
Topological Methods in Nonlinear Analysis
Volume 51, No. 2, 2018, 599–608

DOI: 10.12775/TMNA.2017.056

c© 2018 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University

A NOTE ON DIMENSIONAL ENTROPY

FOR AMENABLE GROUP ACTIONS

Dou Dou — Ruifeng Zhang

Abstract. In this short note, for countably infinite amenable group ac-

tions, we provide topological proofs for the following results: Bowen topo-
logical entropy (dimensional entropy) of the whole space equals the usual

topological entropy along tempered Følner sequences; the Hausdorff dimen-

sion of an amenable subshift (for certain metric associated to some Følner
sequence) equals its topological entropy. This answers questions by Zheng

and Chen [10] and Simpson [9].

1. Introduction

Let (X,G) be aG-action topological dynamical system, whereX is a compact

Hausdorff space and G a topological group. Throughout this paper, G is always

assumed to be a countably infinite amenable group, i.e. there exists a sequence

of nonempty finite subsets {Fn} of G (a Følner sequence) such that

lim
n→+∞

|Fn M gFn|
|Fn|

= 0, for all g ∈ G.
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Let A and K be two nonempty finite subsets of G. For δ > 0, the set A is

said to be (K, δ)-invariant if

|B(A,K)|
|A|

< δ,

where B(A,K), the K-boundary of A, is defined by

B(A,K) = {g ∈ G : Kg ∩A 6= ∅ and Kg ∩ (G \A) 6= ∅}.

Another equivalent condition for the sequence of finite subsets {Fn} of G to be

a Følner sequence is that {Fn} becomes more and more invariant, i.e. for any

δ > 0 and any finite subset K of G, Fn is (K, δ)-invariant for sufficiently large

n. For more information on amenable groups and their actions one may refer to

[2], [5], [7].

For the case G = Z, by resembling the definition of Hausdorff dimension,

Bowen [1] introduced a definition of topological entropy on subsets. This def-

inition is also known as dimensional entropy and has plenty of applications to

thermodynamical formulism, fractal geometry, hyperbolic systems, multi-fractal

analysis and so on (see, for example, [3] and [8]).

For the case that G is a general countably infinite amenable group, Bowen’s

dimensional entropy was recently introduced in [10] in the following way.

Let U be a finite open cover of X. For a subset F of G, denote by WF (U)

the collection of families U = {Ug}g∈F with Ug ∈ U (we also call U a U-word

or a (U, F )-name). For U ∈ WF (U) we call the integer m(U) = |F | the length

of U and the set F the domain of U (denoted by dom(U)). For any U-word U,

define

X(U) :=
⋂

g∈dom(U)

g−1Ug = {x ∈ X : gx ∈ Ug for g ∈ dom(U)}.

Now let {Fn} be a Følner sequence in G. For Z ⊂ X, we say that a collection

of (U, Fn)-names Λ ⊂
⋃
n≥1

WFn(U) covers Z if
⋃

U∈Λ

X(U) ⊃ Z. For s ≥ 0, define

M(Z,U , N, s, {Fn}) = inf
Λ

{ ∑
U∈Λ

exp(−sm(U))

}
,

where the infimum is taken over all Λ ⊂
⋃
j≥N
WFj (U) that covers Z. It is

not hard to see that M(·,U , N, s, {Fn}) is a finite outer measure on X. As

M(Z,U , N, s, {Fn}) increases when N increases, then define

M(Z,U , s, {Fn}) = lim
N→+∞

M(Z,U , N, s, {Fn})

and

hBtop(U , Z, {Fn}) = inf {s ≥ 0 :M(Z,U , s, {Fn}) = 0}

= sup{s ≥ 0 :M(Z,U , s, {Fn}) = +∞}.
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Set

hBtop(Z, {Fn}) = sup
U
hBtop(U , Z, {Fn}),

where U runs over finite open covers of X. We call hBtop(Z, {Fn}) the Bowen topo-

logical entropy or dimensional entropy of Z (w.r.t. the Følner sequence {Fn}).
Recall that a Følner sequence {Fn} in G is said to be tempered if there exists

a constant C > 0 which is independent of n such that

(1.1)

∣∣∣∣ ⋃
k<n

F−1
k Fn

∣∣∣∣ ≤ C|Fn|, for any n.

