we can prove not only the
local boundedness property of the minimizers for a more general class of energy
functionals (see Section 4), but also the local boundedness of a kind of weak
solutions for a class of fully nonlinear elliptic equations (see Section 5).

In our study, the strong nonlinear nature of the problems brings fundamental
technical complexity in computations. In order to make computations and expo-
sition more transparent, we explore and develop deep connections between the
function N (), its Young’s complementary function, and its Sobolev’s conjugate
function, see Lemma 3.1. The key lemma of the paper is Lemma 3.4, which
is an important fully nonlinear iteration lemma in the De Giorgi process. The
lemma is a much more general case for the iteration process. It is our belief that
the lemmas established here supply a crucial set of tools in the future studies
of regularity properties for critical points of integral functional and the associ-
ated weak solutions of fully nonlinear equations in the Musielak—Orlicz—Sobolev
spaces framework.

Our results have wide applicability. We claim that not only variable exponent
Sobolev spaces satisfy the conditions of Theorems 4.1 and 5.2 (see Example 6.1 in
Section 6), but also some more complex cases do (see Example 6.2 in Section 6).

The paper is organized as follows. In Section 2, for the readers’ convenience
we recall some definitions and properties about Musielak—Orlicz—Sobolev spaces.
In Section 3, we establish some crucial lemmas in order to prove main results of
this paper. In Section 4, we prove the local boundedness of the minimizers of
a class of the energy functionals in Musielak—Orlicz—Sobolev spaces. In Section 5,
the local boundedness of the weak solution to a class of fully nonlinear elliptic
equations is provided.

2. The Musielak—Orlicz—Sobolev spaces

In this section, we list some definitions and propositions related to Musielak—
Orlicz—Sobolev spaces. Firstly, we give the definition of an N-function and
generalized N -function.

DEFINITION 2.1. A function A: R — [0,+00) is called an N-function, de-
noted by A € N, if A is even and convex, A(0) =0, 0 < A(t) € CY for t # 0,
and the following conditions hold:

A(t) A(t)

lim —%* =0 and lim —*% = +o0.
t—0+ ¢ t—+oo
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Let © be a smooth domain in R™. A function A: Q x R — [0, 4+00) is called
a generalized N-function, denoted by A € N(Q), if for each ¢ € [0, +00), the
function A(-,t) is measurable, and for almost every = € ), we have A(z, -) € N.

Let A € N(9), the Musielak—Orlicz space L4(f2) is defined by

LA(Q) := {u : u is a measurable real function, and 3A > 0

such that / A<9:, |u(z)|) dxr < Jroo}
Q A
with the (Luxemburg) norm

llullLao) = llulla = inf {)\ >0: /QA<x, |u()\x)|) dzx < 1}.

The Musielak-Sobolev space W14(Q) is defined by
WhA(Q) == {u e LAQ) : |[Vu| € LA(Q)}

with the norm
ullwra@) = llulli,a = [lulla +[[Vul a,
where ||Vu|la := || |Vu| || a-
A is called locally integrable if A(-,to) € Li,.(£2) for every to > 0.

DEFINITION 2.2. We say that a(x,t) is the Musielak derivative of A(x,t) €
N(Q) at ¢ if for x € Q and ¢t > 0, a(x,t) is the right-hand derivative of A(x, -)
at ¢; and for x € Q and ¢t <0, a(z,t) := —a(x, —t).

Define A: Q2 x R — [0, +00) by

Az, s) = suﬂg(st — A(z,t)) for z € Qand s € R.
te

A is called the complementary function to A in the sense of Young. It is well
known that if A € N(Q), then A€ N(2) and A is also the complementary
function to A.

For x € Q and s > 0, Wedenotebya+ (z,
Al(z, ) at s, at the same time define a;'(z,s)
s < 0. Then for z € Q and s > 0, we have

s) the rlght hand derivative of
= —a;'(z,—s) for x € Q and

a;'(z,s) =sup{t > 0:a(z,t) < s} =inf{t > 0:a(x,t) > s}

PROPOSITION 2.3 (see [12], [21]). Let A € N(Q). Then the following asser-
tions hold:
(a) A(z,t) <a(z, )t < A(z,2t) forz € Q andt € R;
(b) A and A satisfy the Young inequality
st < A(x,t) + A(z,s) forz e Q and s,t € R,

and the equality holds if s = a(x,t) ort = ai'(x,s).
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Let A,B € N(Q). We say that A is weaker than B, denoted by A < B, if
there exist positive constants K1, Ko and h € L*(Q) N L>°(Q) such that

(2.1) Az, t) < K1 B(z, Kat) + h(z) for z € Q and t € [0, +00).

PROPOSITION 2.4 (see [12},~[21]). Let A,B € N(Q) and A < B. Then
B < A, LB(Q) < LA(Q) and LA(Q) — LB(Q).

DEFINITION 2.5. We say that a function A: Q x [0, +00) — [0, +00) satisfies
the Ao(€2) condition, denoted by A € Ay(Q), if there exist a positive constant
K > 0 and a nonnegative function h € L'() such that

A(z,2t) < KA(z,t) + h(z) for x € Q and t € [0,400).

If A(z,t) = A(t) is an N-function and h(z) = 0 in Q in Definition 2.5, then
A € Ay(Q) if and only if A satisfies the well-known Ay condition defined in [3]
and [10].

