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DYNAMICS OF THE BBM EQUATION

WITH A DISTRIBUTION FORCE

IN LOW REGULARITY SPACES

Ming Wang — Anping Liu

Abstract. The Benjamin–Bona–Mahony equation with a distribution

force on torus is studied in low regularity spaces. The global well-posedness
and the existence of a global attractor in Ḣs,p(T) are proved.

1. Introduction

There are a lot of studies devoted to the global attractor of dynamical systems

generated by nonlinear partial differential equations. The dynamical system, due

to the damped effect, is usually dissipative in some Banach space X, namely it

has a bounded absorbing set in X. To prove the compact property of solution

semigroup, one may try to control the nonlinear term by Sobolev embedding and

the dissipative bound in X. This is the reason why some growth restrictions need

to be posed on the nonlinear terms. Following this line, roughly speaking, the

growth restrictions on nonlinear term can be relaxed if the phase space is more

regular, see [2] for a discussion on this topic for reaction diffusion equations. In

a given phase space, it is very interesting to find the critical exponent of growth

order for the nonlinear term, which has been done in [1] and [17]. However,

2010 Mathematics Subject Classification. 37L30, 35Q53.
Key words and phrases. Global attractor; Benjamin–Bona–Mahony equation; low

regularity.
The project was supported by the National Natural Science Foundation of China un-

der grant No. 11701535, and the Natural Science Fund of Hubei Province under grant

No. 2017CFB142.

91



92 M. Wang — A. Liu

one does not need to consider this problem for those equations in physics when

the nonlinear term is fixed and given explicitly. In this case, an “equivalent”

question is to find out the lowest regularity space in which the global attractor

exists. The paper is devoted to this direction for the Benjamin–Bona–Mahony

(BBM) equations.

Consider the following damped, forced BBM equation on the one-dimensional

torus T = [0, 2π]:

(1.1) ut − utxx − uxx + uux = f, (x, t) ∈ T× R+

with the initial condition

(1.2) u(0, x) = u0(x), x ∈ T.

Here the unknown function u is real-valued, utxx = ∂t∂
2
xu, and the forcing term

f is a given function independent of time.

The model was used to describe the propagation of long waves which incor-

porates nonlinear dispersive and dissipative effects, see [5], [6]. This equation

and also related types of the BBM equation were studied by many authors. The

well-posedness and ill-posedness were obtained in [4], [3], [7], [10]. The stability

or decay rate of solutions in Sobolev spaces were investigated in [14], [19], [20].

The existence of the global attractor was proved in [21], [22], [25], [27], [34].

Moreover, the higher regularity and finite fractal dimension can be found in [12]

and [9], [28], respectively.

Observe that if u(t, x) is a smooth solution of (1.1)–(1.2), then integrating

(1.1) on T yields that
d

dt

∫
T
u dx =

∫
T
f dx.

If f has zero mean, then we find for all t > 0∫
T
u(t, x) dx =

∫
T
u0 dx.

Thus in this article, without loss of generality, we only consider the solution u(t)

of mean zero.

The main results in this paper read as follows.

Theorem 1.1. Assume that f ∈ Ḣs−2,p(T) with 0 ≤ s ≤ 1 and 2 ≤ p <∞.

Then, for every u0 ∈ Ḣs,p(T), problem (1.1)–(1.2) has a unique solution u ∈
C([0, T ]; Ḣs,p(T)) for some T > 0 depending on u0 and f . Moreover, the solution

map S(t) : u0 7→ u(t) is continuous in Ḣs,p(T).

Theorem 1.2. Assume that f ∈ Ḣs−2,p(T) with 2 ≤ p < ∞ and 1/(2p) ≤
s ≤ 1. Then problem (1.1)–(1.2) has a global attractor in Ḣs,p(T).

This is a continuation study of our previous works [29], [30], [31]. The main

difference lies in that the force term f is allowed to belong to Sobolev spaces
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of negative order. The assumption f ∈ Ḣs−2,p is sharp in the sense that it

is necessary to obtain the existence of the global attractor in Ḣs,p. In fact,

the solution is not expected to belong to Ḣs,p if f ∈ Ḣs′−2,p′ with s′ < s or

p′ < p. Compared to [29], [31], Theorem 1.1 suggests that the external force

does not change the range of s in the local well-posedness. But this is not

the case in the global well-posedness, due to the low regularity of the force.

By a decomposition, we reduce the equation with a distribution force to an

equation with an irregular coefficient. To deal with the irregular coefficient,

we need the assumption s ≥ 1/(2p) for some technical reasons. It is not clear

whether Theorem 1.2 holds for smaller s.

We give some references on similar topics. The existence of the global at-

tractor in Lp type Sobolev spaces are proved in [8] for strongly damped wave

equations, and in [11] for Euler equations. When the force belongs to distribu-

tional space, the global attractor is obtained for reaction diffusion equations in

[24], [33] and damped wave equations in [18], [32].

This paper is organized as follows. Section 2 is devoted to the local well-

posedness of problem (1.1)–(1.2) in Ḣs,p(T) with 0 ≤ s ≤ 1. In Section 3, we

obtain the existence of a global attractor in Ḣs,p(T) with 1/(2p) ≤ s ≤ 1 by the

I-method.

2. Local well-posedness

We first recall some definitions. Given a function ϕ on the torus T, the

Fourier coefficient is defined by

ϕ̂(n) =
1

2π

∫
T
ϕ(x)e−inx dx, n ∈ Z.

Then, we have the following Fourier inversion formula:

ϕ(x) =
∑
n∈Z

ϕ̂(n)einx.