In [10], Zheng and Chen proved that for any tempered Følner sequence {Fn}
in G with the increasing condition lim

n→+∞
|Fn|/log n = ∞, the Bowen topolog-

ical entropy hBtop(X, {Fn}) coincides with the usual topological entropy. This

generalized Bowen’s classical result in [1] to discrete countable amenable group

actions.

In contrast to Bowen’s original topological proof, Zheng and Chen used tools

in ergodic theory — they employed SMB theorem, Brin–Katok’s formula for

local entropy and variation principle for topological entropy. They also asked in

[10] whether there exists a pure topological proof.

In this note, we will give a direct proof for this result. More precisely, we

will prove the following

Theorem 1.1 (Main theorem). Let (X,G) be a G-action topological dynam-

ical system where X is a compact Hausdorff space and G is a discrete countable

amenable group, then for any tempered Følner sequence {Fn} in G, we have

hBtop(X, {Fn}) = htop(X,G),

where htop(X,G) is the topological entropy of (X,G) defined through open covers.

The itinerary of our proof uses Simpson’s idea for proving the relations be-

tween entropy and Hausdorff dimension of Zd-subshifts (the idea was originally

by Furstenberg [4] and it was also used in Bowen [1]). But there exists essential

difficulty for amenable group actions. The key point is that we need a Vitali

type covering lemma. To this aim we employ a more general covering lemma de-

veloped by Lindenstrauss [6] (for proving the amenable version of the pointwise

ergodic theorem). In Section 2 we will give the detailed proof.

2. Proof of the main theorem

We first recall the covering lemma by Lindenstrauss.

Lemma 2.1 (Lindenstrauss [6, Corollary 2.7 ]). For any δ ∈ (0, 1/100), C > 0

and finite D ⊂ G, let M ∈ N be sufficiently large (depending only on δ, C and D).
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Let Fi,j be an array of finite subsets of G where i = 1, . . . ,M and j = 1, . . . , Ni,

such that

(a) For every i, F i,∗ = {Fi,j}Nij=1 satisfies∣∣∣∣ ⋃
k′<k

F−1
i,k′Fi,k

∣∣∣∣ ≤ C|Fi,k|, for k = 2, . . . , Ni.

Denote Fi,∗ =
⋃
F i,∗.

(b) The finite set sequences Fi,∗ satisfy that for every 1 < i ≤M and every

1 ≤ k ≤ Ni, ∣∣∣∣ ⋃
i′<i

DF−1
i′,∗Fi,k

∣∣∣∣ ≤ (1 + δ)|Fi,k|.

Assume that Ai,j is another array of finite subsets of G with Fi,jAi,j ⊂ F for

some finite subset F of G. Let Ai,∗ =
⋃
j

Ai,j and

α =

min
1≤i≤M

|DAi,∗|

|F |
.

Then the collection of subsets of F ,

F̃ = {Fi,ja : 1 ≤ i ≤M, 1 ≤ j ≤ Ni and a ∈ Ai,j}

has a subcollection F that is 10δ1/4-disjoint such that∣∣∣∣⋃F∣∣∣∣ ≥ (α− δ1/4)|F |.

We note here that a collection F̃ of finite subsets of G is said to be δ-disjoint

if for every A ∈ F̃ there exists an A′ ⊂ F such that |A′| ≥ (1 − δ)|A| and such

that A ∩B = ∅ for every A 6= B ∈ F̃ .

Now we turn to proving of our main theorem. The proof of the upper bound

is straight-forward and has been shown in Section 4 of [10]. We omit it here.

In the following we will give the proof of the lower bound.

For any ε > 0, let 0 < δ < min{ε, 1/100} be small enough such that

(2.1) − (1− 2δ − 11δ1/4) log(1− 2δ − 11δ1/4)

− (2δ + 11δ1/4) log(2δ + 11δ1/4) < ε.

Let D = {eG} ⊂ G and let C > 0 be the constant in the tempered condition

(1.1) for the Følner sequence {Fn}. Let M > 0 be large enough to satisfy the

requirement of Lemma 2.1 corresponding to δ,D and C.