PROPOSITION 2.6 (see [12]). Let A € N(Q) satisfy A2(§2). Then the following
assertions hold:

(a) LA(Q) ={u : u is a measurable function, and [,A(z, |u(z)|) dz < +oo};

(b) [o Az, |ul)dx <1 (resp. = 1; > 1) if and only if |lulla <1 (resp. = 1;
> 1), where u € LA(Q);

(¢) JoA(z,|up|)dz — 0 (resp. 1; +o0) if and only if |Juy|la — 0 (resp. 1;
+00), where {u,} C LA(Q);

(d) if up — win LA(Q) then [, |A(z, |ua]) do— Az, |ul)| dz — 0 as n — oo;

(e) if A also satisfies Ay, then

[ stntai

() al-,|u(-)]) € LASQ) for every u € LA(Q).

<2lfullallv] 5 for allu € LASQ), ve LAQ);

The following assumptions will be used:
(C1) insf2 A(z,1) =¢c1 > 0.
TE
(Cq) For every tg > 0, there exists ¢ = ¢(tg) > 0 such that

" ~
(z,t) > ¢ and A(z,t)

t 4
REMARK 2.7. Obviously, (C2) = (Cy). If A(x,t) = A(¢) is an N-function,
then (C;) and (Cz) hold automatically, and A is automatically locally integrable.

>c¢ forallt>ty, x e

PROPOSITION 2.8 (see [12]). If A € N(Q) satisfies (Cy1), then LA(Q) —
LY Q) and WHA(Q) — WH1(Q).
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PROPOSITION 2.9 (see [12]). Let A € N(Q), both A and A be locally integrable
and satisfy Ao () and (Cy). Then the space LA(SY) is reflexive, and the mapping
J: LA(Q) — (LA(Q))* defined by

(J(v),w) = / v(x)w(z)dx for allv e L‘K(Q), w € LAN)
Q
is a linear isomorphism, and ||J(v)| L4y < 2||v||Lg(Q).
Let A € N(Q) be locally integrable. We will denote
W) =Cr@' e, D@ = CE@ e,
In the case that ||Vul| 4 is an equivalent norm in W(}’A(Q), WOI’A(Q) = D(l)’A(Q).
PROPOSITION 2.10 (see [12]). Let A € N(Q) be locally integrable and sat-
isfy (C1). Then
(a) the spaces WA (), Wol’A(Q) and Dé’A(Q) are separable Banach spaces,
and
Wo ™ (Q) = WhA(Q) — Wwh(Q),
Dy () = Dy (9) = W' (@);

?

(b) the spaces WH4(Q), Wol’A(Q) and Dé’A(Q) are reflezive provided L™ ()
is reflexive.

PROPOSITION 2.11 (see [12]). Let A, B € N(Q) and A be locally integrable.
If there is a compact imbedding W4A(Q) < LB(Q) and A < B, then there
holds the following Poincaré inequality

lulla < ¢||Vul|la  for allu e Wol’A(Q)7

which implies that ||V - || 4 is an equivalent norm in Wy () and W *(Q) =
Dy (),

The following assumptions will be used:

(P1) Q € R*, n > 2, is a bounded domain with the cone property, and
Ae N(Q);
(P2) A: QxR — [0, +00) is continuous and A(z,t) € (0,+00) for x € Q and
t € (0,+00).
Let A satisfy (P1) and (P2). Denote by A=!(z, -) the inverse function of
A(z, -). We always assume that the following condition holds:

(P3) Ae N(Q) and

1 4-1
A= (z,t) =
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Under assumptions (P1)-(P3), for each z € Q, the function
Az, -): [0,+00) — [0, +00)
is a strictly increasing homeomorphism.
Define a function A;1: Q x [0, +00) — [0, +o0) by

SA—l o
A*—l(x,s):/o ﬁm for x € Q and s € [0, +00).

Then, under assumption (P3), A;! is well defined, and A;'(z, ) is strictly
increasing, A;(x, -) € C1((0,+00)), and the function A;*(x, -) is concave for
each z € Q. Set

(2.3) T(z)= lim A '(xz,s) forallze Q.

s——+oo

Then 0 < T(x) < +00. Define an even function A,: Q@ x R — [0, +00) by

s ifz€Q, [t|€[0,T(z)) and A7 (z,s) = |t],

Az, t) = _
(@) +oo  for z € Q and |t| > T(x).

Then, if A € N(Q) and T(z) = +oo for any z € Q, it is well known that
A, € N(Q) (see [3]). A. is called the Sobolev conjugate function of A (see [3]
for the case of Orlicz functions).

Let X be a metric space and f: X — (—o00, +00] be an extended real-valued
function. For x € X with f(x) € R, the continuity of f at x is well defined. For
x € X with f(x) = 400, we say that f is continuous at z if, given any M > 0,
there exists a neighbourhood U of z such that f(y) > M for all y € U. We say
that f: X — (—o00,+00] is continuous on X if f is continuous at every = € X.
Define Dom(f) = {z € X : f(z) € R} and denote by C17%(X) the set of all
locally Lipschitz continuous real-valued functions defined on X.

The following assumptions will also be used:

(Py) T:Q — [0, +00] is continuous on Q and T € C1~°(Dom(T));
(P5) A, € C'79(Dom(A,)) and there exist three positive constants dy, Co

and to with dg < 1/n, 0 < tp < minT'(z) such that
€N

IVaAu(z, )] < Co(Aula, 1)) %, j=1,...,n,
for x € Q and [¢| € [to, T(x)) provided VA, (z,t) exists.
Let A, B € N(f2). We say that A < B if, for any k > 0,
A(z, kt)
im
t—+oo B(x,t)
REMARK 2.12. Suppose that A, B € N(Q2), then A < B= A< B.