For s ∈ R, we define the fractional operator (1− ∂2x)s/2 by

(1− ∂2x)s/2ϕ(x) =
∑
n∈Z
〈n〉sϕ̂(n)einx,

where 〈n〉 =
√

1 + n2. Moreover, for 1 < p < ∞, the Bessel potential spaces

Hs,p(T) are defined as the completion of smooth functions with respect to the

norm

(2.1) ‖ϕ‖Hs,p = ‖(1− ∂2x)s/2ϕ‖Lp .

We denote by Ḣs,p(T) the space of functions ϕ satisfying ‖ϕ‖Hs,p <∞ and∫
T
ϕ(x) dx = 0.
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If ϕ belongs to Ḣ1(T), then ϕ̂(0) = 0,

(2.2) ‖ϕx‖L2(T) = ‖nϕ̂(n)‖l2(dn) ≥ ‖ϕ̂(n)‖l2(dn) = ‖ϕ‖L2(T).

This is the well-known Poincaré inequality on torus. Moreover, the space Ḣs,p(T)

has the following equivalent norm:

‖ϕ‖Ḣs,p ∼
∥∥∥∥ ∑
n∈Z\{0}

|n|sϕ̂(n)einx
∥∥∥∥
Lp
.

In particular, let s = 2, this implies the bound (1)

‖(1− ∂2x)∂−2x ‖L̇p,L̇p ≤ C for all 1 < p <∞.(2.3)

Let N > 0. We define the frequency projection operator PN on low Fourier

modes as

PNϕ =
∑
|n|≤N

ϕ̂(n)einx,

and PN on high Fourier modes

PNϕ =
∑
|n|>N

ϕ̂(n)einx.

It is clear that Id = PN + PN .

Throughout, A . B means A ≤ CB for some absolute constant C, A ∼ B

means A . B and B . A, and A� B means A/B is very big, say A/B ≥ 1000.

2.1. The decomposition u = Q + v. Let N1 ≥ 1. Consider the elliptic

equation

(2.4) −Qxx + PN1(QQx) = PN1f,

where f ∈ Ḣs−2,p(T) with 2 ≤ p < ∞ and 0 ≤ s ≤ 1. We shall use the

contraction principle to find a solution Q. To this end, we rewrite (2.4) as

(2.5) Q = (−∂2x)−1PN1(f −QQx) := Γ1Q.

It is well known [15, Theorem 3.5.7, p. 217] that, for every ϕ ∈ Hs−2,p(T),

lim
N→∞

‖PNϕ‖Hs−2,p = 0.

Thus, for every 0 < ε < 1, there exists N1 ≥ 1 such that

‖PN1ϕ‖Hs−2,p ≤ ε.

It follows from (2.3) that

‖(−∂2x)−1PN1f‖Hs,p ≤ C‖(1− ∂2x)−1PN1f‖Hs,p ≤ Cε.(2.6)

To proceed, we need the follow result.

(1) This can also be proved in a similar way as Lemma 2.6 in this paper.
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Lemma 2.1. Let s ≥ 0 and 2 ≤ p <∞. Then

‖∂x(1− ∂2x)−1(uv)‖Hs,p . ‖u‖Hs‖v‖Hs .

Proof. The desired conclusion is equivalent to show that

(2.7) ‖∂x(1− ∂2x)−1+s/2((1− ∂2x)−s/2u(1− ∂2x)−s/2v)‖Lp . ‖u‖L2‖v‖L2 .

Thanks to the fact that ∂x(1− ∂2x)−1/2 is bounded in Lp(T) for 2 ≤ p <∞, and

(1− ∂2x)−(1/2−1/p)/2 is bounded from L2 to Lp (which follows from the Sobolev

embedding H1/2−1/p ↪→ Lp), (2.7) follows if one can show that

(2.8) ‖(1− ∂2x)s/2−(1/2+1/p)/2((1− ∂2x)−s/2u(1− ∂2x)−s/2)v‖L2 . ‖u‖L2‖v‖L2 .

Using the Plancherel theorem, (2.8) is reduced to showing

(2.9)

∥∥∥∥ ∑
n=n1+n2,n1,n2∈Z

〈n〉s−(1/2+1/p)〈n1〉−sû(n1)〈n2〉−sû(n2)

∥∥∥∥
l2(dn)

. ‖û‖l2‖v̂‖l2 .

It is easy to check the elementary inequality 〈n〉s . 〈n1〉s〈n2〉s, for s ≥ 0.

Combining this and Cauchy’s inequality, we find

LHS (2.9) .

∥∥∥∥ ∑
n=n1+n2,n1,n2∈Z

〈n〉−(1/2+1/p)û(n1)û(n2)

∥∥∥∥
l2(dn)

. ‖〈n〉−(1/2+1/p)‖l2
∥∥∥∥ ∑
n=n1+n2,n1,n2∈Z

û(n1)û(n2)

∥∥∥∥
l∞(dn)

. ‖û‖l2‖v̂‖l2

as desired. �

Consider the set B1 = {ϕ ∈ L1(T) : ‖ϕ‖Hs,p ≤ 2Cε}. Thanks to Lemma 2.1,

using (2.3) again, if Q ∈ B1, then

‖(−∂2x)−1(QQx)‖Hs,p ≤ C ′‖Q‖2Hs,p ≤ 4C2C ′ε2.

