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Abstract. We first recall simple proofs relying on the Schauder Fixed

Point Theorem of the Nonlinear Alternative, the Leray–Schauder Alterna-
tive and the Coincidence Alternative for compact maps on normed spaces.

We present also an alternative for compact maps defined on convex sub-

sets of normed spaces. Those alternatives permit to apply the method of

a priori bounds to obtain results establishing the existence of solutions to
differential equations. Using those alternatives, we present some new proofs

of existence results for first order differential equations.

1. Introduction

In this note, we first recall simple proofs relying on the Schauder Fixed

Point Theorem of the Nonlinear Alternative, the Leray–Schauder Alternative

and the Coincidence Alternative for compact maps on normed spaces [4], [5]. The

avantage of those proofs is that they avoid the use of more sophisticated theories

such as the topological degree theory, the topological transversality theory or

the coincidence degree theory due to Mawhin [9]. To our knowledge, the first

result in this direction was obtained by Schaefer [11].

In Section 2, we present some examples of applications of those alternatives

with the method of a priori bounds to differential equations. First, we recall

a generalization of a theorem due to S. Bernstein for second order differential
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equations [7], [8], [6]. Then, we present a new proof of a result establishing the

existence of solutions to periodic problems with, as right member, a first order,

nonlinear differential operator. It is worth to point out that this proof relies on

the Coincidence Alternative and it involves a non-invertible, nonlinear operator.

In particular, it does not require a modification of the problem in order to obtain

a linear, invertible operator as it is done usually.

Finally, we present a generalization of the Nonlinear Alternative to compact

maps defined on arbitrary closed, convex sets. Using this result, we obtain a new

proof of the existence of solutions to problems for first order differential equations

under an assumption of existence of an ordered pair of lower and upper solutions.

This proof does not require to consider a modified problem as it is done in the

classical proof.

2. Nonlinear Alternative for compact maps

In what follows, E and F denote normed spaces, Bρ = {x ∈ E : ‖x‖ ≤ ρ}
and Sρ = ∂Bρ are respectively the closed ball and the sphere of radius ρ > 0

in E. The standard retraction of E on Bρ noted rρ : E → Bρ is defined by

rρ(x) =

x if x ∈ Bρ,
ρx

‖x‖
otherwise.

Let X ⊂ E. A map f : X → F is compact (resp. completely continuous) if

it is continuous and f(X) is compact (resp. f(A) is compact for every bounded

set A ⊂ X).

Definition 2.1. Let X ⊂ E and f : X → E. An ejectable point of f is an

element x0 ∈ X such that x0 = λf(x0) for some λ ∈ (0, 1).

Let X ⊂ E and f : X → E. In what follows, we will use the following

notations:

E(f) = {x ∈ X : x is an ejectable point of f},

Eρ(f) = E(f) ∩ Sρ,

Fix(f) = {x ∈ X : x = f(x)},

Fixρ(f) = Fix(f) ∩Bρ.

One can observe that Fix(f) ∩ E(f) = ∅.
Here is a simple proof of the Nonlinear Alternative relying on the Schauder

Fixed Point Theorem, see [4] and [5].

Theorem 2.2 (Nonlinear Alternative). Let f : Bρ → E be a compact map.

Then, one of the following statements holds:

(a) Fix(f) 6= ∅;



Schauder’s Theorem and the Method of a Priori Bounds 101

(b) Eρ(f) 6= ∅.
Moreover, Fix(rρ ◦ f) = Fixρ(f) ∪ Eρ(f) 6= ∅.

Proof. The Schauder Fixed Point Theorem implies that the compact map

rρ◦f : Bρ → Bρ has a fixed point x0. If f(x0) ∈ Bρ, then x0 = rρ(f(x0)) = f(x0),

and so, (a) is true. Otherwise, λ = ρ/‖f(x0)‖ < 1 and x0 = rρ(f(x0)) = λf(x0).

In that case, (b) is verified. �

As a corollary, we deduce the Leray–Schauder Alternative, see [4], [5].

Theorem 2.3 (Leray–Schauder Alternative). Let f : E → E be a completely

continuous map. Then, one of the following statements holds:

(a) Fix(f) 6= ∅;
(b) E(f) is not bounded.