=0 uniformly for z € Q.

Next we give two embedding theorems for Musielak—Sobolev spaces recently
established by Fan in [13].
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THEOREM 2.13 (see [13], [20]). Let (P1)—(Ps) hold. Then:

(a) There is a continuous imbedding W'4(Q) «— LA (Q).

(b) Suppose that B € N(Q), B: Q x [0, +00) — [0, +00) is continuous, and
B(z,t) € (0,400) forx € Q and t € (0,400). If B < A., then there is
a compact imbedding WA (Q) < LB (Q).

By Theorem 2.13, Remark 2.12 and Proposition 2.11, we have the following:

THEOREM 2.14 (see [13], [20]). Let (P1)—(P5) hold and furthermore, A, A, €
N(Q). Then:
(a) A< A,, and there is a compact imbedding WA (Q) << LA(Q).
(b) There holds the Poincaré-type inequality
lula < CVulla  for u e Wy (),

i.e. ||Vulla is an equivalent norm on Wol’A(Q).

3. Some lemmas
Suppose Q C R™ is a bounded smooth domain, and A € N(Q) satisfies the
following condition (), denoted by A € &

(/) A € N(Q) satisfies assumptions (P1)—(P3), (P5) in Section 2 and the
following:
(P4) T(z) defined in (2.3) satisfies T'(z) = +oo for all = € Q.

LEMMA 3.1. Suppose that A € N(R), and there exists a strictly increasing
differentiable function 2: [0, +00) — [0,400) such that

(3.1) Az, at) > A(a)A(x,t) foralla>0, t R, z €.

(a) Then there exists a strictly increasing differentiable function A: [0, +00)
— [0, 4+00), defined by

1
~ — 0,
(32) S(o) = { A1je) 177
0 foro =0,
such that
(3.3) Az, pt) < QAl(B)A(ac,t), forall3>0,teR, x€Q,

and furthermore A =2A

(b) If A satisfies

(3.4) nA(a) > aA(a),
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then A, € N(Q), and there exists a strictly increasing differentiable func-
tion U : [0,4+00) — [0,400), defined by

(3.5) AL (o) = W for o >0,
0 for o =0,
such that
(36) A(z, Bt) <A (B)As(m,t) forall3>0, teR, €.
(c) If 2 satisfies
(3.7) al'(a) > A(a),

then A € N(Q), and there exists a strictly increasing differentiable func-
tion A: [0, +00) — [0, +00), defined by

(3.8) A1) = oA (o))"t  for o >0,
. 0 foro =0,
such that
(3.9) Az, Bt) < U(B)A(z,t) forall B3>0, teR, z €.

ProOF. (a) To prove (3.3), we set t = s/a and 8 = 1/ in (3.1). Then we
can see that (3.3) holds with

which is a strictly increasing differentiable function in the variable 5.
(b) Tt is clear that A, € N(Q2) by [3]. To prove (3.6), we set

(o)

in (3.1). Then, for o > 0, we have

(o)) 2 i) =

or equivalently,
aA™! (x, 2[&901)) > A Yz, s),

o AMNas/A) 1 A7)
(A(a))/™ (s/A(a))m+tD/n A(a) = srtD)/n
Integrating the above inequality with respect to s from 0 to ¢, we have

t/A(a) 4—1 t 4—-1
o / A Na,r) er/ A Nz, s) ds,
(Q[(a))l/n 0 ,r.(n+1)/n o S(n+1)/n

which implies that
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where 7 = s/(a). Then the definition of A, yields that

« _1 t _1
If we set
a 1/n
t = A(x) A (z, Gl 02) z>7

then we conclude that

2> A7t (m,m(a)A* (a: BAa)tm z)>

or equivalently,
1/n
(3.11) Ai(z,z) > Ala) As <x, % z>

Set 8 = (A(a))*™/a. Then, by basic computation and assumption (3.4), we
have

g _ @A)t o

w_B) - for all

Ta o3 (o' () — n2A(a)) < 0 for all a >0,
which implies, by the implicit function theorem, that we can interpret « as
a function of 8. Denote o = (). So inequality (3.11) implies that there exists

a function A, (B) := (A(a(B)))~! such that
A (z,B2) < UA(B)Au(z,2) forall 8 >0, z€R.

Set 0 = 1/U(a), we can get (3.5). To see that A.(B) is strictly increasing with
respect to the variable 3, we compute to obtain

d d 1 \da na? A ()
75 @00 = 1 (g ) 55 = >0

g A+ (a)(nU(a) — a A ()
The above inequality completes the proof of (b).
(¢) By the definition of A and (3.1), we deduce that

A(a)

Az, as) = sup (ast — A(x,t)) > sup (sat — ﬁ Az, at))

teR teR
1 1 -
= m ilelﬂlg(m(a)st — A(z,t)) = M Az, A(a)s).

Setting s = t/a and § = A(«)/«a, we obtain that
(3.12) Az, Bt) < A(a) Az, t).

In view of (3.7) and by direct computation, we conclude that

do o?

_———— fi 11 .
e aQ(’(a)le(a)>O orall >0
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Then, by the implicit function theorem, we can interpret « as a function of (.
Denote o« = «a(f). So inequality (3.12) implies that there exists a function
A(B) := A(«(B)) such that

Az, Bt) < A(B)A(z, ).