Choose N1 large enough such that ε is small enough, say 4CC ′ε ≤ 1/2. Then

we have

‖(−∂2x)−1(QQx)‖Hs,p ≤ Cε/2.
This and (2.6) implies that Γ1 maps B1 into B1. Moreover, if Q, Q̃ ∈ B1, then

‖Γ1Q− Γ1Q̃‖Hs,p ≤ C ′‖Q+ Q̃‖Hs,p‖Q− Q̃‖Hs,p

≤ 4C ′Cε‖Q− Q̃‖Hs,p ≤
1

2
‖Q− Q̃‖Hs,p .

Thus, Γ1 is a contraction mapping on B1. This gives the following proposition.

Proposition 2.2. Let f ∈ Ḣs−2,p(T) with 2 ≤ p <∞ and 0 ≤ s ≤ 1. Then,

for every 0 < ε < 1, there exists N1 large enough depending on ε such that the

elliptic problem

−Qxx + PN1(QQx) = PN1f
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has a unique solution Q ∈ Ḣs,p(T). Moreover, we have the bound

‖Q‖Hs,p ≤ Cε.

Let Q be the solution of (2.4) defined by Proposition 2.2. If v is a solution of

vt − vtxx − vxx + vvx + (Qv)x = PN1(f −QQx),(2.10)

v(0, x) = u0(x)−Q,(2.11)

then u = v +Q is a solution of (1.1)–(1.2).

In the sequel, thanks to Proposition 2.2, we assume that N1 is large enough

to ensure that

‖Q‖Hs,p ≤ min
{
‖f‖1/2Hs−2,p , ‖f‖Hs−2,p , ε0

}
(2.12)

where ε0 is a small number determined later. We claim that for all α ≥ 0

‖PN1(f −QQx)‖Hα . (1 +N2
1 )1+α/2‖f‖Hs−2,p .(2.13)

Indeed, rewrite PN1(QQx) as PN1∂x(1 − ∂2x)1/2(1 − ∂2x)−1/2Q2/2, and use the

Plancherel theorem, Sobolev embedding, Höler inequality and (2.12), we find

‖PN1
(QQx)‖Hα . (1 +N2

1 )1+α/2‖(1− ∂2x)−1/2Q2‖L2

. (1 +N2
1 )1+α/2‖Q2‖L1 . (1 +N2

1 )1+α/2‖Q‖2L2

. (1 +N2
1 )1+α/2‖Q‖2Hs,p . (1 +N2

1 )1+α/2‖f‖Hs−2,p .

Similarly, we have ‖PN1f‖Hα . (1 +N2
1 )1+α/2‖f‖Hs−2,p . Thus the claim (2.13)

follows.

2.2. I-operator. It is well known that the linear BBM equation does not

has a smoothing effect. In fact, if u(t) is the solution of

(2.14) ut − utxx − uxx = 0, u(0, x) = u0(x),

then by Fourier transform, we have

û(t, n) = e−|n|
2t/(1+|n|2)û0(n), n ∈ Z.

Clearly, u(t) belongs to Hs(T), t > 0, if and only if u0 belongs to Hs(T). Thus,

it is not expected that the solution v of (2.10)–(2.11) belongs to Hs+ε(T) for

some ε > 0.

On the other hand, in order to establish the global well-posedness of (2.10)–

(2.11), one needs to exploit the cancellation (antisymmetry) property of vvx. To

this end, multiplying both sides of (2.10)–(2.11) with v and integrating, we find

(2.15)
1

2

d

dt

∫
T
|v|2 + |vx|2 dx+

∫
T
|vx|2 dx+

∫
T
(Qv)xv dx =

∫
T
PN1fv dx.

Equation (2.15) is often referred to the energy equation, which reflects essentially

the dissipative property of the original equation. Note that the energy equation
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holds only if v belongs to H1(T), which is impossible for solutions v of (2.10)–

(2.11) with data u0 ∈ Hs(T), s < 1.

To overcome this difficulty, for 0 ≤ s ≤ 1 and N � 1, we introduce (inspired

by [13]) the I-operator as follows:

INϕ(x) =
∑
n∈Z

mN (n)ϕ̂(n)einx,

where m is a nonnegative smooth decreasing function satisfying

mN (n) =


1 if |n| ≤ N,(
|n|
N

)s−1
if |n| ≥ 2N.

Lemma 2.3. If u ∈ L2(T), then the inequality

‖IN∂x(1− ∂2x)−1(uv)‖H1 . ‖u‖L2‖INv‖H1

holds, where the implicit constant is independent of N .

Proof. The lemma follows if one can show that

(2.16) ‖IN (uI−1N (1− ∂2x)−1/2v)‖L2 . ‖u‖L2‖v‖L2 .

The n-th Fourier coefficient of IN (uI−1N (1− ∂2x)−1/2v) is∑
n=n1+n2,n1,n2∈Z

mN (n)û(n1)
v̂(n2)

mN (n2)〈n2〉
.

By the Plancherel theorem, we have

(2.17) ‖IN (uI−1N (1− ∂2x)−1/2v)‖L2

=

∥∥∥∥ ∑
n=n1+n2,n1,n2∈Z

mN (n)û(n1)
v̂(n2)

mN (n2)〈n2〉

∥∥∥∥
l2(dn)

.

