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ABSTRACT. We first recall simple proofs relying on the Schauder Fixed
Point Theorem of the Nonlinear Alternative, the Leray—Schauder Alterna-
tive and the Coincidence Alternative for compact maps on normed spaces.
We present also an alternative for compact maps defined on convex sub-
sets of normed spaces. Those alternatives permit to apply the method of
a priori bounds to obtain results establishing the existence of solutions to
differential equations. Using those alternatives, we present some new proofs
of existence results for first order differential equations.

1. Introduction

In this note, we first recall simple proofs relying on the Schauder Fixed
Point Theorem of the Nonlinear Alternative, the Leray-Schauder Alternative
and the Coincidence Alternative for compact maps on normed spaces [4], [5]. The
avantage of those proofs is that they avoid the use of more sophisticated theories
such as the topological degree theory, the topological transversality theory or
the coincidence degree theory due to Mawhin [9]. To our knowledge, the first
result in this direction was obtained by Schaefer [11].

In Section 2, we present some examples of applications of those alternatives
with the method of a priori bounds to differential equations. First, we recall
a generalization of a theorem due to S. Bernstein for second order differential
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