Proof. We assume that E(f) is bounded and included in Bρ \ Sρ for some

ρ > 0. The previous theorem applied to f : Bρ → E implies that Fixρ(f) 6= ∅.�

Now, we consider continuous maps φ : E → F and f : X → F with X ⊂ E.

A coincidence point between φ and f is an element x0 ∈ X such that

φ(x0) = f(x0).

Definition 2.4. A continuous function φ : E → F is invertible from the right

if there exists a continuous map ψ : F → E such that φ ◦ ψ = id|F .

We introduce the following notations:

E(φ, f) = {x ∈ X : there exists λ ∈ (0, 1) such that φ(x) = λf(x)},

Eρ(φ, f) =E(φ, f) ∩ Sρ,

Coin(φ, f) = {x ∈ X : φ(x) = f(x)},

DI(E,F ) = {φ : E → F : φ is continuous, invertible from the right

and such that ∀ (µ, x) ∈ (0, 1)× E, ∃λ ∈ (0, 1)

such that φ(µx) = λφ(x)}.

The Nonlinear Alternative can be generalized by the following coincidence

result.

Theorem 2.5 (Coincidence Alternative). Let φ ∈ DI(E,F ) and f : Bρ → F

be a compact map. Then, one of the following statements holds:

(a) Coin(φ, f) 6= ∅;
(b) Eρ(φ, f) 6= ∅.

Proof. Let ψ : F → E be a continuous map such that φ ◦ ψ = id|F . The

map rρ ◦ ψ ◦ f : Bρ → Bρ is compact. The Schauder Fixed Point Theorem
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insures the existence of x0 ∈ Bρ such that x0 = rρ(ψ(f(x0))) = rρ(y0), where

y0 = ψ(f(x0)).

If y0 ∈ Bρ, one has x0 = y0 and

φ(x0) = φ(y0) = φ(ψ(f(x0))) = f(x0).

Hence, x0 ∈ Coin(φ, f).

Otherwise, x0 ∈ Sρ and there exists µ ∈ (0, 1) such that x0 = µy0 = rρ(y0).

Since φ ∈ DI(E,F ), there exists λ ∈ (0, 1) such that

φ(x0) = φ(µy0) = λφ
(
ψ(f(x0))

)
= λf(x0).

Therefore, x0 ∈ Eρ(φ, f). �

Corollary 2.6. Let E,F be Banach spaces, φ ∈ L(E,F ) a surjective, con-

tinuous, linear application and let f : Bρ → F be a compact map. Then, one of

the following statements holds:

(a) Coin(φ, f) 6= ∅;
(b) Eρ(φ, f) 6= ∅.

Proof. A theorem due to Bartle and Graves [1] implies that φ ∈ DI(E,F ).

The conclusion follows from Theorem 2.5. �

An analogue of the Leray–Schauder Alternative can also be obtained.

Theorem 2.7. Let φ ∈ DI(E,F ) and f : E → F be a completely continuous

map. Then, one of the following statements holds:

(a) Coin(φ, f) 6= ∅;
(b) E(φ, f) is not bounded.

An analogous argument permits to obtain similar alternatives and coinci-

dence theorems for compact, u.s.c., multi-valued maps relying on the Kakutani

Fixed Point Theorem. The interested reader is referred to [4].

3. The method of a priori bounds

In this section, we present some examples of applications of the Nonlinear Al-

ternative to problems of existence of solutions to differential equations illustrat-

ing what it is called the method of a priori bounds. To simplify the presentation,

we chose to consider differential equations whose right member is a continuous

function. Our results are still valid for Carathéodory functions.

We denote I = [0, T ] and C(I) (resp. Ck(I)) the space of continuous functions

defined on I (resp. k-time continuously differentiable) endowed with the usual

norm ‖ · ‖0 (resp. ‖ · ‖k).
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We consider the following second order differential equation with the ho-

mogenous Dirichlet boundary conditions:

(3.1)
u′′(t) = g(t, u(t), u′(t)) for every t ∈ I = [0, T ],

u(0) = u(T ) = 0.

Here is a first existence result which illustrates the method of a priori bounds.

The interested reader may find in the literature more general results, see for

example [2].