Rewrite the sum on the right hand side of (2.17), then we find

RHS (2.17) . S1 + S2 + S3,

where

S1 =

∥∥∥∥ ∑
n=n1+n2,n1,n2∈Z

|n2|<2N

mN (n)û(n1)
v̂(n2)

mN (n2)〈n2〉

∥∥∥∥
l2(dn)

,

S2 =

∥∥∥∥ ∑
n=n1+n2,n1,n2∈Z

|n2|≥2N

mN (n)û(n1)
v̂(n2)

mN (n2)〈n2〉

∥∥∥∥
l2(dn,|n|<2N)

,

S3 =

∥∥∥∥ ∑
n=n1+n2,n1,n2∈Z

|n2|≥2N

mN (n)û(n1)
v̂(n2)

mN (n2)〈n2〉

∥∥∥∥
l2(dn,|n|≥2N)

.
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For S1, since |n2| < 2N , by definition we find |mN (n2)| & 1. Note that we

always have |mN (n)| ≤ 1, then

S1 ≤
∥∥∥∥ ∑
n=n1+n2,n1,n2∈Z

|n2|<2N

mN (n)|û(n1)| |v̂(n2)|
mN (n2)〈n2〉

∥∥∥∥
l2(dn)

(2.18)

.

∥∥∥∥ ∑
n=n1+n2,n1,n2∈Z

|n2|<2N

|û(n1)| |v̂(n2)|
〈n2〉

∥∥∥∥
l2(dn)

. ‖û(n)‖l2(dn)
∥∥∥∥ v̂(n)

〈n〉

∥∥∥∥
l1(dn)

,

where in the last step we used Young’s inequality for the convolution of sequence.

By Cauchy’s inequality,

(2.19)

∥∥∥∥ v̂(n)

〈n〉

∥∥∥∥
l1(dn)

≤ ‖v̂(n)‖l2(dn)‖〈n〉−1‖l2(dn) . ‖v̂(n)‖l2(dn).

Combining (2.18)–(2.19) together and using the Plancherel theorem again, we

arrive at

(2.20) S1 . ‖û(n)‖l2(dn)‖v̂(n)‖l2(dn) = ‖u‖L2‖v‖L2 .

For S2, since |n2| ≥ 2N , we find

mN (n2)〈n2〉 =

(
|n2|
N

)s−1
〈n2〉 & N1−s〈n2〉s.(2.21)

Using (2.21), the bound |mN (n)| . 1 and Young’s inequality, we obtain

S2 .

∥∥∥∥ ∑
n=n1+n2,n1,n2∈Z

|n2|≥2N

mN (n)

N1−s〈n2〉s
|û(n1)||v̂(n2)|

∥∥∥∥
l2(dn,|n|<2N)

(2.22)

.
1

N

∥∥∥∥ ∑
n=n1+n2,n1,n2∈Z

|û(n1)||v̂(n2)|
∥∥∥∥
l2(dn,|n|<2N)

.

∥∥∥∥ ∑
n=n1+n2,n1,n2∈Z

|û(n1)||v̂(n2)|
∥∥∥∥
l∞(dn)

. ‖û(n)‖l2(dn)‖v̂(n)‖l2(dn).

For S3, note that mN (n) = (|n|/N)s−1, using (2.21) again, we have

(2.23) S3 .

∥∥∥∥ ∑
n=n1+n2,n1,n2∈Z

〈n〉s−1û(n1)v̂(n2)〈n2〉−s
∥∥∥∥
l2(dn)

.
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By virtue of (2.23), using the Hölder inequality, we get

(2.24) S3 .



‖〈n〉s−1‖l2
∥∥∥∥ ∑
n=n1+n2

û(n1)v̂(n2)〈n2〉−s
∥∥∥∥
l∞(dn)

if 0 ≤ s < 1

2
,

‖〈n〉s−1‖l4
∥∥∥∥ ∑
n=n1+n2

û(n1)v̂(n2)〈n2〉−s
∥∥∥∥
l4(dn)

if s =
1

2
,

‖〈n〉s−1‖l∞
∥∥∥∥ ∑
n=n1+n2

û(n1)v̂(n2)〈n2〉−s
∥∥∥∥
l2(dn)

if
1

2
< s ≤ 1.

Since the lp(p = 2, 4,∞) norms of 〈n〉s−1 in (2.24) are finite, we deduce from

Young’s inequality that

S3 .


‖û(n1)‖l2‖v̂(n2)〈n2〉−s‖l2 if 0 ≤ s < 1

2
,

‖û(n1)‖l2‖v̂(n2)〈n2〉−s‖l4/3 if s =
1

2
,

‖û(n1)‖l2‖v̂(n2)〈n2〉−s‖l1 if
1

2
< s ≤ 1,

(2.25)

.


‖û(n1)‖l2‖v̂(n2)‖l2‖〈n2〉−s‖l∞ if 0 ≤ s < 1

2
,

‖û(n1)‖l2‖v̂(n2)‖l2‖〈n2〉−s‖l4 if s =
1

2
,

‖û(n1)‖l2‖v̂(n2)‖l2‖〈n2〉−s‖l2 , if
1

2
< s ≤ 1

. ‖u‖L2‖v‖L2 .

Inserting (2.20), (2.22) and (2.25) into (2.17) implies (2.16). �

Corollary 2.4. The inequality

‖IN∂x(1− ∂2x)−1(uv)‖H1 . ‖INu‖H1‖INv‖H1

holds with an implicit constant independent of N .