Set o = 1/A(c), we can get (3.8). To see that () is strictly increasing with
respect to the variable 8, we compute to obtain

d = do a? A ()
— (A =9 —_——=— .
a5 B8 =) 55 = T — @) "
The above inequality completes the proof of (c). O

DEFINITION 3.2. We say that €: RT — RT satisfies the condition Ag+,
denoted by € € Ag+, if there exists a constant My > 0 such that

(3.13) ClaB) < My €(a)e(p) for all a, 5 > 0.
By equations (3.2), (3.5) and (3.8), it is clear that the following remark holds.

REMARK 3.3. Under assumptions in Lemma 3.1, if 2,21 € Ags, 2A, A7,

~—1

5[71, A € Ap+.
Now we are in a position to prove the following result.

LEMMA 3.4. Let {yn} C R be a sequence satisfying

ﬁl/n

where ¢ is a positive constant. If A, AL A, € Ag+, then there exists yi > 0

(3.14) Yns1 < %91 <m1(5) c2h211(ch*(2h+2)yh)) for all B> 0,

such that, for yo < yg, yn — 0 as h = oco.

PROOF. Denote aj, := 22, 55, := A (ap), ky, := ﬂ’l(Msh), where M is
a constant to be determined later and set 8 = B, := (kpan)™ in (3.14).
CLAIM. For gy small enough, we have
(3.15) un < A(kn /A" (Bn))
Sh
Indeed, we can prove (3.15) by induction on h. Suppose (3.15) holds for
some h. We will prove that (3.15) holds for 2 + 1. By (3.14), we have

1 A1 (6y) - 2, (1)
(316) Yh+1 S Em* (W ath 1(Shyh)> S W

At the same time since 2, AL, A, € Ag+, there exist constants M, My, M3 > 0
such that

A-1(Ma) @
(317) Q[(W> Z B for all M 2 Ml, Oé,/B > 07
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A () _
m%(;) < Mot (g) for all a, 8 > 0,
and
i < (5)
Ql*(ﬁ)SMSQl* 3 for all o, 8 > 0.
Then

Fuer _ A7 (MU (ans) _ M2m1<%<ah+1>)

kno A-1(cM2A,(ap)) A (an)

< ! (M (54 ) ) = a0t 2) s 20l
h

By (3.17), we can choose M= My M4, (1). Then

kni1 A (Mspy1)
2 —1 n 2 —1 n
A ((kngran)™) /) \A™ ((Bnv1ans1)")
Sha1 Sh+1
ML) (1)
T (knsrang1)™ — (kpan)™

Together with (3.16) and (3.18), we conclude

Ql( khs1 )
Ui < A= ((knt1ans1)™)
>~ Shat )

(3.18)

which completes the induction on h of the claim. Furthermore, by the claim we

have
< 2A.(1)
Yrt1 = 7(%]%)”.
Then for
of Ko m( A (M. (4e)) )
§ <91‘1(ﬁo)) _\a (e (e ) )

Yo = 50 N A, (4c) = o

we conclude y, — 0 as h — oo. (|

LEMMA 3.5. Let f(t) be a nonnegative bounded function defined on [rqg,r1],
ro > 0. Suppose that for ro < s <t <17y we have

(3.19) f(s) <TA((t = 9)7") + B] + 0 (t),

where B, 0 are nonnegative constants with 0 < 0 < 1 and A: [0,400) — [0, +00)
is a function satisfying

(3.20) Alat) < A(@)A(t),
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where A: [0,+00) — [0,400) is a strictly increasing continuous function with
2(0) = 0 and there exists a Ty € R with Ty > 1 such that A(Ty) = 1. Then for
all ro < p < R <11 we have

(3.21) f(p) < CIA(R—p)™") + B,
where C' is a constant depending on 6 and 2.

PROOF. For fixed p and R, consider the sequence {t;};-% defined by

to = p, tm—ti:(l‘)( )

where 0 < r < 1 < Tj. By iteration from (3.19) and (3.20) we get

oz (- 5) w-r) o] ()

=0
<60 f(tx)

+ max {91((1 - 17:())_1),1}[A((R—p)—1) +B]§ (991(1;0» .

By the definition of 2 there exists a 0 < r < Ty such that A(Ty/r) < 1, then
from (3.20) we can get (3.21) by sending k — oo with

comefa((i-5) J)eon(®) o

In the following lemma A € N(Q2) N &7 satisfies the following assumptions:
(A1) There exists a strictly increasing differentiable function 2: [0, +00) —
[0, 4+00) satisfying
(3.22) nAla) > aW(a)

such that
(A11) Az, at) > A(a)A(x,t) for all > 0, t € R, x € ;
(Alg) A, Q[_I,Q[* € Ap+.
If u € WHA(Q) and Br = Br(z) := {y € R" : |y — 2| < R} C Q is any ball,
we denote Qi g := {x € Bg : u(z) > k}, where k is a real number.

LEMMA 3.6. Let A € N(Q) N« satisfy (A1), B € N(Q) satisfy B < A,
and v € WHA(Q) satisfy for any Br € Q, R < Ry, any o € (0,1) and any
k > ts = a given constant > 0,

u—k
3.23 / Az, |Vu dxgc/ A*(x,> dm—i—c/ B(z,k)dx.
(3.23) - (2,|Vul) - 1-o)k - (=, k)

Then wu is locally bounded above in €.
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Proor. Fix Bg C Q with R < Ry, k > ts and set

R R N e
Ph =5+ ohrT Ph="g9

1
kh:k(l_QhH>7 h:071,27...