Theorem 3.1. Let g : I × R2 → R be a continuous map satisfying the fol-

lowing conditions:

(a) There exists a constant M ≥ 0 such that g(t,M, 0) ≥ 0 ≥ g(t,−M, 0)

for every t ∈ I.
(b) There exist c ≥ 0, l : I → [0,∞) and ω : (0,∞) → (0,∞) continuous

maps such that

1

ω
∈ L1

loc([0,∞)),

∫ ∞
0

ds

ω(s)
> 2cM + ‖l‖L1

and

|g(t, x, y)| ≤ ω(|y|)(l(t) + c|y|) for every (t, x, y) ∈ I × [−M,M ]× R \ {0}.

Then, there exists u ∈ C2(I) a solution of (3.1) such that ‖x‖0 ≤M .

Proof. Let C2
D(I) = {u ∈ C2(I) : u(0) = u(T ) = 0}. We consider

L : C2
D(I)→ C(I) the linear, continuous, invertible operator defined by L(u)(t) =

u′′(t) and i : C2
D(I)→ C1(I) the canonical injection.

We define ĝ : I × R2 → R and G : C1(I)→ C(I) by

ĝ(t, x, y) =


g(t, x, y) if |x| ≤M ,

g(t,M, y) + x−M if x > M ,

g(t,−M,y) + x+M if x < −M ;

and

G(u)(t) = ĝ(t, u(t), u′(t)).

The map ĝ is continuous and the operator f : C1(I) → C1(I) defined by f =

i ◦ L−1 ◦G is completely continuous, see [5].

It is easy to verify that the fixed points of λf for λ ∈ [0, 1] are solutions of

the problem:

(3.2)
u′′(t) = λĝ(t, u(t), u′(t)) for every t ∈ I = [0, T ],

u(0) = u(T ) = 0.

It follows from the Leray–Schauder Alternative (Theorem 2.3) that

(3.3) Fix(f) 6= ∅ or E(f) is not bounded.
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We claim that, for every u ∈ E(f) ∪ Fix(f),

(3.4) ‖u‖0 ≤M.

Indeed, we assume that J = {t ∈ I : u(t) > M} 6= ∅. Let

u(t0) = max{u(t) : t ∈ I}.

Since u(0) = u(T ) = 0, one has that t0 ∈ (0, T ), u′(t0) = 0 and u′′(t0) ≤ 0. One

deduces from (a) and the fact that u ∈ E(f) ∪ Fix(f) that, for some λ ∈ [0, 1],

0 ≥ u′′(t0) = λĝ(t0, u(t0), u′(t0)) = λg(t0,M, 0) + u(t0)−M > 0.

This is a contradiction. Hence J = ∅. Similarly, one can show that u(t) ≥ −M
for every t ∈ I.

We assume that t2 ∈ I is such that |u′(t2)| = max{|u′(t)| : t ∈ I} > 0. It

follows from Rolle’s Theorem and the continuity of u′ that there exists t1 ∈ (0, T )

such that

u′(t1) = 0 and |u′(t)| > 0 for every t ∈ (min{t1, t2},max{t1, t2}).

Without loss of generality, we assume that t1 < t2 and u′(t) > 0 for every

t ∈ (t1, t2). It follows from (b) and (3.4) that

u′′(t) ≤ ω(u′(t))(l(t) + cu′(t)) for every t ∈ (t1, t2).

So,

2cM + ‖l‖L1 ≥
∫ t2

t1

u′′(t)

ω(u′(t))
dt =

∫ u′(t2)

0

ds

ω(s)
.

This implies that u′(t2) ≤ K, where K > 0 is a constant such that∫ K

0

ds

ω(s)
> 2cM + ‖l‖L1 .

Such a constant K exists by (b). One concludes that

(3.5) ‖u′‖0 ≤ K for every u ∈ E(f) ∪ Fix(f).

Combining (3.3)–(3.5), one deduces that there exists u ∈ Fix(f). Again, (3.4)

and the definition of ĝ imply that u is a solution of (3.1). �

As a corollary, let us recall the following result due to Granas, Guenther and

Lee [7] which generalizes a theorem obtained by S. Bernstein in 1912.

Corollary 3.2. Let g : I × R2 → R be a continuous map satisfying the

following conditions:

(a) There exists a constant M ≥ 0 such that xg(t, x, 0) > 0 for every

|x| ≥M .

(b) There exist a, b : I × R→ (0,∞) continuous maps such that

|g(t, x, y)| ≤ a(t, x)y2 + b(t, x) for every (t, x, y) ∈ I × R2.
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Then, there exists u ∈ C2(I) a solution of (3.1) such that ‖x‖0 ≤M .