Proof. This is a direct consequence of Lemma 2.3 and the equality

‖u‖L2 . ‖INu‖H1 ,

which follows from the obvious estimate 1 . mN (n)〈n〉 for N > 0. �

2.3. Local well-posedness. Acting with I-operator on both sides of (2.10),

(2.11) gives

(INv)t − (INv)txx − (INv)xx + IN (vvx) + IN (Qv)x = INPN1
(f −QQx),(2.26)

INv(0, x) = IN (u0(x)−Q).(2.27)

Equation (2.26) is equivalent to

(2.28) (INv)t +A(INv) + (1− ∂2x)−1IN (vvx) + (1− ∂2x)−1IN (Qv)x

= (1− ∂2x)−1INPN1
(f −QQx),



100 M. Wang — A. Liu

where A = −∂2x(1−∂2x)−1. Since A is a non-negative operator on L2(T), we have

for every t > 0

(2.29) ‖e−tA‖H1,H1 = ‖e−tA‖L2,L2 ≤ 1.

Using the Duhamel principle, we write (2.28) as

(2.30) INv(t) = e−AtINv(0)

+

∫ t

0

e−A(t−τ)(1− ∂2x)−1IN (PN1(f −QQx)− (Qv)x − vvx) dτ.

Equation (2.30) can be regarded as an equation of INv. We define the ope-

rator Γ2 : L∞(0, T ;H1(T))→ L∞(0, T ;H1(T)) by

Γ2INv = e−AtINv(0)+

∫ t

0

e−A(t−τ)(1−∂2x)−1IN (PN1
(f−QQx)−(Qv)x−vvx) dτ.

We shall show that Γ2 has a fixed point in the set

B2 =
{
INv ∈ H1 : sup

0≤t≤δ
‖INv(t)‖H1 ≤ 2(‖INv(0)‖H1 + ‖f‖Hs−2,p)

}
.

In fact, thanks to (2.29), we have

(2.31) ‖e−AtINv(0)‖H1 ≤ ‖INv(0)‖H1 ,

and by (2.13)

(2.32) sup
0≤t≤δ

∥∥∥∥∫ t

0

e−A(t−τ)(1− ∂2x)−1INPN1
(f −QQx) dτ

∥∥∥∥
H1

≤ C1δ‖f‖Hs−2,p ,

where C1 depends on N1. Moreover, it follows from Lemma 2.3 that

(2.33) sup
0≤t≤δ

∥∥∥∥∫ t

0

e−A(t−τ)(1− ∂2x)−1IN (Qv)x dτ

∥∥∥∥
H1

≤ C2δ‖Q‖Hs,p sup
0≤t≤δ

‖INv‖H1 .

Similarly, by Corollary 2.4

(2.34)

∥∥∥∥ ∫ t

0

e−A(t−τ)(1− ∂2x)−1IN (vvx) dτ

∥∥∥∥
H1

≤ C2δ sup
0≤t≤δ

‖INv‖2H1 .

If we choose C3 = max{C1, C2}, then it follows from (2.31)–(2.34) that

(2.35) sup
0≤t≤δ

‖Γ2INv‖H1 ≤ ‖INv(0)‖H1

+ C3δ(2‖Q‖Hs,p(‖INv(0)‖H1 + ‖f‖Hs−2,p) + ‖f‖Hs−2,p)

+ 4C3δ(‖INv(0)‖H1 + ‖f‖Hs−2,p)2,

for INv ∈ B2. Choose first N1 such that ‖Q‖Hs,p ≤ ε0 ≤ 1 in (2.12) and then

δ ∈ (0, 1) such that

4C3δ(‖INv(0)‖H1 + ‖f‖Hs−2,p + 1) ≤ 1/2,
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we find

sup
0≤t≤δ

‖Γ2INv‖H1 ≤ 2(‖INv(0)‖H1 + ‖f‖Hs−2,p).

This proves that Γ2 maps B2 into B2. Similarly, with the same choice of δ, we

have for INv1, INv2 ∈ B2,

sup
0≤t≤δ

‖Γ2INv1 − Γ2INv1‖H1 ≤ sup
0≤t≤δ

1

2
‖INv1 − INv2‖H1 .

Thus, we have proved the following result.

Proposition 2.5. Let f ∈ Ḣs−2(T) and u0 ∈ Ḣs(T), 0 ≤ s ≤ 1. Then there

is a unique solution of (2.26)–(2.27), such that INv ∈ L∞(0, δ; Ḣ1(T)) and

sup
0≤t≤δ

‖INv(t)‖H1 ≤ 2(‖INv(0)‖H1 + ‖f‖Hs−2,p),

where the life span δ satisfies

δ ∼ 1

8C3(‖INv(0)‖H1 + ‖f‖Hs−2,p + 1)
.

In order to prove Theorem 1.1, we need the following lemma.

Lemma 2.6. Let s ∈ R and 1 < p <∞. Then the operator −A = ∂2x(1−∂2x)−1

generates a C0 semigroup in Ḣs,p(T). Moreover, there exists λ > 0 such that

(2.36) ‖e−At‖Ḣs,p,Ḣs,p . e
−λt, t > 0.

Proof. Since A is a bounded operator on Hs,p, the first statement follows

directly. To prove estimate (2.36), note that (1− ∂2x)s/2 commutes with e−At, it

suffices to show that

‖e−At‖L̇p(T),L̇p(T) . e
−λt, t > 0.(2.37)

Thanks to the transference of multipliers, see e.g. [15, Theorem 3.6.7, p. 224],

(2.37) follows from

‖χ(D)e−At‖Lp(R),Lp(R) . e−λt, t > 0,(2.38)

where χ(D)e−At is a Fourier multiplier defined by

χ(D)e−Atϕ = F−1(χ(ξ)e−tξ
2(1+ξ2)−1

ϕ̂(ξ))

and χ is a smooth function such that χ = 0 near ξ = 0 and χ = 1 for |ξ| ≥ 1.

