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SIGN CHANGING SOLUTIONS

OF p-FRACTIONAL EQUATIONS

WITH CONCAVE-CONVEX NONLINEARITIES

Mousomi Bhakta — Debangana Mukherjee

Abstract. We study the existence of sign changing solutions to the fol-

lowing p-fractional problem with concave-critical nonlinearities:

(−∆)spu = µ|u|q−1u+ |u|p
∗
s−2u in Ω,

u = 0 in RN \ Ω,

where s ∈ (0, 1) and p ≥ 2 are fixed parameters, 0 < q < p − 1, µ ∈ R+

and p∗s = Np/(N − ps). Ω is an open, bounded domain in RN with smooth

boundary, N > ps.

1. Introduction

Let us consider the following fractional p-Laplace equation with concave-

critical nonlinearities:

(Pµ)

(−∆)spu = µ|u|q−1u+ |u|p∗s−2u in Ω,

u = 0 in RN \ Ω,

where s ∈ (0, 1), p > 1 are fixed, N > ps, Ω is an open, bounded domain in RN

with smooth boundary, 0 < q < p − 1, p∗s = Np/(N − ps) and µ ∈ R+. The
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non-local operator (−∆)sp is defined as follows:

(1.1) (−∆)spu(x) = 2 lim
ε→0

∫
RN\Bε(x)

|u(y)− u(x)|p−2(u(y)− u(x))

|x− y|N+ps
dy,

for x ∈ RN . For p ≥ 1, we denote the usual fractional Sobolev space by W s,p(Ω)

endowed with the norm

‖u‖W s,p(Ω) := ‖u‖Lp(Ω) +

(∫
Ω×Ω

|u(x)− u(y)|p

|x− y|N+sp
dx dy

)1/p

.

We set Q := R2N \ (Ωc × Ωc) with Ωc = RN \ Ω and define

X :=

{
u : RN → R measurable : u|Ω ∈ Lp(Ω)

and

∫
Q

|u(x)− u(y)|p

|x− y|N+sp
dx dy <∞

}
.

The space X is endowed with the norm defined as

‖u‖X = ‖u‖Lp(Ω) +

(∫
Q

|u(x)− u(y)|p

|x− y|N+sp
dx dy

)1/p

.

Then, we define X0 := {u ∈ X : u = 0 almost everywhere in RN \ Ω} or equiv-

alently, as C∞c (Ω)X and for any p > 1, X0 is a uniformly convex Banach space

(see [16]) endowed with the norm

‖u‖X0
=

(∫
Q

|u(x)− u(y)|p

|x− y|N+sp
dx dy

)1/p

.

Since u = 0 in RN \ Ω, the above integral can be extended to all of RN . The

embedding X0 ↪→ Lr(Ω) is continuous for any r ∈ [1, p∗s] and compact for r ∈
[1, p∗s). For further details on X0 and its properties we refer to [14].

Definition 1.1. We say that u ∈ X0 is a weak solution of (Pµ) if∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+ps
dx dy

= µ

∫
Ω

|u(x)|q−1u(x)φ(x) dx+

∫
Ω

|u(x)|p
∗
s−2u(x)φ(x) dx,

for all φ ∈ X0.

The Euler–Lagrange energy functional associated to (Pµ) is

Iµ(u) =
1

p

∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy(1.2)

− µ

q + 1

∫
Ω

|u|q+1 dx− 1

p∗s

∫
Ω

|u|p
∗
s dx

=
1

p
‖u‖pX0

− µ

q + 1
|u|q+1

Lq+1(Ω) −
1

p∗s
|u|p

∗
s

Lp
∗
s (Ω)

.
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We define the best fractional critical Sobolev constant S as

(1.3) S := inf
v∈W s,p(RN )\{0}

∫
R2N

|v(x)− v(y)|p

|x− y|N+ps
dx dy(∫

RN
|v(x)|p

∗
s dx

)p/p∗s ,

which is positive by fractional Sobolev inequality. Since the embedding X0 ↪→
Lp
∗
s is not compact, Iµ does not satisfy the Palais–Smale condition globally, but

that holds true when the energy level falls inside a suitable range related to S.

As it was mentioned in [13], the main difficulty in dealing with critical fractional

case with p 6= 2, is the lack of an explicit formula for minimizers of S which is

very often a key tool to handle the estimates leading to the compactness range

of Iµ. This difficulty has been tactfully overcome in [13] and [20] by the optimal

asymptotic behavior of minimizers, which was recently obtained in [9]. Using the

same optimal asymptotic behavior of minimizer of S, we will establish suitable

compactness range.

