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SIGN CHANGING SOLUTIONS
OF p-FRACTIONAL EQUATIONS
WITH CONCAVE-CONVEX NONLINEARITIES

MousoMl BHAKTA — DEBANGANA MUKHERJEE

ABSTRACT. We study the existence of sign changing solutions to the fol-
lowing p-fractional problem with concave-critical nonlinearities:
(—=A)5u = plul u+ [ul” 2w in Q,
u=0 in RV \ Q,

where s € (0,1) and p > 2 are fixed parameters, 0 < ¢ < p— 1, p € RT
and p* = Np/(N — ps). Q is an open, bounded domain in RV with smooth
boundary, N > ps.

1. Introduction

Let us consider the following fractional p-Laplace equation with concave-
critical nonlinearities:

(=A)su = plul?'u+|u Pi=2y in Q,

P
(P) u=0 in RV \ ,

where s € (0,1), p > 1 are fixed, N > ps, Q is an open, bounded domain in RY
with smooth boundary, 0 < ¢ < p —1, p} = Np/(N —ps) and p € R*. The
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S

» is defined as follows:

non-local operator (—A)

(L) (~A)ule) = 2lim [u(y) = u@)P2(u(y) — ulz))

p N ’
€0 JRN\B. (z) |z — y[N+ps

for x € RN, For p > 1, we denote the usual fractional Sobolev space by W*?(Q)
endowed with the norm

_ [u(z) — u(y)? e
||UHWS,17(Q) = ||U||LP(Q) + (AXQ Wdibdy .

We set @ := RZV \ (Q° x Q°) with Q¢ = RY \ Q and define

X = {u: RY — R measurable : u|q € LP(Q)

g [ @) —u@)

o — gV drdy < oo}.

The space X is endowed with the norm defined as

1/p
u u\y
|u||X:||u||Lp<Q>+( 'fcﬂywij,,'dxdy) |

Then, we define X := {u € X : u = 0 almost everywhere in RV \ Q} or equiv-
alently, as C>°(Q)X and for any p > 1, Xj is a uniformly convex Banach space
(see [16]) endowed with the norm

fullx, = ( i Mdrdy>l/p.

|z — y|N+ep

Since u = 0 in RY \ €, the above integral can be extended to all of RY. The
embedding Xy < L"(Q) is continuous for any r € [1,p?] and compact for r €
[1,p%). For further details on Xy and its properties we refer to [14].

DEFINITION 1.1. We say that u € X is a weak solution of (P,) if

[ ) = ) —u6t) = 00D o,
RQN

|z —y|NHPe
=i [ W@l u(wyote) o+ [ futa)p

The Euler-Lagrange energy functional associated to (P,) is

(1.2) L(u) :l/w Wc{xdy

q+1/|u|q+1da:— /|u

:*II %, *7| o

for all ¢ € Xj.

s dx

Lat1(Q) ]7: | LPQ(Q)
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We define the best fractional critical Sobolev constant S as

[ beowor,,
R?N

_ N+ps
f |z — y|NP ]
veW*» (RN)\{0} .\ P
(/ |v(z)|Ps dx)
RN

which is positive by fractional Sobolev inequality. Since the embedding X —

(1.3) S =

)

LP: is not compact, [ . does not satisfy the Palais—Smale condition globally, but
that holds true when the energy level falls inside a suitable range related to S.
As it was mentioned in [13], the main difficulty in dealing with critical fractional
case with p # 2, is the lack of an explicit formula for minimizers of S which is
very often a key tool to handle the estimates leading to the compactness range
of I,,. This difficulty has been tactfully overcome in [13] and [20] by the optimal
asymptotic behavior of minimizers, which was recently obtained in [9]. Using the
same optimal asymptotic behavior of minimizer of S, we will establish suitable
compactness range.

Thanks to the continuous Sobolev embedding Xy < LP: (RY), I, is a well-
defined C! functional on X. It is well known that there exists a one-to-one
correspondence between the weak solutions of (P,) and the critical points of I,
on Xog.

A classical topic in nonlinear analysis is the study of existence and multiplic-
ity of solutions for nonlinear equations. In past few years there has been consid-
erable interest in studying the following general fractional p-Laplacian problem:

(=A)pju=f(u) inQ,
u=0 in RV \ Q.

In [19], the eigenvalue problem associated with (—A)J has been studied. Some
results about the existence of solutions have been considered in [17]-[19], see also
the references therein.

On the other hand, the fractional problems for p = 2 have been investigated
by many researchers, see for example [22] for the subcritical case, [3], [5], [23]
for the critical case. In [6] the authors studied the nonlocal equation involv-
ing a concave-convex nonlinearity in the subcritical case. In [12] the existence
of multiple positive solutions to (P,) for both the subcritical and critical case
were obtained. Existence of infinitely many nontrivial solutions to (P,) in both
subcritical and critical cases and existence of at least one sign-changing solution
have been established in [5]. In the local case s = 1 equations with concave-
convex nonlinearities were studied by many authors, to mention few, see [2], [1],
[4], [10]. When s =1 and p = 2, existence of sign changing solutions was studied
in [11].
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In [16], Goyal and Sreenadh studied the existence and multiplicity of non-
negative solutions of p-fractional equations with subcritical concave-convex non-
linearities. In [13], Chen and Squassina have studied the concave-critical system
of equations with the p-fractional Laplace operator. More precisely, they studied:

, 2
(—A)su = Aul" u+ T“ﬂ lu[*~2ufv]®  in Q,
(0%
2
(=A)sv = A" u+ aifﬂ [v|P~2vlu|®  in Q,
u=v=0 in RV \ Q,

where a+ 8 =p;,0<q¢<p—-1,a,B > 1, A\, u are two positive parameters.
When (N(p—2) +ps)/(N —ps) < q<p—1and N > p?s, they have proved
that there exists A\, > 0 such that for 0 < \P/(P—0) ,up/(p’q) < Ay, the above
system of equations admits at least two nontrivial solutions.

Note that, if we set A = p, « = 8 = p*/2 and v = v then the above system
reduces to (P,). Therefore, it follows that when (N(p — 2) + ps)/(N —ps) < ¢ <
p—1and N > p?s, problem (P,) admits two nontrivial solutions for p € (0, f1.),
for some p, > 0. It can be shown that the nontrivial solutions obtained in [13]
are actually positive solutions of (P,) (see Remark 2.2 in Section 2).

The main result of this article is the following:

THEOREM 1.2. Let Q be a bounded domain with smooth boundary in RY.
Let s € (0,1), p > 2. Then there exist u* >0, No € N and qo € (0,p — 1) such
that for all p € (0,1*), N > Ng and q € (qo,p — 1), problem (P,) has at least
one sign changing solution, where Ny is given by the following relation:

345
2 b

sp(p+1) when 2 < p <

3+5

sp(p> —p+1) when p > 5

Notations. Throughout this paper C denotes the generic constant which

No =

may vary from line to line. For a Banach space X, we denote by X’, the dual
space of X. |u|r»q) denotes |[ul|zr(q).

2. Existence of sign-changing solutions
Define the Nehari manifold N,, by
N, ={ue Xo\{0}: (IL(u),u)XO =0}.

The Nehari manifold N, is closely linked to the behavior of the fibering map
©u: (0,00) — R defined by

Dy .
q+1 LAY

prttt
IO Rl L L

qg+1
which was first introduced by Drébek and Pohozaev in [15].

rP p
pu(r) == I (ru) = n lJull, —
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LEMMA 2.1. For anyu € Xo\{0}, we have ru € N, if and only if ¢} () = 0.