By some elementary calculations, there exists a constant λ > 0 such that

|∂αξ χ(ξ)e−tξ
2(1+ξ2)−1

| . e−λt〈ξ〉−α

for α = 0 and 1. Thus, using the Hörmander–Mihlin multiplier theorem, see e.g.

[15, Theorem 5.2.7, p. 367], we obtain (2.38). �
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Proof of Theorem 1.1. Make the decomposition u(t) = v(t) +Q, where

Q is the solution given by Proposition 2.2 and v is the solution of (2.10)–(2.11).

Since Q is bounded in Hs,p and has zero mean, the desired conclusion follows

if one can show that, there exists a unique solution v ∈ C([0, T ]; Ḣs,p(T)) of

(2.10)–(2.11), and the map v(0) 7→ v(t) is continuous in Hs,p(T). We divide the

proof into three steps.

Step 1. Existence. According to Proposition 2.5, problem (2.10)–(2.11) has

a unique solution v such that

sup
0≤t≤δ

‖INv(t)‖H1 ≤ 2(‖INv(0)‖H1 + ‖f‖Hs−2,p).

Note that, for every N > 0 fixed, ‖v‖Hs ≤ ‖INv‖H1 ≤ N1−s‖v‖Hs , we have

(2.39) sup
0≤t≤δ

‖v(t)‖Hs ≤ 2(N1−s‖v(0)‖H1 + ‖f‖Hs−2,p) <∞.

Using the Duhamel principle (see (2.30)), we have for t < δ

(2.40) v(t) = e−Atv(0)+

∫ t

0

e−A(t−τ)(1−∂2x)−1(PN1(f−QQx)−(Qv)x−vvx) dτ.

Thanks to the estimates (2.36) of semigroup and Lemma 2.1, we find

(2.41) ‖v(t)‖Hs,p . e−λt‖v(0)‖Hs,p +

∫ t

0

e−λ(t−τ)(‖PN1
f‖Hs,p + ‖Q‖2Hs,p) dτ

+

∫ t

0

e−λ(t−τ)(‖Q‖Hs,p‖v(τ)‖Hs + ‖v(τ)‖2Hs) dτ.

In light of (2.39) and (2.12), we have

sup
0≤t≤δ

‖v(t)‖Hs,p <∞.(2.42)

Taking T = δ, note that v has zero mean, implies the existence.

Step 2. Continuity with respect to time t. Rewrite (2.10) as

(2.43) vt +Av + (1− ∂2x)−1(vvx) + (1− ∂2x)−1(Qv)x

= (1− ∂2x)−1PN1
(f −QQx),

where A = −∂2x(1− ∂2x)−1. Combining (2.42) and Lemma 2.1 implies that

sup
0≤t≤δ

‖(1− ∂2x)−1(vvx) + (1− ∂2x)−1(Qv)x‖Hs,p <∞.

Moreover, it is easy to see that Av and (1− ∂2x)−1PN1(f −QQx) are bounded in

L∞(0, δ;Hs,p). Thus, we obtain

sup
0≤t≤δ

‖vt‖Hs,p <∞.

According to the Lions interpolation theorem, we find v ∈ C([0, T ];Hs,p).
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Step 3. Continuity with respect to initial data. Let v(t) be the solution of

(2.40) with initial data v(0) ∈ Hs,p. Then

v(t)− v(t) = e−At(v(0)− v(0))

+

∫ t

0

e−A(t−τ)
(
Q(v(τ)− v(τ)) +

v + v

2
(v(τ)− v(τ))

)
dτ.

It follows that

‖v(t)− v(t)‖Hs,p . e−λt‖v(0)− v(0)‖Hs,p

+ C(Q, v, v)

∫ t

0

e−λ(t−τ)‖v(τ)− v(τ)‖Hs,p dτ

where C(Q, v, v) = ‖Q‖Hs,p + sup
0≤t≤T

(‖v‖Hs,p + ‖v‖Hs,p). Then an application of

Gronwall lemma implies that

‖v(t)− v(t)‖Hs,p . eC(Q,v,v)t‖v(0)− v(0)‖Hs,p .

This gives the continuity with respect to initial data. �

3. The global attractor

3.1. Uniform bounds. To obtain global bounds of v, we multiply INv on

both sides of (2.26), and integrate over T

(3.1)
1

2

d

dt
‖INv‖2H1 + ‖INvx‖2 + (IN (vvx), INv) + (IN (Qv)x, INv)

= (INPN1
(f −QQx), INv).

It is easy to see that
∫
T INv dx = 0. Then by the Poincaré inequality (2.2),

(3.2) ‖INvx‖2 ≥
1

2
‖INv‖2H1 .

Moreover, recall that (see [30])

(3.3) |(IN (vvx), INv)| . N−3/2+‖INv‖3H1 .

Here and in what follows, we denote by s+ that a constant equals s plus a small

enough number. Furthermore, using integration by parts and Cauchy’s inequa-

lity, we find

|(IN (Qv)x, INv)| = |(IN (Qv), INvx)|(3.4)

≤ ‖IN (Qv)‖L2‖INvx‖L2 ≤ ‖Qv‖L2‖INv‖H1 .

Thanks to the Hölder inequality, we have

‖Qv‖L2 ≤ ‖Q‖Lr‖v‖Lq(3.5)

where 1/2 = 1/r + 1/q. By the Sobolev embedding, the inequalities

(3.6) ‖Q‖Lr . ‖Q‖Hs,p and ‖v‖Lq . ‖v‖Hs
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hold for s satisfying
1

r
≥ 1

p
− s, 1

q
≥ 1

2
− s.