Proof. The proof follows from the previous theorem applied to ω(s) =

(1 + s2)/s, l(t) = 0 and c = max{{a(t, x), b(t, x)} : (t, x) ∈ I × [−M,M ]}. �

Now, we fix p ≥ 1 and consider the following periodic problem involving

a nonlinear, first order differential operator (it is linear only for p = 1):

(3.6)

d

dt
(|u(t)|p−1u(t)) = g(t, u(t)) for every t ∈ I = [0, T ],

u(0) = u(T ).

We present a new proof of the following result relying on the Coincidence

Alternative. The interested reader is referred to [3] for results on this type of

problems relying on the fixed point index.

Theorem 3.3. Let g : I × R → R be a continuous map. We assume that

there exists M ≥ 0 such that g(t,M) ≤ 0 ≤ g(t,−M) for every t ∈ I. Then,

there exists u ∈ C1(I) a solution of (3.6) such that ‖u‖0 ≤M .

Proof. We consider the Banach spaces

E = {u ∈ C(I) : u(0) = u(T )} and F =

{
u ∈ C(I) :

∫ T

0

u(s) ds = 0

}
.

We define φ : E → F by φ(u)(t) = |u(t)|p−1u(t)− up, where

up =
1

T

∫ T

0

|u(s)|p−1u(s) ds.

Observe that φ is continuous, invertible from the right and φ(µx) = µpφ(x) for

every (µ, x) ∈ (0, 1)× E.

We define g̃ : I × R→ R and f : E → F by

g̃(t, x) =


g(t, x) if |x| ≤M ,

g(t,M) +M − x if x > M ,

g(t,−M)−M − x if x < −M ;

and

f(u)(t) =

∫ t

0

g̃(s, u(s)) ds− 1

T

∫ T

0

∫ τ

0

g̃(s, u(s)) ds dτ.

Since g̃ is continuous, it is well known that f is completely continuous.

We remark that if u ∈ Coin(φ, f) ∪ E(φ, f), then

(3.7)

∫ T

0

g̃(s, u(s)) ds = 0

and, for some λ ∈ (0, 1], u is a solution of the problem

(3.8)

d

dt
(|u(t)|p−1u(t)) = λg̃(t, u(t)) for every t ∈ I = [0, T ],

u(0) = u(T ).
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Indeed, for some λ ∈ (0, 1], φ(u) = λf(u). So, for every t ∈ I,

(3.9) |u(t)|p−1u(t)− up = λ

(∫ t

0

g̃(s, u(s)) ds− 1

T

∫ T

0

∫ τ

0

g̃(s, u(s)) ds dτ

)
.

In particular, for t = 0 and t = T , we obtain

|u(0)|p−1u(0)− up = − λ
T

∫ T

0

∫ τ

0

g̃(s, u(s)) ds dτ

and

|u(T )|p−1u(T )− up = λ

(∫ T

0

g̃(s, u(s)) ds− 1

T

∫ T

0

∫ τ

0

g̃(s, u(s)) ds dτ

)
.

Knowing that u(0) = u(T ), we deduce (3.7). Also, by taking the derivative

of (3.9), one has that u is a solution of (3.8).

Now, we assume that ‖u‖0 6≤ M . Without loss of generality, J = {t ∈ I :

u(t) > M} 6= ∅. Let

t0 = max
{
t ∈ J : u(t) = max

s∈I
u(s)

}
.

Since u(0) = u(T ), t0 > 0 and u′(t0) ≥ 0. Using (3.8) and the definition of g̃, we

obtain

0 ≤ d

dt
(|u|p−1u)(t0) = λg̃(t0, u(t0)) = λ(g(t0,M) +M − u(t0)) < 0.

This is a contradiction. Hence, J = ∅. Similarly, we can show that u(t) ≥ −M
for every t ∈ I. We conclude that

(3.10) ‖u‖0 ≤M for every u ∈ E(φ, f) ∪ Coin(φ, f).