PrOOF. We note that for r > 0, ¢/, (r) = (I},(ru),u)x, = +(I],(ru),ru)x,.
Hence, ¢/,(r) = 0 if and only if ru € N,. O

Therefore, we can conclude that the elements in N, correspond to the sta-
tionary points of the map ¢,. Observe that

— +1
(2.1) @y (r) = ullk, — urulfi gy —

ch «)’

_ - 1 -
(22) ¢u(r)=@-1r" 2”“”?(0 — qur? 1|u|%—§+1(9) = (ps = )r* LP5(Q)

By Lemma 2.1, we note that u € N,, if and only if ¢/ (1) = 0. Hence for u € N,,,
using (2.1) and (2.2), we obtain that

+1 * .
- 1)||U||p - q:“|“‘qu+1(Q (ps = Dlu ip; Q)

(2.3) (1) =

(p
(p ps) Lp (Q)+(1_ ) ‘u|Lq+l (Q)
= (-1 llulk, - 0~ 1= Dl
= (0= )l + (52— 1= QlulZS L g

Therefore, we split the manifold into three parts corresponding to local minima,

maxima and points of inflection

Nf={ueN,:¢(1) >0}, N;:={ueN,:¢,(1)<0},
N} :={u€e N, :¢(1) =0}

REMARK 2.2. From [13], it follows that inf I,(u)and inf I,(u) are achie-
uGN u€EN,

ved and those two infimum points are two critical points of I,,. Now, if we define
It as follows:

1 .
(2.4) I ( ) - H ” q Jr a1 | +‘%—<~1_il(ﬂ) - ﬁ |u+ ]ZSP; @
and
(2.5) af = inf IF(u) and @, := inf If(u),
uEN u€EN,

then repeating the same analysis as in [13] for If, it can be shown that there

)

exists py > 0 such that for p € (0, ), there exist two non-trivial critical points
wy € NJ‘ and wy; € N, of II. It is not difficult to see that wg and w; are
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nonnegative in RY. Indeed,

(2.6) 0= ((£;)) (wo),wy)
[ fonte) - wnl o) on) om0 ) = 05 @)
R2N

|z — y|[N e

[ Lonte) )P )y @) + 20 @) o,
R2N

|z —y[Vep

|wo () —wg (Y —p
>/]R2N ‘Cﬂ 7 y‘N+5p dx dy = ||’LU0 ||XO'

Thus, ||wy || x, = 0 and hence, wy = wg . Similarly we can show that w; = wy .
Using the maximum principle [7, Theorem A.1], we conclude that both wyg, w; are
positive almost everywhere in €2. Hence (P,) has at least two positive solutions.

Set

(27) iz (p‘l‘q

(p—1-q)/(ps—p)
pz—q—1>

L _bs—p |Q‘ (a+1-p2)/(py) gN(p—1-a)/p*s+(a+1)/p_
Ps—¢q—
Next we prove three elementary lemmas.

LEMMA 2.3. Let p € (0,11). For every u € X, u # 0, there exists unique

(r—1-9q)

(N—ps)/p°s .
t7(u) < to(u) = < - > <t (u),
(P§ —-1- Q) zsp;‘ (Q)
such that
t~(wue N and I,(t7u) = tg[loirtlo] I,(tu),
t*(wue N, and I,(tTu) = rtr;aticl (tu).
ProoFr. For t > 0,
P tPs .
_ P g+1 P
1t = = ulfy, - B g - s
Therefore
6 q(p—1—q P P
8t (tu) =t (t ”U’H -t LP () lu|u|Lq+1(Q))'
Define
_ 4p—1- :
(2'8) ’lﬂ(t) =" q||“|\§<0 -t L7 (Q)
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By a straight forward computation, it follows that 1 attains maximum at the

point
1= lul® 1/(ps—p)
(2.9) to = to(u) = ( Ep q)| p!Xo ) .
(ps -1- Q)|U|LP’§ (Q)
Thus
(2.10) Y (tg) = 0, P(t) >0 if t<to, P(t) <0 if t > tp.
Moreover,
1 x_ 1)\ (N—=ps)/p’s
wte) = (2174 =) e p [
’ ps—1—g¢ pi—1—q) \ Jupie—-o

LP3 ()
Therefore, using Sobolev embedding, we have
(p—1—q)(N—2s)/(4s)
p—1—gq
2.11) P(te) = ()
@) i) > (2L

Py —p 1) /2 41
. <* s )SN(p 1-q)/p S||U||§(0 ]
Ps—1—q

Using the Holder inequality followed by the Sobolev inequality, and the fact that
w in (0, 1), we obtain

i [ e < gl sy
< ﬁ|‘u||g(t15—(q+1)/p|g|(p§—q—l)/p§ < 1h(to),

where in the last inequality we have used expression of i (see (2.7)) and (2.11).
Hence, there exists t*(u) > to > ¢t~ (u) such that

(2.12) B(tH) = / et = () and () <0 < /().

This in turn, implies tTu € N, and t7u € N:[. Moreover, using (2.10) and
(2.12) in the expression of 01, (tu)/0t, we have

)
— I,(tu) >0 when t € (t7,tT),

o
%Iu(tu) <0 whente0,t7) Ut 00),
0

alu(tu):() when t = t*.

We note that I,(tu) = 0 at ¢ = 0 and strictly negative when ¢ > 0 is small
enough. Therefore it is easy to conclude that

— T (++ ~ _ -
rtfﬁff[u(tu)—lu(t u) and terr[lc)l,rtlo]J”(tu)_I”(t u). O
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Repeating the same argument as in Lemma 2.3, we can also prove that the
following lemma holds:

LEMMA 2.4. Let u € (0, 1), where i is defined as in (2.7). For every u € Xy,
u # 0, there exists unique

_ 2
= (r—1-q)lul, >(N P

(u) < tolu) = *
) < folt <<pz—1—q>|u+’;z;(m

<t (u)

such that

t(u)u € N, and I;[(%V_u) = tér[l()htlo] IH(tu),

T+ - + (T — +
tT(wue N, and I;(t"u)= I&%ﬂdﬂ (tu),
where I} is defined as in (2.4).
LEMMA 2.5. Let i be defined as in (2.7). Then p € (0, f1), implies N} = 0.

PRrROOF. Suppose not. Then there exists w € NS such that w # 0 and

(2.13) (0 —1-alwlk, — @ —a— D™}, o =0.
The above expression combined with the Sobolev inequality yields
(N—ps)/p>s
2 —1- q
2.14 > gNets (P24 :
(2.14) Juilx, > 5¥ (2= =L

Asw € NE C N,, using (2.13) and the Hélder inequality followed by the Sobolev
inequality, we get
: 1
0= lwll, — [l ) — Hh0l%hs

*
S

p—1—¢q _ e 1
> [lwlk, — (1)||w|§0 — I DL gD 1,

Combining the above inequality with (2.14) and using u < fi, we have

* (N—ps)(p—1—q)/p°s
0> ||w|g(+1[< Ps 7P )(p—l—q > GN(p—1-q)/p*s
- C[\pi—qg—1)\p5—q—1

_ N|Q|1—(q+1)/p:5—(q+l)/p >0,

which is a contradiction. O

LEMMA 2.6. Let p be defined as in (2.7) and p € (0,p1). Given u € N,
there exist p, > 0 and a differentiable function g,,: B,,(0) — RT satisfying the
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following:

9p, (0) =1, (9p. (W) (u+w) € N for allw € B,,(0),

— ! / —(g+ D /Q ]t~

(p—1=@ul, — @5 =g = Dlul}: o
for all ¢ € B, (0), where
A(u, ¢) = /RZN [u(z) — u(y)|P~2(u(z) — u(y))(d(x) — ¢(y))

|z — y|N+ps

(95, (0),¢) =

dzx dy.

PROOF. Define E: R x Xy — R as follows:
— p—1l—q P ps—q—1 q+1
B(rw) =t wlf, — 7 ot w) o pl(a - w) 5 o)

We note that v € N,/ C N, implies
7]
E(1,0)=0 d
(1,0) wme ar )
Therefore, by the implicit function theorem, there exist a neighbourhood B, (0)
C N, for some p, > 0 and a C' function g,,: B,,(0) — R such that
(1) 9,(0) =1,
i) E(gp, (w),w) =0, for all w € By, (0),
(ii) Er(g,, (w),w) <0, for all w € B, (0),
)

() (55, 00.6) = ~( o (1L0).6) /52 1.0)

Multiplying (ii) by (g,, (w))?™, it follows that g,, (w)(u +w) € N,. In fact,
simplifying (iii), we obtain

E . :
- (1,0) = (p = 1= gullk, — (5 =g = Dlul};: o) <0

28
b <0

(0 =1 = a)gp, (W)Pllu+ wl, — (0% = ¢ = D)gp, ()| (u + w)

for all w € B, (0). Thus (g,, (w))(u+w) € N, for every w € B,,(0). The last
assertion of the lemma follows from (iv). O

Let S be as in (1.3). From [9], we know that for 1 < p < o0, s € (0,1),
N > ps, there exists a minimizer for S, and for every minimizer U, there exist
ro € RY and a constant sign monotone function u: R — R such that U(x) =
u(]z — xo]). In the following, we shall fix a radially symmetric nonnegative
decreasing minimizer U = U(r) for S. Multiplying U by a positive constant if
necessary, we may assume that

(2.15) (AU =UP"' inR™

For any € > 0 we note that the function

_ 1 |z]
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is also a minimizer for S satisfying (2.15). From [20], we also have the following
asymptotic estimates for U.