Thus, we can choose proper q, r such that (3.5)–(3.6) hold if

1

2
=

1

r
+

1

q
≥ 1

2
+

1

p
− 2s.

This is always possible if s ≥ 1/(2p). Then (3.4) becomes

|(IN (Qv)x, INv)| ≤ C‖Q‖Hs,p‖v‖Hs‖INv‖H1(3.7)

≤ C‖Q‖Hs,p‖INv‖2H1 ≤
1

8
‖INv‖2H1 ,

where the last step is possible if we chooseN1 large enough such that C‖Q‖Hs,p ≤
1/8, which holds if ε0 ≤ 1/(8C) in (2.12). Finally, by Cauchy’s inequality and

(2.13)

|(INPN1(f −QQx), INv)| ≤ ‖INPN1(f −QQx)‖L2‖INv‖L2(3.8)

≤ C‖f‖2Hs−2,p +
1

8
‖INv‖2H1 .

Putting (3.2), (3.3), (3.7) and (3.8) into (3.1), we arrive at

d

dt
‖INv‖2H1 +

1

2
‖INv‖2H1 ≤ CN−3/2+‖INv‖3H1 + C‖f‖2Hs−2,p .(3.9)

Applying the Gronwall lemma to (3.9) over (0, δ) gives

‖INv(δ)‖2H1 ≤ e−δ/4‖INv(0)‖2H1 + C

∫ δ

0

e−τ/4‖f‖2Hs−2,p dτ(3.10)

+

∫ δ

0

e−(δ−τ)/4
(
CN−3/2+‖INv‖H1 − 1

4

)
‖INv‖2H1 .

The integral on right hand side of (3.10) is negative, in view of the estimates of

‖INv‖H1 in Proposition 2.5, if

2CN−3/2+(‖INv(0)‖H1 + ‖f‖Hs−2,p) ≤ 1

2
.

This is always possible, since ‖INv(0)‖H1 ≤ N1−s‖v(0)‖Hs , if

N ∼ C(‖v(0)‖Hs + ‖f‖Hs−2,p + 1)2+.

Then

‖INv(δ)‖2H1 ≤ e−δ/4‖INv(0)‖2H1 + C‖f‖2Hs−2,p .(3.11)

In light of (3.11), we can take INw(δ) as a new data, to obtain a solution on

[δ, 2δ]. Repeat this process, we obtain for all n ≥ 1

‖INv(nδ)‖2H1 ≤ e−δ/4‖INv((n− 1)δ)‖2H1 + C‖f‖2Hs−2,p .(3.12)
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It follows from (3.12) that

‖INv(nδ)‖2H1 ≤ e−nδ/4‖INv(0)‖2H1 +

n−1∑
j=0

Ce−jδ/4‖f‖2Hs−2,p .

Thus, for any t > 0,

(3.13) ‖v(t)‖2Hs ≤ ‖INv(t)‖2H1 . e−t/4‖INv(0)‖2H1 + C‖f‖2Hs−2,p

. e−t/4(‖v(0)‖Hs + ‖f‖Hs−2,p + 1)2(1−s)+‖v(0)‖2Hs + C‖f‖2Hs−2,p .

Let B be a bounded set in Hs,p, u0 ∈ B. Note that v(0) = u0 − Q is also

bounded in Hs,p. It follows from (3.13) that there exists T = T (B) such that

‖v(t)‖Hs ≤ C‖f‖Hs−2,p , t ≥ T.

Combining the bound, (2.41) and (2.12), we have for t ≥ T

‖v(t)‖Hs,p ≤ C(‖f‖Hs−2,p + ‖f‖2Hs−2,p).

Note that u = v +Q and ‖Q‖Hs,p ≤ ‖f‖Hs−2,p , for t ≥ T we obtain

‖u(t)‖Hs,p ≤ C(‖f‖Hs−2,p + ‖f‖2Hs−2,p).

Thus, we have proved the following result.

Theorem 3.1. Assume that u0 ∈ Ḣs,p(T), f ∈ Ḣs−2,p(T), 2 ≤ p < ∞,

1/(2p) ≤ s < 1. Then problem (1.1)–(1.2) is global well-posed in Ḣs,p(T). More-

over, there is a bounded absorbing set in Ḣs,p(T) given by

B = {u ∈ L2(T) : ‖u‖Hs,p ≤ C(‖f‖Hs−2,p + ‖f‖2Hs−2,p)}.

Remark 3.2. Compared with the local existence (Theorem 1.1), we need

an additional assumption s ≥ 1/(2p) in Theorem 3.1. This assumption is used

to deal with the term Qv, where the regularity of Q is not good enough for

smaller s. The difficulty is of course caused by the distribution force f ∈ Ḣs−2,p.

Whether Theorem 3.1 holds for 0 ≤ s < 1/(2p) is open.

3.2. The asymptotic compactness of solution semigroup. We review

the definition of the Kuratowski measure of non-compactness. Let X be a Ba-

nach space and A be a bounded subset of X. The Kuratowski measure of non-

compactness κ(A) is defined by

κ(A) = inf{δ > 0 : A has a finite open cover of sets of diameter < δ}.

It is obvious that Kuratowski measure κ(A) depends on the metric of X. Some-

times we shall write κX(A) instead, to emphasis the metric used, in the following.

Some important properties of κ(A) are summarized as follows, see e.g. [16] for

a proof.

Lemma 3.3. κ(A) satisfies the following properties:
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(a) κ(A) = 0 if and only if A is compact, where A is the closure of A,

(b) κ(A) ≤ d(A), d(A) denotes the diameter of A,

(c) κ(A+B) ≤ κ(A) + κ(B) for any A,B ⊂ X.