Corollary 2.6 implies that there exists u ∈ Coin(φ, f). From (3.8), (3.10) and

the definition of g̃, we conclude that u is a solution of (3.6). �

Remark 3.4. It is interesting to realize that, in the previous proof, we used

the non-invertible and non-linear operator φ (linear only in the case p = 1). This

proof shows that it is not necessary to make a change of variables and to modify

the problem in order to obtain a problem of the form L(v) = h(v) with L a linear

invertible operator.

4. Alternative with a non-standard retraction

Let C ⊂ E be a closed, convex set. In this section, we extend the Nonlinear

Alternative to compact maps defined on C. It is well known that there exists

a continuous retraction r : E → C. Such a retraction may be not unique.

We fix r : E → C a continuous retraction.

Definition 4.1. Let f : C → E. An r-ejectable point of f is an element

x0 6∈ Fix(f) such that f(x0) ∈ r−1(x0).
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We denote EC,r(f) = {x ∈ C : x is an r-ejectable point of f}. By an argu-

ment analogous to the one in the proof of the Nonlinear Alternative, we obtain

the following result.

Theorem 4.2. Let f : C → E be a compact map. Then, one of the following

statements holds:

(a) Fix(f) 6= ∅;
(b) EC,r(f) 6= ∅.

We apply the previous theorem to present a new proof of an existence result

for first order differential equations involving the method of upper and lower

solutions [10]. Again, to simplify the presentation, we consider differential equa-

tions with as right-member a continuous function. Our result is still valid for

Carathéodory maps.

We consider the following problem:

(4.1)
u′(t) = g(t, u(t)) for every t ∈ I = [0, T ],

u(0) = x0.

Theorem 4.3. Let g : I × R → R be a continuous map. We assume that

there exist α, β ∈ C1(I) such that

(a) α(t) ≤ β(t) for every t ∈ I;

(b) α(0) ≤ x0 ≤ β(0);

(c) α′(t) ≤ g(t, α(t)) and β′(t) ≥ g(t, β(t)) for every t ∈ I.
Then, there exists u ∈ C1(I) a solution of (4.1) such that α(t) ≤ u(t) ≤ β(t) for

every t ∈ I.

Proof. We consider the convex set C = {u ∈ C(I) : α(t) ≤ u(t) ≤ β(t)

for every t ∈ I}, and the continuous retraction r : C(I)→ C defined by

r(u)(t) =


β(t) if u(t) > β(t),

u(t) if α(t) ≤ u(t) ≤ β(t),

α(t) if u(t) < α(t).

We consider the map f : C(I)→ C(I) defined by

(4.2) f(u)(t) = x0 +

∫ t

0

g(s, u(s)) ds.

It is well known that f is completely continuous. Therefore, its restriction to C,

f : C → C(I) is a compact map since C is bounded.

Theorem 4.2 implies that

Fix(f) ∪ EC,r(f) 6= ∅.

If there exists u ∈ EC,r(f), then u = r(f(u)) and f(u) 6∈ C. We assume that

J = {t ∈ I : f(u)(t) > β(t)} 6= ∅.
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Let t1 ∈ J and t0 = sup[0, t1] \ J . It follows from (b) and the continuity of f(u)

and β that 0 ≤ t0 < t1, (t0, t1] ⊂ J ,

(4.3) f(u)(t0) = β(t0) and f(u)(t) > β(t) for every t ∈ (t0, t1].

Therefore,

(4.4) u(t) = r(f(u))(t) = β(t) for every t ∈ [t0, t1].

From (4.2), one has

(4.5) f(u)(t) = f(u)(t0) +

∫ t

t0

g(s, u(s)) ds for every t ∈ [t0, t1].

Combining (c) with (4.3)–(4.5), one deduces that

β(t1) < f(u(t1)) = f(u(t0)) +

∫ t1

t0

g(s, u(s)) ds

= β(t0) +

∫ t1

t0

g(s, β(s)) ds ≤ β(t0) +

∫ t1

t0

β′(s) ds = β(t1).

This is a contradiction. Thus, J = ∅. Similarly, one can show that f(u)(t) ≥ α(t)

for every t ∈ I. Thus, f(u) ∈ C.

One concludes that EC,r(f) = ∅ and there exists u ∈ Fix(f) a solution

of (4.1). �

Remark 4.4. Let us point out that the previous proof shows that, contrarily

to the standard proof, one can avoid to consider the modified problem:

u′(t) = g(t, r(u(t))) for every t ∈ I = [0, T ],

u(0) = x0.
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