LEMMA 2.7 ([20]). Let U be the solution of (2.15). Then, there exist c1,co >
0 and 6 > 1 such that, for allr > 1,

C1 C2
(217) = =V = e
and
Uu(rg) 1
9.18 <1
( ) U(r) — 2
PROOF. See [20, Lemma 2.2]. O

Therefore we have

e(N=sp)/(p(p—1))

(2.19) (N = 1)

for |x| > e.

We consider a cut-off function ¢ € C§°(2) such that 0 < ¢ < 1, ¢ =1 in Qs,
¢ =0 in RN \ Q, where Q5 := {z € Q : dist(z,0Q) > 6}. Define

(2.20) ue(x) = Y(2)Uc ().
We need the following lemmas in order to prove Theorem 1.2.

LEMMA 2.8. Suppose wi is a positive solution of (P,) and u. is defined as
in (2.20). Then, for every e > 0 small enough,

(a) A1 = / wf:_lua dx < k.lg(N—PS)/(p(p—l))’
Q

(b) Ay := / wiu. dr < kQE(N*PS)/(p(pfl))f
Q

(c) As:= /leug dx < kgeWN—p)a/(p(p—1))

(d) Ay = / wiul* " de < kyeN@=D+ps)/(p(p=1)
Q

PROOF. Applying the Moser iteration technique (see [8, Theorem 3.3]), it
can be shown that any positive solution of (P,) is in L>(€2). Let R, M > 0 be
such that Q C B(0, R) and |wi|pe(q) < M.
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(a)

Ay :/ wfzflug dx
Q
C

dx
U.(z) da + eN—s0)/ (plp=1)) / }
|:/Ql"‘|{z§5} : Qn{|z|>e} |,’L‘|(N_5p)/(P_1)

C[aN(NSp)/p/ U(x)dx
{lzl<1}

dx
(N—sp)/(p(p—1))
te /B(O w0 e[/ dx}

IN

R
<C [gv(zvsp)/p + o(N=sp)/(p(p-1) / N1 (N=sp)/ (1) dr}
0

< ke =)/ (p(p=1))

The proof of (b) is similar to (a).

()

dx
q (N—sp)q/(p(p—1)) .
SC[/mﬂxsE} Velw)do+e / IxI(N—smq/@—l)}

Qn{|z|>e}
C[EN—(N—Sp)q/p/ Ul(z)? dx
{lz[<1}

dx
(N—sp)q/p(p—1)
e /B(O o ] —sPa/-D) d“‘”}

IN

R

SC[ENqup)q/p (N =sp)a/ (1) / er(Nsp)q/(pndr}
0

< kgeN=pPs)a/(p(p=1))

since 0 <g<p—1<N(p—1)/(N — sp).
(d) can be proved similarly to (c). O

LEMMA 2.9. Let u. be defined as in (2.20), 0 < ¢ < p—1 and N > p?s.
Then, for every € > 0 small enough,

ks e NP @D/ 1) i 0 < g < NP2 H DS

N — ps ’
N(p—2
/|ue|q+1 dx >  kee™/P|Ine| if ¢ = (1;\]7)‘”737
Q ~ps

kyeN-(N-p)atvfp e NP —2) +ps

<g<p-1
N —ps =p
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PrOOF. We recall that R’ > 0 was chosen so that B(0, R’) C Q5. Therefore,
for € > 0 small enough, we have

(2.21) / lus |7 da > / lus |1 do = / Ut (x) dx
Q B(0,R") B(0,R’)

— O N-(N=sp)(a+1)/p / Ut (y) dy
B(0,R’/¢)

> CEN—(N—ps)(q-i‘l)/P/ Uq+l(y) dy
B(0,R’/¢)\B(0,1)

’

R/
> CeN—(N—ps)(at1)/p / T N 1= (N=ps)(a+1)/(0-1) .
1

Case 1. 0 < g < (N(p—2) +ps)/(N — ps). We note that
R'/e
(2.22) / p(N=D=(N=ps)(@+1)/(p=1) g > 0y e~ N+N=ps)(a+1)/(0=1) _ 7,
1

Thus substituting back in (2.17), we obtain

/ e |41 d > CeN =N =P a1/ [0 o~ NN —p9) @4/ G-1) _ ]
Q
= O3Vt D)/ (p(p=1) _ 0 cN—(N=ps)(a+1)/p

> kge(V—p)(a+1)/(p(p—1))

Case 2. ¢q= (N(p—2) +ps)/(N — ps). In this case it follows that
R' /e
/ pN=1=(N=p3)(@+1)/ =1 g > | Ing|.
1
Plugging back in (2.17), we obtain
/ lue| T de > keeN~ NP @HD/P 1 ¢ = kgeN/P| Ingl.
Q

Case 8. (N(p—2)+ps)/(N —ps) <g<p-—1.

(2.23) RHS of (2.16) > kzeN~(V=sp)la+1)/p / Ut (z) dx
B(0,1)
> eV~ (WN=sp)(a+1)/p

Hence the lemma follows. O

DEFINITION 2.10. We say {u,} is a Palais-Smale (PS) sequence of I, at
level ¢ (in short (PS).) if I,,(u,) — ¢ and I} (u,) — 0 in (Xp)'. Furthermore, we
say I, satisfies the Palais-Smale condition at level ¢ if for all {w,} C X, with
I(up) = cand I} (u,) — 0 in (Xp)', implies, up to a subsequence, u,, converges

strongly in Xj.
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Let us define
(PN — (N —ps)(g+1))(p—1—-9q)
p?(g+1)
. (p—1—q)(N — sp) (a+1)/(ps—q=1)
p?s
LEMMA 2.11. Let M be as in (2.24). For any p > 0 and for

(2.24) M :=

€.

c< % SN/sp _ ppype/ s—a=1),
I, satisfies the (PS). condition.

PROOF. Let {u} C X¢ be a (PS). sequence for I, that is, we have I, (ur) —
c and [ (ur) — 01in (Xo)" as k — oo. By the standard method it is not difficult
to see that {uy} is bounded in Xy. Then up to a subsequence, still denoted by
ug, there exists us, € Xg such that

U — Use weakly in Xg as k — oo,
Up — Uoe  weakly in LP<(RY) as k — oo,
up — Uso  strongly in L"(RY) for any 1 <r < p* as k — oo,
Up = Usy  ace. in RY as k — oo.

As 0 < g<p—1, we have
/ g (z) da —>/ oo 9T () dz  as k — oo.
Q Q

Using above properties it can be shown that (I}, (ux),¢)x, = 0 for any ¢ € Xo.
Indeed, for any ¢ € X,

:/ g (2) — ux ()P (un(2) — u (@) (0(2) = W) 4o
R2N |z — y|NFep

[0 () = oo (Y) [P~ (oo (%) — oo (1)) (¢(x) = 9(y))
_ /Rw [z — | dx dy

— u(/ lug |7 Fugp do —/ |uoo|q_1uoocpdx>
Q Q
— wp|? " 2ugp dr — Uoo|P* 2usopdr ).
| @ ¢
Q Q

{ |ug () — ur (y) [P~ (ur(2) — up(y)) }
E>1

|£L‘ — y|(N+SP)/P'

is bounded in L’ (R2N), where p’ = p/(p — 1), up to a subsequence

Jun (@) — we ()P (ur () —un(y)) | |uoo(@) — uoo ()P~ (uco () — ucs(y))
|z — y|N+sp)/p’ |z — y|(N+sp)/p
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weakly in LP' (R2N) | up — us weakly in LPs (RN) and uj, — e strongly in
LITYRN) as k — oc.

Combining these we have (I}, (ur), ) — (I},(ux), ) — 0 as k — oo. But
as I},(ur) — 0 in X{ as k — oo, we have (I}, (ux), p)x, = 0, for any ¢ € Xo.
Hence, in particular (I}, (e ), Uoo) x, = 0.