For the convenience of the reader, we recall the following criterion of the

existence of a global attractor, see e.g. [23].

Proposition 3.4. Let X be a Banach space and {S(t)}t≥0 be a continuous

semigroup on X. Then {S(t)}t≥0 has a global attractor in X provided that the

following conditions hold:

(a) {S(t)}t≥0 has a bounded absorbing set in X,

(b) for any bounded subset B of X, we have κX(S(t)B)→ 0, as t→∞.

We shall need the following bilinear estimates (compared with Lemma 2.1).

Lemma 3.5. Let 2 ≤ p <∞. If 1/(2p) ≤ s ≤ 1, then

‖∂x(1− ∂2x)−1(uv)‖Hs+σ,p . ‖u‖Hs,p‖v‖Hs,p ,

where σ > 0 is given by

σ =


1− s if

1

2p
≤ s < 1,

1− 1

p
if s = 1.

Proof. In the case 1/(2p) ≤ s < 1, thanks to the Sobolev embedding

Hs,p ↪→ L2p, it suffices to show

‖∂x(1− ∂2x)−1(uv)‖H1,p . ‖u‖L2p‖v‖L2p .

Using the fact that ∂x(1 − ∂2x)−1/2 is bounded in Lp, the Hölder inequality, we

find

‖∂x(1− ∂2x)−1(uv)‖H1,p . ‖∂x(1− ∂2x)−1/2(uv)‖Lp . ‖uv‖Lp . ‖u‖L2p‖v‖L2p .

In the case s = 1, using the Leibniz rule ∇(uv) = ∇uv + u∇v, we only need

to show that

‖∂x(1− ∂2x)−1(∇uv)‖Hσ,p . ‖u‖H1,p‖v‖H1,p .

The inequality follows if one can show that

‖∂x(1− ∂2x)−1/2(1− ∂2x)(−1+σ)/2(∇uv)‖Lp . ‖u‖H1,p‖v‖H1,p .(3.14)

In fact, since ∂x(1− ∂2x)−1/2 is bounded in Lp and (1− ∂2x)(−1+σ)/2 is bounded

from Lp/2 to Lp, we have

LHS (3.14) . ‖∇uv‖Lp/2 . ‖∇u‖Lp‖v‖Lp ,

which gives (3.14) directly. �
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Let B be a bounded set in Hs,p and u0 ∈ B. Let S(t) be the solution

semigroup of (1.1)–(1.2), namely S(t) : u0 7→ u(t). Denote the set

S(t)B = {u(t) = S(t)u0 : u0 ∈ B}.

Lemma 3.6. Assume that 2 ≤ p < ∞ and 1/(2p) ≤ s ≤ 1. Then S(t) is

asymptotic compact in Hs,p, namely

lim
t→∞

κHs,p(S(t)B) = 0.

Proof. Thanks to Theorem 3.1, we known that problem (1.1)–(1.2) has

a bounded absorbing set B in Hs,p. Thus it suffices to show

(3.15) lim
t→∞

κHs,p(S(t)B) = 0.

Since u(t) = v(t) +Q and the non-compact measure of single point κ(Q) = 0, it

follows from (c) of Lemma 3.3 that

κHs,p(S(t)B) = κHs,p(v(t) : u0 ∈ B).

According to (2.40), we have the decomposition {v(t) : u0 ∈ B} = K1 + K2,

where

K1 = {e−At(u0 −Q) : u0 ∈ B},

K2 =

{∫ t

0

e−A(t−τ)(1− ∂2x)−1(PN1(f −QQx)− (Qv)x − vvx) dτ : u0 ∈ B
}
.

According to Lemma 2.6, we known that e−At is a C0 semigroup in Hs,p with

exponential decay. Then it follows from (a) of Lemma 3.3 that

lim
t→∞

κHs,p(K1) = 0.(3.16)

Moreover, thanks to Theorem 3.1, ‖v(t)‖Hs,p ≤ C for t ≥ T (B). Combining this

fact and Lemma 3.5, for all t ≥ T (B) we have∥∥∥∥∫ t

0

e−A(t−τ)(1− ∂2x)−1((Qv)x + vvx) dτ

∥∥∥∥
Hs+σ,p

.
∫ t

0

e−λ(t−τ)(‖Q‖Hs,p‖v‖Hs,p + ‖v‖2Hs,p) dτ ≤ C.

Moreover, thanks to (2.13),∥∥∥∥ ∫ t

0

e−A(t−τ)(1− ∂2x)−1PN1
(f −QQx) dτ

∥∥∥∥
Hs+σ,p

.

∥∥∥∥∫ t

0

e−A(t−τ)(1− ∂2x)−1PN1
(f −QQx) dτ

∥∥∥∥
Hs+σ+1

.
∫ t

0

e−λ(t−τ)‖PN1
(f −QQx)‖Hs+σ+1 dτ

. (1 +N2
1 )1+(s+σ+1)/2‖f‖Hs−2,p .
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Since σ > 0, the Sobolev embedding Hs+σ,p ↪→ Hs,p is compact. Thus K2 is

compact in Hs,p. Then, for all t > 0,

κHs,p(K2) = 0.(3.17)

Using (c) of Lemma 3.3 again, it follows from (3.16)–(3.17) that (3.15) holds.�

Proof of Theorem 1.2. This is a direct consequence of Theorem 3.1,

Lemma 3.6 and Proposition 3.4. �
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