It is clear that py | R/2, kn Tk, ph+1 < Py, < pn. Define

Jp = /Q A (z,|u(x) — kp|) dz,

kp.Ph

and fix £(t) € C'([0, +00)), with 0 < £(t) < 1, such that

1 fort<1/2,
£(t) =
0 fort>3/4,

and &’(t) < ¢. Denote

&5(2? (lx§)>

Then
1 forzeB ,
fh(w) — Ph+1
0 forx ¢ By, .
Then we have
G20 Jua< [ e ule) Bl do

Eh41:Ph

:/ Az, (u(z) — kpgr) T&n) da
Br

_ +
:/B A*<x7((u(:v) kny1)"En |(u—kh+1)+fh|A*;BR> dr.

U —knt1)TEnla, B

By (3.11), we have

forallz € Q, s >0, a >0,

or equivalently,

pi/m > A (z,5)
Al x, s| < forallz € Q, s>0, 3>0.
(=5 ’
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Then by (3.24), the Sobolev inequality and Lemma 3.1, we can see that

-1
Qlﬂl/(nﬁ) |(u = kh+1)+§hA*;BR)

. g/n (u(x) — kny1)"En )
/BR A (x, A=1(B) [(u — kny1)TEnlAL;Br de

—1
<A, <Ql (8) [(u — kh+1)+§hA*;BR)

(3.25) Jhe1 <A, (

g
.
3 R )
%9{ ( - ) - knr) e A*,Blff)
< %Ql* (Qlﬁ_ll/(ﬁ) | V((u— kns1)T€n)| a; BR)
< %m* (916—11/(715) (elVulason, 5, + 2" u = knilaon, ,, ,ph,))
~ o (22 e (wVulan,  5)

Al )
sy P |Vu|A;Qkh+1,ﬁh
+ c2h g1 (Q[(|U — k’h+1|A;Qkh+1,5h,)
Lo )
Qkthlvﬁh |’lL — k’h+1|A;Qkh+17ﬁh
—1
b b " Qkpy1:Pn

+c2ht (/Qw’ph Az, |[u(x) — kni1l) dxﬂ)

_ 1 A71(B) et coh -1
_Bm*( G AT (D) Fe2' (II)}>,

for any $ > 0. By inequality (3.23), we have in the right-hand side of the above

inequality that

(3.26) I<c /Q

+c B(z,kpy1) dx

Qkpi1ion

<eq. (;) m*(2h+2)/ﬂ A (2, u(@) — knyy) da

Kh41:Ph

A, <33 2%2 (u(z) — khﬂ)) dz

kEh41:Ph
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+c/ B(x, k) dzx
Q

kh4+1:Ph

<A (2M2) T, +c/ B(z, k) da.

Qkh,+1vph

Note that

JIp > /
Qipi1oo

—~(kni1 — kn —~( 1

Fh41:Ph Eh41:Ph

Az, |u(z) — kp|) dz > / As(x, kpy1 — kp) dx

Qkh+1aPh

Then, by equation (3.2), we have

(3.27) /Q A, (z, k) de < A, (22T,

Eh41:Ph

and since B < A., we obtain

(3.28) /Q

Together with (3.26) and (3.28), we conclude that

B(z, k) dz < c/ Ay (z, k) de < c A, (2"F2) ).

Q

kpt1:Pn Kh41:Ph

(3.29) I<ceA(2"2) 0.

On the other hand, by Theorem 2.14, we have A < A,. Then

(3.30)  I< /
Q

<Jn+ C|Qkh+1,?h ‘

Az, |u(z) — kpy1|) dx —|—/ cdzx

kpy1:Ph Qe 19Pn

By (3.27), we have

‘Qkh-uﬁhl < |Qk5h+1~,ph| < C/ A*(x7t8)dx

Qkh+1=/’h

< c/ A, (z, k) de < A (2" T,
Q

kEht1:Ph

from which, together with (3.30), we conclude that
(3.31) IT < (1+2,2"2)J, < A, (2"2) 0.

Combining (3.29), (3.31) and (3.25), we see that, for all 8 > 0,

Jhi1 < 1 *<9l5_11/(”6) [ch_l(ch*(Qh“)Jh) +02h21_1(691*(2h+2)Jh)])

-1
< %2{ (mﬁl/(f) czhml(cm*(Qh”)Jh)).

™
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Since we can choose k big enough so that

Jo = / A* <£C,
Qk/2>ﬂo

is small enough, by Lemma 3.4, we conclude that J, — 0 as h — co. Hence,

u(z) — ’;D do

u(x) <k for a almost every x € Bg/9, which completes the proof. (]

4. Local boundedness of the minimizer

In this section we consider the local boundedness of the minimizers for a
class of functionals defined in W14 (Q). Since we consider only local properties
of minimizers, without loss of generality, we can assume that €2 is a bounded
smooth domain in R".