Let U be any finite open cover ofX and s > 0 such thatM(X,U , s, {Fn}) = 0.

We will show htop(G,U) ≤ s and then it follows that

hBtop(X,U , {Fn}) ≥ htop(G,U).
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Since M(X,U , s, {Fn}) = lim
N→+∞

M(X,U , N, s, {Fn}) = 0, for each i = 1, 2, . . .,

there exist 0 < pi and Λi ⊂
⋃
j≥pi
WFj (U) such that Λi covers X and

∑
U∈Λi

exp(−sm(U)) < 2−i.

As X is compact, we may let each Λi be finite. In addition, we let the sequence

{pi} be increasing and

(2.2) |Fj | >
1

δ(1− 10δ1/4)
, for all j ≥ p1.

Denote Λ∞ =
∞⋃
i=1

Λi. Then

∑
U∈Λ∞

exp(−sm(U)) <

∞∑
i=1

2−i = 1.

Hence

∞∑
k=1

∑
U1,...,Uk∈Λ∞

exp(−s(m(U1) + . . .+m(Uk)))

=

∞∑
k=1

( ∑
U∈Λ∞

exp(−sm(U))

)k
= S <∞.

For each i = 1, . . . ,M , let {Fni,1 , . . . , Fni,Ni} = {dom(U) : U ∈ Λi} with ni,1 <

. . . < ni,Ni . Then let {Fi,1, . . . , Fi,Ni} in Lemma 2.1 be as

{Fi,1, . . . , Fi,Ni} := {Fni,1 , . . . , Fni,Ni}.

For any x ∈ X and sufficiently large n (independent on x), let

Ai,j = {a ∈ Fn : Fi,ja ⊂ Fn and there exists U ∈ Λi

such that dom(U) = Fi,j and ax ∈ X(U)}.

We note here that Ai,j depends on x. Denote by eG the identity element of G.

For any g ∈ Fn\B(Fn, Fi,∗∪{eG}), we have Fi,∗g ⊂ Fn. Hence for all 1 ≤ j ≤ Ni,
Fi,jg ⊂ Fn. Since Λi covers X, there exists some U ∈ Λi which contains gx.

Suppose dom(U) = Fi,j . We then have g ∈ Ai,j . This implies that

Ai,∗ ⊃ Fn \B(Fn, Fi,∗ ∪ {eG}).

Hence when n is large enough such that Fn is (Fi,∗ ∪ {eG}, δ)-invariant for all

1 ≤ i ≤M and 1 ≤ j ≤ Ni,

α =

min
1≤i≤M

|DAi,∗|

|Fn|
> 1− δ.
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The first requirement for the array {Fi,j} in Lemma 2.1 comes from the

tempered condition of {Fn}. To ensure the second requirement, we can make pi
be large enough compared with ni−1,Ni−1

for every 2 ≤ i ≤M .

Now we can apply Lemma 2.1 to the collection of subsets of Fn,

F̃ = {Fi,ja : 1 ≤ i ≤M, 1 ≤ j ≤ Ni and a ∈ Ai,j}

to obtain a subcollection F that is 10δ1/4-disjoint such that∣∣∣⋃F∣∣∣ ≥ (1− δ − δ1/4)|Fn|.

For each element in F , we will fix one way to write it as the form Fi,ja. Denote

by A the collection of a’s such that Fi,ja occurs in F . The cardinality of A is no

more than the cardinality of the subcollection F . Since F is 10δ1/4-disjoint, we

have that ∑
Fi,ja∈F

|Fi,ja| ≤
1

1− 10δ1/4

∣∣∣⋃F∣∣∣ ≤ 1

1− 10δ1/4
|Fn|.

Hence, by (2.2),

|A| ≤ |F| ≤ 1

min |Fi,j |
· 1

1− 10δ1/4
|Fn| ≤ δ|Fn|.

We note that for each a ∈ A, there may exist more than one Fi,j ’s with Fi,ja ∈ F .

Denote by n(a) the total number of such Fi,j ’s.

We now construct U(x) = {Ug(x)}g∈Fn ∈ WFn(U), a (U, Fn)-name associ-

ated to x, in the following way:

1. For each g that lies in exactly one element of F , say Fi,ja, assume that

ax ∈ X(U) for U = {Ug}g∈Fi,j ∈ Λi. We then let Ug(x) = Uga−1 .