Furthermore, by the Brezis—Lieb lemma, as k — oo, we get

[ IO gy [ ) i) ) i,
R2N R2N

EETE o=y
|uoo(x) - uoo(y)‘p
+/RZN o — gV dxdy + o(1)
and
/ g ()P dar = / (ke — o) ()P da +/ o ()| da: + o(1).
Q Q Q
No

_ p
I _ |uk(z) — uk(y)]
(I, (ur), ur) x, /RQN P T dx dy

— it [ o) do = [ fun(o)

— — p
R2N |z —y|NFsp

S ACCEINE

Since, as (I}, (oo ), Uoo) x, = 0 and (1] (ug), ur)x, — 0 as k — oo, we have that
there exists b € R with b > 0 such that

/ |ug (2 (z) — ur(y) + uoo(y)|P

Ix —y|N e
/ [T
Q

If b = 0 we are done. Suppose b > 0. Moreover, using the Sobolev inequality, we

.
Ps dx

P5dr + (I, (o) too) x, + 0(1).

[l — ool dady — b

and

Psder —b as k — oo.

have

o = el = $( [ e = )@ o)

Therefore, b > SbP/P: | and this implies b > SN/*P. On the other hand, since
<I;l;,(uoo)7uoo>X0 =0, we obtain

(225)  Iu(us) = Iu(u >71<I’<um> thso) o

/ [too (2 ‘ps dx+u(p - q-i—l) / [too( |q+1 dx.
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Using (2.25) and (I}, (ux), ur)x, — 0 as k — oo, we get

k—o0
= lim [ /| — Ueo)( )p<0lx—&—f/|uOo )P+ da
k—o0
- - q+1d
+M<p q+1)/|uk( ) 4
(52 e
p g+l
de - q+1d
x+u< q+1>/|u =) !

By assumption we have ¢ < sS™/*? /N, the last inequality implies 7, (uo) < 0.
In particular, us, # 0 and

(2.26) c= lim I, (ug) = khm |:I/L(uk) - % <I:L(Uk),uk>X0]

Moreover, by the Holder inequality, we have

/ oo ()91 dar < |Q|P5—(a+1)/pS (/ oo

Thus, from (2.26)

(g+1)/p;
pb dx) .

.
Ps dx

S S
>7SN/SP 7/ o0
°=N TN Q|“

1o
st Q| (q+1>>/p5(/
w3 )ml o

=5 SN+ hi),

(g+1)/p;
pﬁ dx)

where

S o« 1 1
h A M = )10ei—(¢+1)/ps e+
()= u(p . 1) | n

. 1/p
n= (/ [thoo ()]Ps dx) .
Q

By elementary analysis, we can show that h attains its minimum at

1 g/ — sp)\ Y @i (@) )
o = (M(P a)( p)) Q177

with

p?s
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and
h(ne) = s (plp—1—q)(N —sp) ps/(ps—(q+1))|m
o) =¥ -
_mp-1-9q || (P = (a1 /P
plg+1)
+1)/(p;—(q+1
. <H(p— 1—¢q)(N - sp))(q )/ (pr—(q ))|Q‘(q+1)/p:
p?s

_ ]\4M:DZ/(pi—(q+1))7
with M given in (2.24). This in turn implies
e> 2 gN/sp _ ppypi/ (3= (a+1)
- N

and that gives a contradiction to our hypothesis. Hence b = 0. This concludes
that up — us strongly in Xj.

LEMMA 2.12. Let N € N be such that N > sp[p+1+ /(p + 1)2 — 4]/2 and
q € (q1,p—1), where

N?(p—1)
(N —sp)(N —s)
Then, there exist iy > 0 and ug € Xo such that

(2.27) 1= -1

(2.28) sup I (tuo) < % SN/(sp) _ gy (0s—a-1)
>0

for pe (0,1). In particular,

(2.29) a, < % SN/(sp) _ g Pt/ (i—a=1),

where I} is defined as in (2.4) and a;, and M are given as in (2.5) and (2.24),
respectively.

PROOF. Let u. be defined as in (2.20). Then we claim

*

(2.30) lud | por = |ue %P: > GN/(sp) 4 o(eN/(p=1)y,

To see this,

(2.31) |u5|§sp§(m:/ e d:cZ/ 7 dx:/ U (2) 7" da
Q Qs Qs

Ps .

s dg — / U (z)
RN\Qs

Moreover,

- [ 0@
Joo, 10 : :

P dxg/ |U. ()P dr = — Uvrs <> dx
RN\B(0,R’) &7 JRN\B(0,R’) €

o0
<C pN=1=Np/(p=1) g, < CeN/(p=1)
R’ /e
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Therefore substituting back to (2.31) we obtain

e oy = SV N/,

Furthermore, a similar analysis as in [23, Proposition 21] (see also [20, Lem-
ma 2.7]) yields, for € > 0 small enough (0 < € < §/2) we have,
(2.32) e ||, < SN/(sp) 4 o(e(N=Ps)/(P=1)y,

Define
J(u) = *II %,

and choose g > 0 small enough such that (2.32) and (2.30) hold and Lemma
2.9 is satisfied. Let € € (0,g9). Then, consider corresponding ug := uc,. Let us
consider the function h: [0,00) — R defined by h(t) = J(tug) for all ¢ > 0. It
can be shown that h attains its maximum at

unll? 1/(p*—p)
t=t, = (” f'L)f”)
v

HUOHP N/(sp)
sup J(tug) = ( ) .

t>0 LP§

Using (2.32) and (2.30) a straight forward computation yields,

Lp ’ ’U,EXQ,

and

(2.33) sup J (tug) < SN/ sP) 4 o(e(N=sp)/(P=1))
t>0

Since I, (tug) < 0 for ¢ small, we can find o € (0,1) such that

sup I} (tug) < SN/(sp M pps/wi—a=1),
0<t<tg

for 41 > 0 small enough. Hence, we are left to estimate sup I} (tuo).

to<t
sup 15 (tug) = sup |J(tug) — e ud |7
t>to t>to + 1 0 Lat1

5 gN/(sp) (N=sp)/(p—1)y _ atl

< 25NN 4 ofc - 2 bl
5 gN/Gsp) 4 creWN=ps)/(p=1) _ ) e (N=ps)(a+1)/(p(p=1))
N({p-2
0<g< 7(12\[_)8;_1)8,
N(p-—-2

< d 5 GV o N=09/(0=1) e NI ||, g = (1;\[ _)S; ps.

5 GN/6P) 4 o e N=P9)/(0=1) _ ¢y e N=(N=sp)(a+1)/p,

N(p—2) +ps
N —sp

<g<p-—1.
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Choose ¢ € (0,6/2) such that e N =sp)/(p=1) = ;,(P2)/(Pi=a=1)  Then, for (N (p—2)
+ps)/(N — sp) < ¢ < p— 1, the term

2 GN/Gp) 4 o eWN=p)/(0=1) _ () cN=(N=sp)(a+1)/p
N

reduces to

% SN/ (sp) clup:/(p:—q—l) _ cw(up*/(p*—q—l))(N—(N—sp)(q+1)/p)((p—1)/(N—pS)).

Now, note that we can make

ea P/ =10 _ gy (/07 =a= D) VSV @) D) (1) /(N )

< —Mpps/Pe=a=),

for p > 0 small enough if we further choose

*

2 p—1>[ Np j2
—(g+ 1| < —F 1,
(p:—q—1)< D N —ps ( ) ps—q—1

N*(p—1)
(N = sp)(N —s)’
This proves (2.28). It is easy to see that (2.29) follows by combining (2.28) along
with Lemma 2.4. g

ie., if

qg+1>

2.1. Sign changing critical points of I,,. Define
Nop={ueN,:uteN;}  N,:={ueN,:—u" €N},
We set

(2.34) fr= inf I,(u) and fo= inf I,(u).
ueN, ueN, ,

THEOREM 2.13. Let p > 2, N > spp+1++/(p+1)2—4]/2 and ¢ < q <
p — 1, where q1 is defined as in (2.27). Assume 0 < p < min {fi, i1, f«, 41},
where [, i1 and py are as in (2.7), Lemmas 2.12 and A.1, respectively. p, is
chosen so that &, is achieved in (0, ). Let Bi, B2, a,, be defined as in (2.34)
and (2.5), respectively.
(a) Let f1 < a,, . Then, there exists a sign changing critical point wy of I,
such that w, € ./\/;1 and I, (wq) = 1.
(b) If B2 < a;, then there exists a sign changing critical point wy of I,, such
that wy € Ny and I,,(w2) = fa.