Consider the integral functionals as follows:

(4.1) E(w) =E(v,Q) = /Qf(x,v(x),VU(a:)) dx,

where v € Wh4(Q) and f(x,s,2) is a Carathéodory function on Q x R x R"
satisfying

(4.2) A(%i zi|> —B(z,s)—c < f(z,s,2) < C(A(a:,g; |zi|) +B(x,8)+c>

with ¢ and C being non-negative constants; A € N(§2) N o/ satisfying (A1) (see
Section 3); A, induced by A, satisfying that there exists a Ty € R with Ty > 1
such that 2.(Tp) = 1; N(Q) > B < A, satisfying the following (B1)—(B3):

(B1) There exists a strictly increasing differentiable function 9B: [0, 4+00) —
[0, +00) such that

B(z,at) > B(a)B(x,t) foralla>0, teR, z e
(Bz) There exists a constant T o > 0 such that B(z, Tp o) > 1 for any x € Q.
We say that u is a local minimizer for the integral functional E if for any
€ Wo(Q),
(4.3) E(u;supp ¢) < E(u+ ¢;supp ).
Our main result is the following.

THEOREM 4.1. Let f satisfy the growth condition (4.2). If u € WHA4(Q) is

a local minimizer for the functional (4.1), then u € L2 (£2).

The proof of the above theorem is a direct consequence of the following
lemma.
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LEMMA 4.2. Let f satisfy (4.2). If u € WHA(Q) is a local minimizer for the
functional (4.3), then for any ball B C Q (R < 1), any k > Tp.q, and any
0 <o <1, we have

u

—k
Az, |Vu dmgc/ A*(x,>dx+c/ B(x,k)dz,
‘/Qk,o'R ( | D Q. R (1 - O)R Q. R ( )

where ¢ is a constant independent of k, R, and u.

Proor. Fix k > Ipq, Br for R < 1 and 0 < ¢ < 1. For any s and ¢
satisfying R < s < t < R, let us denote by 1 a C'-function such that n = 1
on By, 0 <n<1,suppn C By, |Dn| <2/(t —s). Taking p = —pmax{u—k, 0},
from (4.3), we have

fz,u, Vu)de < flx,u+ @, Vu+ V) dz,
Qe ¢ Qe
which implies by Lemma 3.1 (a) that

Az, |Vul|) de — B(z, |u|)dx—/ cdx
Qe Qe ¢ Qe

<C[ [ A0 ) (= VA o

—|—/ B(x,\u—n(u—kﬂ)dx—l—/ cdx}
Qk,t Qk,t

scmax{ﬁ@),%(?)}[ [ A vl - ) ds

k.t

+ [ Al [Vil(u - k) de
Qk,t

" /ﬂ Blaul) o+ [ Blaltu— ) ds+ [

kat Szk,t

cdm] .

By k> Tggand 0 <t—s < R < Ry =1, from the above inequality and
Lemma 3.1 we have

/Q. Az, |Vul) de < Cy maX{QAl(Q),%Q)}[/Q Az, |Vul(1 — 1)) dz

k,t

B(x, |u|) dz

[ A Vil b)d
Qk,t Qk,t

T +
+/ B(x,|n|(u—k))daz+/ 1dx}
Qk,t Qk,t

gcg)max{ﬁ@),s%(z)}ﬁ@)UQ . Az, |Vu|) da

Jr/ A(m,H)der/ B(z,(u—k)+ k) dx
Q¢ t—s Q¢
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+/QM B(mu—k)dw—i—/ﬂk’t 1dac]
< Cymax {2(2), B(2)} A(2) B(2) { /Q Alz,|Vul) dz

eyt \k, s

+/ A*(x,u_k>dx+/ B(z,u — k) dx
Q¢ t—s Q¢
+/ B(z, k) dx—i—/ 1dm}

Qk,t Qk,t

Sc/ Az, |Vu|) dx
Qe ¢\ Qs

—k
—|—c/ A, (m, u) dr + ¢ B(xz, k) dx,
Qp e t—s Qr ¢

where ¢ = ¢(A, B) is a positive constant. Adding cfm A(z,|Vu|) to both sides
of the above inequality, we have

Az, |Vul|)de <6 Az, |Vul) dx
Qs Q¢

—k
+c/ A*<m7u >dx+c/ B(z, k) dx,
QR t—s Q. R

where § = ¢/(c + 1) < 1is a constant depending on the N (Q)-functions A and B.
By Lemma 3.5, we conclude that

—k
A(z,|Vu dmﬁC{/ A*<x,u>dx+c/ B(x,k d:ﬂ],
/Qk,an, ( | |) Qr.R (1 - U)R Qr.R ( )
where C' = C(A, B) is a constant. O

PROOF OF THEOREM 4.1. By Lemmas 4.2 and 3.6 (taking Ry = 1), the
local minimizer v is locally bounded above in 2. And similarly —u is also locally
bounded above in 2. Then the conclusion of Theorem 4.1 follows. O

5. Local boundedness of weak solutions
to a kind of fully nonlinear elliptic equations

In this section, we consider the local bounded regularity of weak solutions of
a kind of fully nonlinear elliptic equation. Since we consider only local proper-
ties of the weak solutions, without loss of generality, we can suppose that € is
a bounded smooth domain in R"™.

Consider the second order fully nonlinear elliptic equation as follows:

(5.1) div L(z,u, Vu) + F(z,u,Vu) =0 for all z € Q,

where L: QO xRxR* 5 R”, F: QxR xR* - R u: Q = R.
The following assumptions on A, B € N(€) will be used:
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(A7) There exists a strictly increasing differentiable function 2A: [0, +00) —
[0, 4+00) satisfying

(5.2) nA(a) > aW(a) > Ala)

such that
(A11) Az, at) > A(a)A(x,t) for all > 0, t € R, x €
(A12) A,A71 A, € Ags.
(Bf) There exists a strictly increasing differentiable function B: [0, +00) —
[0, 4+00) satisfying

(5.3) a®B’'(a) > B(a)

such that B(z,at) > B(a)B(x,t) foralla >0, ¢t € R, z € .
(Ba) There exists a constant Tz o > 0 such that B(z, T q) > 1 for any x € Q.