2. For each g that lies in either Fn\
⋃
F or the overlapping part of elements

in F , we choose any U ∈ U that contains gx and then let Ug(x) = U .

Clearly x ∈ X(U(x)) ∈ UFn and hence {X(U(x))}x∈X forms a subcover of UFn .

In the following we will estimate the cardinality of the subcover {X(U(x))}x∈X .

Let Λ =
⋃
x∈X
{U(x)}. An element U = {Ug}g∈Fn in Λ is determined by two

parts:

1. the Ug’s for the g’s that lie in exactly one element of F ;

2. the Ug’s for the g’s that lies in either Fn \
⋃
F or the overlapping part

of elements in F .

The first part corresponds to the choice of F and the choice of the sequence

of U1, . . . ,Uk with m(U1) + . . . + m(Uk) ≤ |Fn|/(1− 10δ1/4) (here k is the

cardinality of F). When U1, . . . ,Uk are fixed, if we know A and the number

n(a) for each a ∈ A, F is then determined. Hence the first part of U ∈ Λ can be

determined by A, {n(a)}a∈A with
∑
a∈A

n(a) = k and the sequence of U1, . . . ,Uk



A Note on Dimensional Entropy for Amenable Group Actions 605

with m(U1) + . . .+m(Uk) ≤ |Fn|/(1− 10δ1/4). The second part corresponds to

the choice of Ug’s for g in either Fn \
⋃
F or the overlapping part of

⋃
F .

Since |A| ≤ δ|Fn|, the total number of the choices of A’s is bounded from

above by
bδ|Fn|c∑
m=1

(|Fn|
m

)
. Applying the Stirling formula

n! =
√

2πn

(
n

e

)n
eαn ,

1

12n+ 1
< αn <

1

12n
,

we have that

bδ|Fn|c∑
m=1

(
|Fn|
m

)
≤ δ|Fn| ·

√
2π|Fn|eα|Fn|−α|Fn|−bδ|Fn|c−αbδ|Fn|c√

2π(|Fn| − bδ|Fn|c)
√

2πbδ|Fn|c

·
(

|Fn|
|Fn| − bδ|Fn|c

)|Fn|−bδ|Fn|c
·
(
|Fn|
bδ|Fn|c

)bδ|Fn|c
≤ δ|Fn| ·

√
2π|Fn|eα|Fn|−α|Fn|−bδ|Fn|c−αbδ|Fn|c√

2π(|Fn| − bδ|Fn|c)
√

2πbδ|Fn|c

·
(

1

1− δ

)(1−δ)|Fn|+1

·
(

1

δ

)δ|Fn|
·
(
δ|Fn|
bδ|Fn|c

)bδ|Fn|c
≤ δ|Fn| ·

√
2π|Fn|eα|Fn|−α|Fn|−bδ|Fn|c−αbδ|Fn|c√

2π(|Fn| − bδ|Fn|c)
√

2πbδ|Fn|c

· 1

1− δ
· e ·

(
1

1− δ

)(1−δ)|Fn|

·
(

1

δ

)δ|Fn|
=Q(|Fn|) · exp((−(1− δ) log(1− δ)− δ log δ)|Fn|),

where

Q(n) =
δ

1− δ
· n ·

√
n

2π(n− bδnc)bδnc
· eαn−αn−bδnc−αbδnc+1.

We can choose n sufficiently large to make Q(|Fn|) ≤ exp(ε|Fn|). Together with

(2.1), we can obtain that the total number of the choices of A’s will not exceed

exp(2ε|Fn|) when n is large enough.

The total number of the choices of the sequence {n(a)}a∈A is no larger than(|F|
|A|

)
, which can be bounded by exp(ε|Fn|).