PROOF. (a) Let 1 < a;;. We prove the theorem in several steps.
Step 1. N} and N, are closed sets. To see this, let {u,} C N} be such
that u, — w in Xo. It is easy to note that |uy,|, |u| € Xo and |u,| — |u| in Xo.
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This in turn implies v} — u* in Xy and LY(RY) for v € [1,p?] (by the Sobolev
inequality). Since, u, € N, we have u,} € N, . Therefore

M 1
(2.35) ||ur—t”1}){0 — ugy ip; ) M|U:‘qu+1(Q) =0
and
(2.36) (p—1- q)||u:||§(O —(pt —q— Dt I;"p: @ < 0 forallmn>1.

Passing to the limit as n — oo, we obtain u* € N, and
(01— Dl %, — 0F —a— DIt o) <0

But, from Lemma 2.5, we know that NS = (). Therefore ut € N,, and hence
N1 is closed. Similarly it can be shown that N, is also closed. Hence Step 1
follows.

By the Ekeland Variational Principle there exists a sequence {u,} C N, il

such that
1
(2.37) I,(up) = p1 and I,(z) > I,(u,) — p |un — 2[lx, forall z€ N ;.

Step 2. {u,} is uniformly bounded in Xjy. To see this, we notice that u,, €

N, implies u,, € N, and this in turn implies (I}, (un), un) = 0, that is,

) »
lnlly = Tunlos ) + #lunlZei o)

Since I,,(u,) — B1, using the above equality in the expression of I,,(u,,), we get,
for n large enough

S 1 1 1 1
N ||Un||z))(0 <Bi+1+ ((H‘l B p*) M|Un|%—x~z_+1(g) < 0(1 + ”uan(—z )

As p > g+ 1, the above implies that {u,} is uniformly bounded in Xj.
We note that, for any u € X, we have

u(z) — u(y)P w(z) — ul(y)|?)P/?
(2.38) ||u||p0 /RZN (z) (v)| dxdy:/RQN (Ju(z) Y)°) dz dy

|z — y|N+ps |z — y|NHps

[ L) ) () - IR DR
R2N

|z — y|NFps

:/ <(u+(x) —ut () + (u” () —u”(y))?
RZN

|z —y|NHes

2ut (@)u~ (y) + 2ut (y)u~ ()"
* Izc—le“i ! )dxdy

> / (@) =t @) + (@)~ )™
R2N

|z —y|NHes
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wt (@) — ut(y))2)?
Z/RZN (( (x)_yNS—yp)b) ) dx dy

_ _ /2
(u™(x) —u(y)*)" -
+/RQN ( EETRE ) dedy = [Ju” |5, + u” |k,

By a simple calculation, it follows that
2
LPE(Q) LP Q)

+1 +1
|u|qu+1(Q) ‘“ |qu+1(9 +[u” |Lq+1(Q

Combining (2.38) and (2.39), we obtain

+ |u”

Ju ,
(2.39) )

(2.40) I,(u) > I,(ut)+ I,(u”) forall u € Xj.

Step 3. There exists b > 0 such that |Ju,, ||x, > b for all n > 1. Suppose this
is not true. Then, for each k > 1, there exists u,, such that

(2.41) 1t |10 < % for all k > 1.
Therefore, ||luy,, ||x, — 0 as k — oo and by the Sobolev inequality
U prz @) = 0, Jug, [zat1(@) = 0, as k — oo.
Consequently, I,,(u,, ) — 0 as k — oo. As a result, using (2.40) we have
Br = Ly(un,) +0(1) > I (uf )+ Lu(uy, ) +o(1) = I (u) ) +o(1) > &, 4 o(1).

This is a contradiction to the hypothesis. Hence Step 3 follows.
Step 4. I),(un) — 0 in (Xo)" as n — oo. Since u, € N, we have u} € N
Thus, by Lemma 2.6 applied to the element wu;", there exist

(2.42) Pn = p,+ and g, = o5
such that
(2.43) 9n(0) =1, (gn(w))(uf +w) € N, for all w € B,, (0).

Choose 0 < p,, < py such that p, — 0. Let v € X with ||v||x, = 1. Define
Up 1= — ﬁn[U+X{unzo} — V7 X{un<0})
7 = (gn(07)) (U — vp) =1 25, — 22,
where
1. + 5 .t 2
25, = (gn(vy,) (W +PnV " X(u,>01) and 25 = (gn(vy, ) (U +PnV” X{u,<0})-
Note that v;; = pnvXqu,>01- S0, v, Ix, < Pullvllx, < Pn. Hence, taking

w = v, in (2.43), we have z; = 2/1) € N, so z5, € N, ;. Hence,

1
I#(Z;n) > Iﬂ(un) “n l|tn — zﬁnHXo'
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This implies,
1
(2.44) ~llun = 7, X0 2Lu(un) = Lu(2,)
=(I,(un), upn = 25,) + o(1)llun — 25, | x,
=— (I, (un), 25,) + o(1)lun — 25,

as (IL(un),un> =0 for all n. Let w,, = p,v. Then

Xos

1
245) L u = 27l = (0L () 0+ 25,)
+ (I (un), wn) + o(1)|Jun — 27, [|x,-
Now, <I;L(un) Wp) = <IZL(Un)a,5nU> = ﬁn<IL(Un)av>' Define
Uy 1= U+X{un20} — U X{u,<0}-

So, 25, = gn(v;, ) (U — PrnTr). Hence we have

(2'46) <I;/4(un)7 Wn + zﬁn> = <I;/L(un)a Wn, + gn(U;)(U’n - ﬁn%))
= <I;I¢(un)7 P = gn(Vy, ) Pnn) = ﬁn<IL(Un)7 v = gn(vy, ) V).
Using (2.46) in (2.45), we have

(247) i — 23, 0 = T} ) v — g0 )
+ on (1 (un), ) + o(D)Jun — 25, || x, -
First we will estimate (I}, (uy),v — gn(v, )Un). For this,
0= gn (v, )0n =07 =07 — gn (V) [V X {un>0) — U Xqun<o0}]
= "[gn(0) = 9n (v )X{u,203] = ¥ [9n(0) = gn (v )X {u, <0y
= = v [(gn(0),v;) + o(D)|v, llx] + v [{9.(0), v,) + o(1)]v [|x, ]
= — v Pul(gn(0),v™) + o(D)[vF [lx] + v7 Pul{g7,(0), vF) + o(1)[[v" || x,]
= = Pn[(9n(0),v™) + o(1)[[v 7| x, Jv-
Therefore
(248) (L (un),v — gu(0; )T = — (g1 (0), ) + o(L) [0+ ) L (), ).

CLAIM. g¢,(v,;) is uniformly bounded in Xj.

To see this, we observe that from (2.43) we have, g, (v, )(u} +v,) € N, C
Ny, which implies

~ 1 ~ :
||Cn¢n||p N|Cn¢n|?q_+1 = [enthn ip* )

= O7
where ¢, := g (v, ) and wn :=u} + v, . Dividing by cp* we have,

_ — 1
(2.49) cn v ||¢n||§(o _/’['C’I(’ILJ’_l v Wn‘thH(Q W’n

LPE(
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Note that ||| X, is uniformly bounded above as |luy| x, is uniformly bounded
and i = o(1). Also, [dullx, = [[ufllxo — Fnllvllx,. Note that [luf]lx, > b for
large enough n. If not, |lu}|x, — 0 as n — co. As u, € N, so u}f € N .
Now, N, is a closed set and 0 ¢ N, and therefore [lu, [x, 7 0 as n — ooc.
Thus there exists b > 0 such that [|u; || x, > b > 0. This in turn implies that
1wl x, > C, for some C > 0, by choosing p,, small enough. Consequently, if
¢n is not uniformly bounded, we obtain that LHS of (2.49) converges to 0 as
n — oo.
On the other hand,

tnl ez ) 2 |u:[|L,,;(Q) = pnlolpes ) > ¢

for some positive constant ¢ as p, = o(1) and w,} € N, implies

(s =1 =Dl s ) > =1 =Dl 1%, > (0 —1— )b,
Hence, the claim follows.
Now using the fact that g, (0) = 1 and the above claim we obtain
lun = 27, [0 <llunllxo 1 = gn (v + Pnllvnllxogn (v7)
<lunl x6 [1(97.(0), v} + oD 0]l 0] + P[0l 0 9m (v7)
<Pnlllunllxo(95.(0),7n) + o(D)llv]lx, + 0]l x09n (v7)] < PnC.
Substituting this and (2.48) in (2.47) yields

pn((93,(0),v™) + (L)l [l x, (L}, (un), v) + (I}, (un), v} P + pno(1) < P - %

This implies
C
[((97.(0), v} + o(D)[[v7 [ xo) + 1T} (wn) v) < — +0(1)  for all n > no.