Suppose equation (5.1) satisfies the following growth conditions:

(5.4) L(z,u,2)z > apgA(z, |z]) — bB(x,u) — ¢,
(5.5) |L(z,u, 2)| < ay A~ A(z, |2]) + bA™' B(x, u) + ¢,
(5.6) |F(z,u,2)| < asB Az, |z|) + bB~'B(z,u) + c,

where ag, a1, az,b, ¢ are positive constants, A € N() N </ satisfies (A]), and
N(Q) 3 B < A, satisfies (B} ) and (Ba).

DEFINITION 5.1. u € WH4(Q) is said to be a weak solution of (5.1) if

(5.7) / L(z,u,Vu)Vvdz — / F(z,u, Vu)vdzr =0
Q Q

for any v € Wy (Q).

THEOREM 5.2. Let the growth conditions (5.4)—(5.6) hold. If u € Wh4(Q)
is a weak solution of (5.1), then u € L{2.(Q).

loc

LEMMA 5.3. Let equations (5.4)—(5.6) hold. If u € WHA(Q) is a weak so-
lution of (5.1), then for any ball By C (R < 1), any k > Tpq, and any
0 <o <1, we have

u—k
Az, |Vu dxgc/ A*(;v,>dx+c/ B(x, k) dx,
/Qk,aR ( I D Q. R (1 - G)R Q. R ( )

where ¢ is a constant independent of k, R,o and u.

PROOF. Let u be a weak solution of (5.1). For arbitrary balls B4(Z) C
Bi(z) C Q, let € be a C*°-function such that

2
OS§§17 suppﬁCBt, §:1 on BS7 |V§| Sti
— S8
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For k > Tp o set v = 2A({) max{u —k,0} € Wol’A(Q). Then by (5.7), we obtain

(5.8) /Q (&) L(z,u, Vu) - Vudz + /Q (u—k)L(x,u, Vu) - VA(E) dx

- /Q (&) (v — k)F(z,u, Vu)dz = 0.
From (5.5), (5.6) and (5.8) it follows that
(5.9) ag Az, |Vu))2A(&) dx < b B(z, |u))A(&) dz + c/Q A(&) dx

Qk,t Qk,t

+ay AT Az, [Vul) VUS| (u — k) da
Qpet

+b/Q A7'B(x, |u))[VA()|(u — k) d
+c/% V()| (u— k) da
+a2/Q B~ A(x, |[Vu)A(€) (u — k) da

+ b/Q B7 Bz, [u)2A(€)(u — k) dx + c/ﬂ A(E)(u — k) da.

kot

Now let us estimate each term of the right-hand side of (5.9). Ast—s < R <1
we obtain

(5.10) A B(x, |u))20(&) de < A(1) ; Bz, (u—k)+ k) dx
<2(1) /Qk t B(z,2max{u — k,k}) dx
< m(1)si§(2)/ B(z,max{u — k, k}) dx
Q¢

<c B(m,u—k‘)dm—i—c/ B(z, k) dx
Q¢ Q¢

<c A(z,u—k)de + c|Qp ] + ¢ B(z, k) dx
Qk,t Qk:,t

—k
Sc/ A, (a:,u > dr +c B(z, k) dx.
Qk,t t_ § Qk,t

Obviously,

(5.11) /Q 2A(¢€) dxgm(n/ B, k) da.
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By the Young inequality, and taking ¢ > 0 such that alil(ns) = ag/4, we deduce
from the assumption n(«) > o’ («) > A(e), Lemma 3.1 (c) and (3.12) that

(5.12) al/ﬂ A1 A, |Vul) V()| (u — k) da
—an [ A A (T[T~ B do

<ar / Az, e20(€) - AV (Ae, [Vu))) da
Qr ¢

—l—al/Q Az, e Ve (u — k)) dz

<ay /Qk,t g(:msn 9125) A YAz, |Vu|))) dx

+a1/Q Az, e Y VE|(u — k) da

< ay A(ne) /Q Z(:g, 2‘25) CATY(A(w, |Vu|))> dx

+a1§l<2)/ A<:L',Uk> dx
€) Jau., t—s

S@/ Ql(ﬁ)A(m,|Vu|)d:z:+c/ A*<I,Uk>dz+c§2k.t|
4 Qr ¢ Qr ¢ t—s ’

<% [ AVl da

—k
+C/ A*<x’u >da:+c/ B(z, k) dx.
Qp,t t—s Qp,t

By the Young inequality, taking € > 0 such that as %(5) = ag/4 we obtain from
the assumption aB’(a) > B(«) and Lemma 3.1 (c) that

(5.13) ay /Q t B~ A(z, |[Vu)A(€) (u — k) da
<as /Q WE)B (2, B Az, |Vul)) da
+ ap /m,t A(6)B(w, e (u—k))dx
<ayB(e) /Qk t A(6)A(z, |Vul) do + ap A(1)B (i) B(z,u — k) dx