The cardinality of the union of Fn \
⋃
F and the overlapping part of

⋃
F

is no more than (δ + δ1/4 + 10δ1/4)|Fn|. Also note that for each g of such case,

Ug has #U many choices. Hence the cardinality of Λ is no more than exp((δ +

11δ1/4)|Fn| log #U) · exp(2ε|Fn|) · exp(ε|Fn|) times the total number of the se-

quences of U1, . . . ,Uk ∈ Λ∞ with m(U1) + . . . + m(Uk) ≤ |Fn|/(1− 10δ1/4).
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Finally,

N(UFn)2−s|Fn|/(1−10δ1/4)

≤ exp((δ + 11δ1/4)|Fn| log #U) · exp(3ε|Fn|)

·
∑

m(U1)+...+m(Uk)≤|Fn|/(1−10δ1/4)

2−s|Fn|/(1−10δ1/4)

≤ exp(((δ + 11δ1/4) log #U + 3ε)|Fn|)

·
∑

U1,...,Uk∈Λ∞

2−s(m(U1)+...+m(Uk))

≤ exp(((δ + 11δ1/4) log #U + 3ε)|Fn|)S.

Letting ε tend to 0, it holds that htop(G,U) ≤ s.

Remark. In [9], Simpson discussed the relation between the entropy and

Hausdorff dimension for Zd subshifts and showed that they are the same for

some “standard metric”. He also asked (Question 5.4 of [9], in part) whether it

also holds for wider classes of groups or semigroups such as an amenable group.

We remark here that the same argument can be applied to show that the entropy

and Hausdorff dimension for amenable subshifts (for some metric associated with

some tempered Følner sequence) coincide. We can also show this by applying

Theorem 1.1.

Recall that when X is a metric space with metric d, the dimensional entropy

for the system (X,G) can be defined in the following alternative way [10].

For a finite subset F in G, denote BF (x, ε) := {y ∈ X : d(gx, gy) < ε, for

any g ∈ F}. For Z ⊆ X, s ≥ 0, N ∈ N, {Fn} a Følner sequence in G and ε > 0,

define

M(Z,N, ε, s, {Fn}) = inf
∑
i

exp(−s|Fni |),

where the infimum is taken over all countable families {BFni (xi, ε)} such that

xi ∈ X, ni ≥ N and
⋃
i

BFni (xi, ε) ⊇ Z. Then let

M(Z, ε, s, {Fn}) = lim
N→+∞

M(Z,N, ε, s, {Fn}),

M(Z, s, {Fn}) = lim
ε→0
M(Z, ε, s, {Fn}).

Bowen topological entropy hBtop(Z, {Fn}) can be equivalently defined as the crit-

ical value of the parameter s, where M(Z, s, {Fn}) jumps from +∞ to 0.

Let A be a finite set. Consider the left action of G on the product space

AG = {(xg)g∈G : xg ∈ A}:

g′(xg)g∈G = (xgg′)g∈G, for all g′ ∈ G and (xg)g∈G ∈ AG.
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Let X be a closed G-invariant subset of AG (we call such X a subshift). Fix any

tempered Følner sequence {Fn} of G with F1 ⊆ F2 ⊆ . . . and
⋃
n
Fn = G. We

can then define a metric d on AG by the following: d(x, y) = 1 if x and y are

not equal on F1; otherwise d(x, y) = e−|Fn| where n is the maximal number such

that xg = yg for all g ∈ Fn. The Hausdorff measure of X is defined as

µs(X) = lim
ε→0

inf
E

∑
E∈E

diam(E)s,

where E takes over (open) coverings of X such that diam(E) ≤ ε for all E ∈ E .

It is easy to see that the covering E can be also taken from the cylinders of AG

with the form [ω]Fn := {x ∈ AG : xg = ωg, for every g ∈ Fn}, ω ∈ AG. Hence

µs(X) = lim
N→∞

inf
E

∑
E∈E

diam(E)s,

where E = {[ωi]Fni} is taken over countable families of cylinders that cover X

with ni ≥ N . The Hausdorff dimension of X is then defined by

dim(X) = inf {s ≥ 0 : µs(X) = 0} = sup{s ≥ 0 : µs(X) =∞}.

It is easy to see that dim(X) = hBtop(X, {Fn}) by comparing the definition of

the Bowen topological entropy and Hausdorff dimension. By Theorem 1.1, we

have that dim(X) = htop(X,G) for the metric d associated with any tempered

Følner sequence {Fn} of G with F1 ⊆ F2 ⊆ . . . and
⋃
n
Fn = G.
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