Since |{g,(0),v")| is uniformly bounded (see Lemma A.1 in Appendix), letting
n — oo we have I} (u,) — 0 in (Xo)". Hence Step 4 follows.

Therefore {u,} is a (PS) sequence of I, at level 1 < &, . From Lemma 2.12,
it follows that

&, < %SN/(PS) — MpPH P for e (0,70,

where

v PNV —ps)(g+1)p—1-q) ((p—1—a)(N —ps) (‘IH)/@:_(’_”M
p2(q+1) p2s :

Thus

~_ s e
B <a, < NSN/(PS) — Mppi/ima=D),
On the other hand, it follows from Lemma 2.11 that I, satisfies (PS) at level ¢
for

c< % SN/(ps) _ gt/ @i—a=1)
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this yields that there exists u € X such that u, — u in Xy. By doing a simple
calculation we get u;, — u~ in Xy. Consequently, by Step 3, ||[u”|x, > b. As
N, is a closed set and u, — u, we obtain u € N}, that is u* € N, and
ut # 0. Therefore u is a solution of (P,) with u* and u™ both nonzero. Hence,
u is a sign-changing solution of (P,). Define wq := u. This completes the proof
of part (a) of the theorem.

The proof of part (b) is similar to part (a) and we omit it. O

THEOREM 2.14. Let 81,82 > a,, where (1, B2, are defined as in (2.34)
and (2.5) respectively. Then, there exists ug > 0 such that for any p € (0, po),

(a) for p > (3+/5)/2, there exists ¢z := Np/(N —sp) — p/(p — 1) such
that when q > qo and N > sp(p?> —p+1), 1, has a sign changing critical
point,

(b) for2 <p < (3++5)/2, there evists g3 := N(p —1)/(N — sp)—(p—1)/p
such that when q¢ > g3 and N > sp(p+1), I, has a sign changing critical
point.

We need the following proposition to prove the above Theorem 2.14.

PROPOSITION 2.15. Assume 0 < p < min {pu., I, i1}, where [ is defined as
in (2.7) and p. > 0 is chosen so that & is achieved in (0, u.) and py is as
in Lemma 2.12. Then, for p > (3 +/5)/2, there exists qo :== Np/(N — sp) —
p/(p — 1) such that when q > qo and N > sp(p? —p+ 1) we have

sup [, (aw; —bue) < @, + 5 SN/ (ps)
a>0, beR N

for € > 0 sufficiently small, where wy is a positive solution of (P,) and u.
is as in (2.20). Furthermore, when 2 < p < (3+/5)/2, there ewists q3 =
N(p—1)/(N —sp) — (p—1)/p such that, when ¢ > q3 and N > sp(p+ 1), it
holds

sup [, (awy —bu.) < a, + il SN/ (ps)
a>0,beR N

for e > 0 sufficiently small.
To prove the above proposition, we need the following lemmas.

LEMMA 2.16. Let w1 and p be as in Proposition 2.15. Then

sup I,,(sw1) = @, .
s>0

PROOF. By the definition of &, we have a,, = inf [f(u) = I}f(w)) =
ueEN,

I,(w1). In the last equality we have used the fact that w; > 0. Define g(s) :=

I,(swy). From the proof of Lemma 2.3, it follows that there exist only two

critical points of g, namely ¢t*(w1) and ¢t~ (w;) and mg(})(g(s) = g(t*(wy)). On
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the other hand, (I’,(w1),v) = 0 for every v € Xy. Therefore ¢’(1) = 0 which
implies either t*(wy) =1 or t~(wy) = 1.
CrLAaM. t~ (wy) # 1.

To see this, we note that ¢t~ (w;) = 1 implies ¢t~ (wy)w; € N, asw; € N, .
Using Lemma 2.3, we know that ¢~ (wq)w; € N;. Thus N:‘ NN, # (), which is
a contradiction. Hence we have the claim.

Therefore t*(wy) = 1 and this completes the proof. O

LEMMA 2.17. Let u. be as in (2.20) and p be as in Proposition 2.15. Then,
for e > 0 sufficiently small, we have

S
sup 1, (tu:) = ~ SNI®9) - CeW =P/ (=1 _ fglu |TFL, .
teR

PROOF. Define ¢(t) = tp||u5\|§(o/p—tp: e ]ZSP? (Q)/P:- Thus I, (tu.) = ¢(t) —
utq+1|ua|%ﬁ1(m/(q+ 1). On the other hand, applying the analysis done in
Lemma 2.3 to u., we obtain that there exists

—pSs 25
(to)e = ( (p—1—q)uclk, >(N Pl )<t+
0)e — *
(p: -1- q)|us|isp§ (Q) )
such that
sup I, (tue) = sup I, (tu) = I, (tTu.)
teR >0
1
T (tH" 1 = (to) 2+ 1
= 0(t) = = el o) S Supo(t) — = T el o

Substituting the value of (¢g). and using the Sobolev inequality, we have

q+1 1 (N—ps)(g+1)/(p*s)
(to)d S M (p=l-ag ke
g+1 —qg+1\p;—q-—1
Consequently,
(2.50) sup I, (tuz) < sup p(t) — ksluc| 411 g
tER t>0

Using elementary analysis, it is easy to check that ¢7 attains its maximum at the
point tg = (||u5||§<0/\uE i*’p; (Q))l/(P.rp) and

s (el VYO
R e

Moreover, using (2.32) and (2.30), we can deduce as in (2.33) that
(2.51) d(to) < % GN/(s) | e(N=ps)/(p=1)

Substituting back (2.51) into (2.50), completes the proof. O
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PRrROOF OF PROPOSITION 2.15. Note that, for fixed a and b,
Iu(n(awl — bug’(;)) — —oo as |n| = oo.
Therefore sup I, (aw; — bu, 5) exists and supremum will be attained in a® +

a>0,beR
b> < R?) for some large R > 0. Thus it is enough to estimate I,(aw; — buc s)

in {(a,b) € R* x R : a% +b> < R?}. Using elementary inequality, there exists
d(m) > 0 such that

(2.52) |a+b|™ > |a|™+|b|™ —d(|a|™ " |b| +|a|[b|™") for all @, b€ R, m > 1.

Define, f(v) := [[v]lk,. Then using Taylor’s theorem

flawy = bues) = flaws) — (f'(aw1), bue) + o([[bucs%,) < llaws %,

s (@) — s ()P~ (s (1) — a3 () (b (w) = b ()
.. o — ol

+ c||bue s

2
Xoo
where ¢ > 0 is small enough. We also note that from the definition of u. s, it

follows that |lues|x, is bounded away from 0. Therefore, since p > 2 we have
cllbue 5115, < llbuesl%,, for ¢ > 0 small enough. Hence

lawr — bue 5%, = llaw |,

Jaws () — awn ()"~ (awn (2) — awn () (buz 5 () — bu 5(3))
.. [ =y V5

dx dy

+ [[bue sl%, -

Consequently, a® + b%> < R? implies
1 p
I (awy —bu.s) < }; ||C”«UI||X0

_ / law; (z) — aw: (y) [P~ (aw: (z) — aw (y)) (bue 5(x) — buc5(y))
R2N |z — y|Ntps

1 1 x 1
+ = ||bue 5|5 ——/ law, pscla:——/ buc s
p| S0 Xopr g | Ds Q‘ :
M q+1 H / +1
- — aw de — —— bug |97 dx
q+1/9| 1 a1 J e
+c</ law, p3_1|bu675\d:r+/ |laws | |bue. 5 pi—ldx>
Q Q

+C’</ |aw1|q|bu575|dx+/ |aw1|bu57(g|qdaz)
Q Q

=1, (awy) + I, (bu. 5) — aqbu/ |w1|q_1w1u5,5 dx
Q

dzx dy

.
Ps dx

—ap:b/ \w1|p:_2w1u575d$
Q
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Q Q
+C</ |w1|q|us,5|dx+/ w1||u8,5|qu>.
Q Q

Using Lemmas 2.8, 2.16 and 2.17 we estimate in a? + b < R?,

_ s s Cps) /(p—
Iu(aun _ bu&é) <a, + ¥ géV/(p ) k8|u€|iﬂl(9) + C(s(N ps)/(p—1)

+ NP9 /(p(p — 1)) 4+ NP ap(p — 1) + g(N(pfl)er)/(p(pfl)))_
For the term k;g|u5|qL'f;i1(Q)7 we invoke Lemma 2.9. Therefore when

N(p—2)+ps
2 P eg<p—1,
N ps q<p

we have

(2.53) al,(aw; —buegs) <a, + % SN/®3) _ g N=(N=p)(a+1)/p

+C(€(N—p8)/(p—1) 4 eWN=ps)/(p(p=1)) | (N=ps)q/(p(p—1)) _|_5(N(p—1)+p8)/(p(p—1))) )

We will choose ¢ in such a way that the term kge™¥—(V=P%)(@+1)/P dominates the
other term involving e. Note that among the terms in the bracket, ¢(N=7%)/(»(r—1))
and e(N=p5)a/(p(P=1)) dominate the others.