Q¢

< %/ A(E) Az, [Vul) dz + C/ Au(w,u— k) dr + | |
Qo Q¢
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Similarly, we have

(5.14) /Q A1 B, [ul) [V (u — k) da

= A7 B(a, [u) (€)|VE|(u — k) do

/ n MO A7'B(x, |u))|VE|(u — k) da
. €

IA

g/ﬂ%tﬁ(;ﬂ,nm(g)ﬁlmx, |u|)> dach/QM Az, |VE|(u — k)) dx

£

367

<A(n) A(E)A(x, A B(x, |u])) dz + Az, |VE|(u — k)) dx

Qe Qe

<2A(n)2A(1) B(z,(u— k) + k) dx + Az, |VE|(u—k)) dz

Q1 Q1

c/ B(:c,ufk:)dz+c/ B(x, k) dx
Q¢

Qe t

+ 22 )/QMA< , k>dz

IN

<c ( uzk d:c—|—c/ B(x
th Q¢

515 [ AR [ w2 (el 1) ds

<9A(2n) /§2kA<xz_§) dx+/9kml<x, 9‘?) dw
c/ﬂwA(x, ;‘_f) dm+/%m(g)ﬁ(x,1)dx
c/ﬂm A, (x, 1;—5) dx + ¢| Q|

—k
c/ A, (m, Y ) dx +c B(z, k) dz,
Q¢ t—s Q¢

(5.16) /Q B7'B(x, |u)2A(&)(u — k) d

IN

IN

IN

t—
u—k
Sc dx + B(z, k) dx + c|Q 4|
Qkf -S th
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< /Qm B(x,(u—Fk)+k)dz + /QM B(z, (&) (u — k)) dz

IN

¢ B(m,u—k)da:+c/ B(z, k) dzx + c|Q 4
Qe Qs

Sc/ A, (x, H) dr +c B(xz, k) dx,
Qe t t—s Qe t

(5.17) A(E) (u— k) da < /

Qk,t Qk,t

—k
Sc/ A, (m, u) dz + c|Qy 4|
Qk,t t—s

Sc/ A*<x,u_k> dr +c B(xz, k) dx.
Qe t—s Qe

From (5.9)—(5.17), we conclude that

91(1)/9 A(m,|Vu|)dx§/Q Az, [Vu))2(€) da

—k
gc/ A, (m,u ) dx +c B(x, k) dz,
Qe t—s Q¢

which implies the conclusion of the lemma. O

B(x,u_k)dx+/Q B(z,A(¢)) dz

PROOF OF THEOREM 5.2. By Lemmas 5.3 and 3.6 (taking Ry = 1), the
local minimizer v is locally bounded above in 2. And similarly —u is also locally
bounded above in 2. Then the conclusion of Theorem 5.2 follows. (]

6. Examples

In this section, we give two examples of the function A which satisfy the con-
ditions in our theorems. And we claim that not only variable exponent Sobolev
spaces satisfy the conditions in Theorems 4.1 and 5.2 (see Example 6.1), but
also some more complex space also satisfies conditions of these theorems (see
Example 6.2).

EXAMPLE 6.1. Let p € C17%(Q) and 1 < ¢ < p(z) < py = supp(z) < n
z€EQ
(q €R) for x € Q. Define A: @ x R — [0, +00) and B: Q x R — [0, +0) by

np(z)
n—p(z)
It is readily checked that A satisfies (P;)—(P3). It is easy to see that p € C1~9(Q)
implies A € C179(Q) and, for s > 0,

Az, t) = 1@, Ba,t) = [t]" @), where p*(z) =

6.1) A (3, ) = 2T (np(a)) /(o)
n —p(x)
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Then T'(x) = 400, and (f’;) is satisfied. In addition, for z € ,
Ve A(z,t) = [tP@ In |t Vp(x).

Since for any € > 0, Int/t* — 0 as t — +o00, we conclude that there exist
constants d; < 1/n, ¢; and ¢; such that

0A(z,t)

8xj

for all € Q and t > ¢;. Combining A € Ay(Q2), from Proposition 3.1 in [13], it
is easy to see that condition (Pjy) is satisfied. All growth conditions (A;), (By),

(B2), (AY), (BY) and (BJ) are easy to verify. Thus conditions in Theorems 4.1
and 5.2 are verified.

‘ < e AT (1),

We claim that this example contains and extends in part the conclusion of
Theorems 3.1 and 4.1 in [15] and some of its corollaries.

EXAMPLE 6.2. Let p € C179(Q) satisfy 1 < p~ < p(x) < py = supp(z) <
z€Q
n —1. Define A: Q x R — [0,+00) and B: 2 x R — [0, +0c0) by

Az, t) = [tP™@ log(1 + |t]), B(x,t) = [t|P"®)=9,

for some & > 0, where p*(z) = np(z)/(n — p(x)). It is obvious that A satisfies
(P1)—(P3). Pick € > 0 small enough such that p™ + ¢ < n. Then, for ¢ > 0 big
enough, A(z,t) < ct?’ ¢, which implies that T(z) = +oo for all z € Q. Then
(151) is satisfied. Since p € C'~%(Q2) and A € C1=%(Q x R), by Proposition 3.1
in [13], A, € C17°(QxR). Combining A € Ay(), it is easy to see that condition
(P5) is satisfied. All growth conditions (A1), (By), (B2), (A7), (Bf) and (BJ)
are easy to verify. By now conditions in Theorems 4.1 and 5.2 are verified.
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