This in turn implies that we have to choose ¢ so that

(N —ps)(g+1) < N-ps
p p(p—1)

(2.54) N -

and

(N —=ps)(g+1) (N —ps)q
p plp—1) "

(2.55) N -

(2.54) and (2.55) imply ¢ > g2 and ¢ > g3 respectively, where

Np p Np-1) p-1
2.56 = - — d = — .
(2.56) R e Bl s "

Case 1. p > 3 ++/5/2. In this case by straightforward calculation it follows
that g2 > ¢g3. So in this case, we choose ¢ > ¢2. Moreover, since ¢ < p — 1, to
make the interval (go,p — 1) # (), we have to take N > sp(p®> — p + 1).

Case 2. 2<p<3+ V5 /2. In this case again by simple calculation it follows
that g3 > ¢2. Thus, in this case, we choose ¢ > ¢g3. Furthermore, as ¢ < p — 1,
to make the interval (g3,p — 1) # (), we have to take N > sp(p + 1).

Hence in both the cases taking € > 0 to be small enough in (2.53), we obtain

sup Ip(@’wl — bu&é) < a; + S Sév/(ps). O
a>0,beER N
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PROOF OF THEOREM 2.14. Define p := min {fz, i, },

(2.57) N =N NN,
(2.58) co = inf I,(u).
ueN,”

Let u € (0,up). Using the Ekeland Variational Principle and similarly to the
proof of Theorem 2.13, we obtain a sequence {u,} € N, satisfying

I,(un) — c2, IL(un) -0 in (Xg)"

Thus {u,} is a (PS) sequence at level ca. From Lemma 2.18, given below, it
follows that there exist @ > 0 and b € R such that aw; — bu. € N, . Therefore
Proposition 2.15 yields

_ . s ,
(2.59) ca < a, + N GN/(ps)

CrAM 1. There exist two positive constants ¢ and C such that 0 < ¢ <
lur llx, < C-

To see this, we note that {u,} C N7 C N ;. Thus using (2.38), Steps 2
and 3 of the proof of Theorem 2.13, we have |ul|x, < C and |u; |x, > c.
To show |ju;f||x, > a for some a > 0, we use the method of contradiction.
Assume, up to a subsequence, |lu}|x, — 0 as n — oo. This together with
Sobolev embedding implies [u;}|;rz () — 0. On the other hand, w} € N
implies

P
LP5 () <0.

(P =1 =i, — (=g —Dluy
Therefore, by the Sobolev inequality, we have

st 1%, pfifq*1| piop
= Jun i P14 "ILPE (@)

which is a contradiction to the fact that ||, »» (@) — 0. Hence the claim follows.
Going to a subsequence if necessary we have

(2.60) ul —mn, u, —=n in Xo.

CLAM 2. m1 £ 0, 2 Z0.

Suppose not, that is n; = 0. Then by compact embedding, v, — 0 in
LI+1(Q). Moreover, u;t € N7 C Ny, implies (I/,(u;}),u;}) = 0. Consequently,

. +1
Iy — 25 g = sl 342, g = o).
So we have |u izp* @ = [ 1%, + o(1). This together with [w} || x, > ¢ implies
it |2
_ LR () >1+o0(1).

st 1%,
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This along with Sobolev embedding gives |u;"

p: N/(ps) .
V% () > §V/Ps) 4 o(1). Thus we
have

1 1
(261)  Iu(u)) = » e 1%, = = lusy

P 4o(l)> % SN/(P9) 4 o(1).

n nlpps (Q)

Moreover, u, € N implies —u,, € N .. - Therefore using the given condition on
Ba, we get

(2.62) I(~uy) > B2 > @,
Also it follows that
L) + Lu(—u7) < Lulun) = 2 + o(1)
(see (2.40)). Combining this along with (2.62) and (2.59), we obtain
— s s
I(uf) <o — a, +o(l) < NSév/(p‘),

which is a contradiction to (2.61). Therefore 7; # 0. Similarly 72 # 0 and this
proves the claim.

Set wo =11 — 2.
CLAIM 3. wy =n; and w, = 7y almost everywhere.

To see the claim we observe that 7172 = 0 almost everywhere in 2. Indeed,

(2.63) ‘/Uﬂ)zdl?
Q

—]/w:—m)un ot [ s —m) o
Q Q

<lug = mle@)lug [ @) + 1Ml ) lun = 2l (),

where 1/p + 1/p’ = 1. By compact embedding we have ;) — n; and u,, — no
in LP(Q). As p > 2N /(N + s), then p’ < p%. Therefore, using Claim 1, we pass
to the limit in (2.63) and obtain

/ mnzdx = 0.
Q

Moreover, by (2.60), n1,m2 > 0 almost everywhere. Hence 17y = 0 almost
everywhere in . We have wy — w, = wy = 11 — n2. It is easy to check that
wy < m and w, < 1. To show that equality holds almost everywhere we apply
the method of contradiction. Suppose, there exists E C €2 such that |E| > 0 and
0 < wy(z) < m(x) for all # € E. Therefore 1, = 0 almost everywhere in E by

the observation that we made. Hence wy (z) —w, () = 11 (x) almost everywhere
in B. Clearly w; (z) # 0 almost everywhere, otherwise wy (z) = 0 almost
everywhere and that would imply m(z) = —w, (z) < 0 almost everywhere,

which is not possible since 7; > 0 in E. Thus w; (z) = 0. Hence n;(z) = wi (z)
almost everywhere in E, which is a contradiction. Hence the claim follows.
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Therefore ws is sign changing in 2 and w,, — w9 in Xy. Moreover, IZL(un) —0
in (Xg)" implies

[ i) a2 nle) -t 4DO) =80 gy,
R2N

|z — y|NFps

—/L/ |un|q_1un¢d;v—/ [t
Q Q

for every ¢ € Xy. Passing to the limit using Vitali’s convergence theorem via

Pi=2u, ¢ de = o(1)

Holder’s inequality we obtain (I}, (wz), $) = 0. Hence wy is a sign changing weak
solution to (P,). O

LEMMA 2.18. Let u. s be defined as in (2.20) and wy be a positive solution
of (Py) for which a; is achieved, when p € (0, ). Then there exist a,b € R,
a > 0 such that awy — bu. € N, where N is defined as in (2.57).

This lemma can be proved in the spirit of [5, Lemma 4.8], for the convenience
of the reader we sketch the proof in Appendix.

PROOF OF THEOREM 1.2. Define p* = min { ., [t, fi1, to, f41 }, where fi, is
chosen such that o is achieved in (0, ). [, i1, o and py are as in (2.7),
Lemma 2.12, Theorem 2.14 and Lemma A.1, respectively. Furthermore, define
qo and Ny as follows:

3445

max {q1,q2} when p > 5

qo ‘=
3 5
max {q1,q3} when 2 <p< +2\f,

3+5
sp(p* —p+1) when p> 2\[,
Ny :=

sp(p+1) Whe112§p<3+

Note that Ny > sp[p+ 1+ +/(p+ 1)? — 4]/2, where the RHS appeared in The-
orem 2.13. Hence combining Theorems 2.13 and 2.14, we complete the proof of
this theorem for pu € (0, u*), ¢ > qo and N > Nj. O

Appendix A

LEMMA A.1. Let g, be as in (2.42) in Theorem 2.13 and v € X be such that
lvllx, = 1. Then there exists 1 > 0 such that p € (0, 1) implies (g, (0),v") is
uniformly bounded in Xg.

ProOOF. In view of Lemma 2.6 we have
pA(up,vT) —pz/ |t |75 "Punvt — (¢ + 1)u/ |t |1 0
Q Q

(p—1- Q)||Un||§<0 —(pr —q—Dlun ]Zspz )
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Using Claim 2 in Theorem 2.13, there exists C' > 0 such that ||u,||x, < C for
all n > 1. Therefore, applying the Holder inequality followed by the Sobolev
inequality, we have

C|lv| x,
[{gr,(0),v7)| < vl x

(0 =1=q)unl’, — (Pt —q—1)

L” (Q)‘
Hence it is enough to show that
(01~ @)llunlly, ~ @5~ DlunlZh o | > C,

for some C > 0 and n large enough. Suppose it does not hold. Then, up to a
subsequence,

(0= 1= Dlunl, = @5 =g = Dlunl7,; o =o0(1) asn — oo.

Hence,

*

—q-1
(A1) g%, = =2 +o(l) asn — oo.

N
— |up| 5.
p—1—g¢q | n|LPS(Q)
Combining the above expression along with the fact that u, € N, we obtain

Py =D : pi—p
= pjl—q |un, ip;(g) +o(1) = ﬁ ||
S

(A2) n |un|Lq+1(Q) g(o +o(1).

After applying the Holder inequality and followed by the Sobolev inequality,
expression (A.2) yields

* o1 . . 1/(p—1-q)
(A3) lunllx, < (0PI pyoimebirss-tasav) +o(l).

Combining (2.38) and Claim 3 in the proof of Theorem 2.13, we have ||u, |/ x, > b,

for some b > 0. Therefore from (A.1) we get

Py
(A4) |u” |Lpf§ (Q)
Define v,,: N, — R as follows:

H ||p(p5—1) 1/(ps—p)
1
Yu(u) = ko (1,1)> - M|U|qLJg+1

LPs (Q)

. <p_1_q>(ps—1)/(ps—p)< pi—p )
o=\ 7 P
pi—q—1 p—1—gq

Simplifying ), (u,) using (A.2), we obtain

> C' for some constant C' > 0, and n large enough.

where

pi(p—1)
LP5(Q)

Py —p
— = |u,
p—1—gq

1 —1piq1/(pi—p)
p*_q_l Ps |Un| ok (Q)
A. = 2
(A5) ulun) ko[(p_l_q)

‘un
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On the other hand, using the Holder inequality in the definition of 1, (u,), we
obtain

H ||p(p571) 1/(ps—»)
n 1
(A6) tpu(un) = kO( pi(p—1) ) - N|Un‘%t+1(m

| n|LP (Q)

I Hp(pj,—l) 1/(pi—p)
n * * 1
>k0< [ -1 ) R u"|th3(fz>
"Lrs (Q)
—1)\ Y(i-p)
SRR o 01 ol L -
T MUnlpps ) 0 “(p—1) u |q+1 H :
[ s ) 2 (0)

Using Sobolev embedding and (A.3), we simplify the term

_ 1 r—
|| n”p pa—1) /(ps—p) 1
|un L (*p ) |un|q+*1

PI(Q) LPs (Q)
and obtain
| Hp(p;l 1/(ps—p) 1
(A7) <p(p1)> S N p)|un|Lp L@
|un LSp:(Q) ‘un|Lp (Q)

> 5(p§—1)/(p2—p)+q/p||un||)—(q
- 0

X X —a/(p—1-q)
> §Pi—1)/(ps—p)+a/p (N |Q|(p —a- 1)psS—(q+1)/p) .

P —p
Substituting back (A.7) into (A.6) and using (A.4), we obtain

(1) > €71 [k’o SV =) +a/ (p=1-0) =0/ (p=1-0)

o —q/(p—1—q) N i
. <Spp |Q‘ py—a— 1)/175) M|Q(psq1)/ps} > dp,

for some dy > 0, n large and p < pq, where pu; = pq(ko, s, q, N,|Q]). This is
a contradiction to (A.5). Hence the lemma follows. O

PrOOF OF LEMMA 2.18. We will show that there exist a > 0, b € R such
that
a(wy —buc)¥ € N7 and  —a(w; —bu)” € N, .
Let us denote 71 = in?2 wy(x)/ue(x), To = supwi(x)/uc(x). As both wy and
TE

e
u. are positive in 2, we have 71 > 0 and T2 can be +o00. Let r € (71,T2).

Then wy,u. € Xg implies (w; — ru:) € X and (w; — ru.)t # 0. Otherwise,
(w1 —rus)t = 0 would imply 7o < 7, which is not possible. Define v, := wy —rue.
Hence 0 # v € Xy (since for any u € Xy, we have |u| € Xp). Similarly
0 # v, € Xo. Therefore, by Lemma 2.3, there exist 0 < s*(r) < s~ (r) such
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that s*(r)v; € N, and —s~(r)(v;) € N, . Let us consider the functions
sT: R — (0,00) defined as above.

CraM. The functions r +— s*(r) are continuous and

lim s*(r) =t (vf) and lim s (r) = +oo,

—t T __
r—T] T—T,

where the function ¢t is the same as defined in Lemma 2.3.

To see the claim, choose ry € (T1,72) and {r,},>1 C (T1,72) such that
rn — 1T as n — oo. We need to show that s™(r,) — st(rg) as n — oo.
Corresponding to 7, and ro, we have v;7 = (wy —rpu:) and v} = (wy —rous)™
By Lemma 2.3 we note that s™(r) = ¢t (v,"). Let us define the function

F(s,r) =179 (w; — Tue)ﬂ‘g(o
*7 _ * 1
— P (wy — rug) T isp,: @ = pl (w1 — T“E)ﬂqLJg“(Q)

= ¢(57 T) - /1,|(’LU1 - Tu€)+|(fg-¢1—1(g),
where ¢(s,7) := "1 (wy — ruc) TR, — sP5 70 (wy — ru€)+|’§p§ @’

Doing a similar calculation as in Lemma 2.3, we obtain that for any fixed r,
the function F(s,r) has only two zeros s = t(v;) and s = ¢t~ (v;7). Conse-
quently, s*(r) is the largest 0 of F(s,r) for any fixed r. As r, — ry we have
v:,rn — vqu in Xy. Indeed, by a straightforward computation it follows that
vp, — Up, in Xg. Therefore |v,. | = |vy| in Xg. This in turn implies that
vf = vt in Xo. Hence |[v} ||x, — [l ]lx,. Moreover, by the Sobolev in-
equality, we have [v;f |, ,x @ ~ o | Loz () and [o)f |Lari) = |0 |Lati(q). As
a result, we have F(s,r,) — F(s,rg) uniformly. Therefore an elementary analy-
sis yields s™(ry,) — st (ro).

Moreover, 7o > w/u. implies w1 — Tou. < 0. As a consequence r — Ty
implies (w; — ruz)t — 0 pointwise. Moreover, since |(w1 — rue)T|pe() <
|w1| Lo (), using the dominated convergence theorem we have |(wy —rug) ¥,z )
— 0. From the analysis in Lemma 2.3, for any r, we also have sT(r) > to(v;"),
where the function ¢y is defined as in Lemma 2.3, which is the maximum point

of ¢(-,r). Therefore it is enough to show that lim to(v;") = co. Applying the
Ty
Sobolev inequality in the definition of to(v,") we get

to(vi) = < (r—1-9)lvflk, )1/@:p)><5(p_1_q)>1/(p2p)
o(v) = - > (22— 2
O R pi—1—gq

Hence lim t#o(v}) = occ.
=T,
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Proceeding similarly, we can show that if » — 7 then v/ — vz and

lim s*(r) =t* (v ), and
r%?f !

lim s~ (r) = +oo, lim s~ (r) =t"(v,) < +oo.

+ —
T—)T‘l T‘—)T2

The continuity of s* implies that there exists b € (71,72) such that s (r) =
s~ (r) = a > 0. Therefore, a(w; — buc)* € N and —a(w; —bu.)~ € N, that
is, the function a(w; — bu.) € N and this completes the proof. O
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