Thanks to the continuous Sobolev embedding X0 ↪→ Lp
∗
s (RN ), Iµ is a well-

defined C1 functional on X0. It is well known that there exists a one-to-one

correspondence between the weak solutions of (Pµ) and the critical points of Iµ
on X0.

A classical topic in nonlinear analysis is the study of existence and multiplic-

ity of solutions for nonlinear equations. In past few years there has been consid-

erable interest in studying the following general fractional p-Laplacian problem:

(−∆)spu = f(u) in Ω,

u = 0 in RN \ Ω.

In [19], the eigenvalue problem associated with (−∆)sp has been studied. Some

results about the existence of solutions have been considered in [17]–[19], see also

the references therein.

On the other hand, the fractional problems for p = 2 have been investigated

by many researchers, see for example [22] for the subcritical case, [3], [5], [23]

for the critical case. In [6] the authors studied the nonlocal equation involv-

ing a concave-convex nonlinearity in the subcritical case. In [12] the existence

of multiple positive solutions to (Pµ) for both the subcritical and critical case

were obtained. Existence of infinitely many nontrivial solutions to (Pµ) in both

subcritical and critical cases and existence of at least one sign-changing solution

have been established in [5]. In the local case s = 1 equations with concave-

convex nonlinearities were studied by many authors, to mention few, see [2], [1],

[4], [10]. When s = 1 and p = 2, existence of sign changing solutions was studied

in [11].
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In [16], Goyal and Sreenadh studied the existence and multiplicity of non-

negative solutions of p-fractional equations with subcritical concave-convex non-

linearities. In [13], Chen and Squassina have studied the concave-critical system

of equations with the p-fractional Laplace operator. More precisely, they studied:
(−∆)spu = λ|u|q−1u+

2α

α+ β
|u|α−2u|v|β in Ω,

(−∆)spv = λ|v|q−1u+
2β

α+ β
|v|β−2v|u|α in Ω,

u = v = 0 in RN \ Ω,

where α + β = p∗s, 0 < q < p − 1, α, β > 1, λ, µ are two positive parameters.

When (N(p− 2) + ps)/(N − ps) ≤ q < p − 1 and N > p2s, they have proved

that there exists λ∗ > 0 such that for 0 < λp/(p−q) + µp/(p−q) < λ∗, the above

system of equations admits at least two nontrivial solutions.

Note that, if we set λ = µ, α = β = p∗s/2 and u = v then the above system

reduces to (Pµ). Therefore, it follows that when (N(p− 2) + ps)/(N − ps) ≤ q <
p−1 and N > p2s, problem (Pµ) admits two nontrivial solutions for µ ∈ (0, µ∗),

for some µ∗ > 0. It can be shown that the nontrivial solutions obtained in [13]

are actually positive solutions of (Pµ) (see Remark 2.2 in Section 2).

The main result of this article is the following:

Theorem 1.2. Let Ω be a bounded domain with smooth boundary in RN .

Let s ∈ (0, 1), p ≥ 2. Then there exist µ∗ > 0, N0 ∈ N and q0 ∈ (0, p − 1) such

that for all µ ∈ (0, µ∗), N > N0 and q ∈ (q0, p − 1), problem (Pµ) has at least

one sign changing solution, where N0 is given by the following relation:

N0 :=


sp(p+ 1) when 2 ≤ p < 3 +

√
5

2
,

sp(p2 − p+ 1) when p ≥ 3 +
√

5

2
.

Notations. Throughout this paper C denotes the generic constant which

may vary from line to line. For a Banach space X, we denote by X ′, the dual

space of X. |u|Lp(Ω) denotes ‖u‖Lp(Ω).

2. Existence of sign-changing solutions

Define the Nehari manifold Nµ by

Nµ := {u ∈ X0 \ {0} : 〈I ′µ(u), u〉X0 = 0}.

The Nehari manifold Nµ is closely linked to the behavior of the fibering map

ϕu : (0,∞)→ R defined by

ϕu(r) := Iµ(ru) =
rp

p
‖u‖pX0

− µrq+1

q + 1
|u|q+1

Lq+1(Ω) −
rp
∗
s

p∗s
|u|p

∗
s

Lp
∗
s (Ω)

,

which was first introduced by Drábek and Pohozaev in [15].
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Lemma 2.1. For any u ∈ X0\{0}, we have ru ∈ Nµ if and only if ϕ′u(r) = 0.

Proof. We note that for r > 0, ϕ′u(r) = 〈I ′µ(ru), u〉X0
= 1

r 〈I
′
µ(ru), ru〉X0

.

Hence, ϕ′u(r) = 0 if and only if ru ∈ Nµ. �

Therefore, we can conclude that the elements in Nµ correspond to the sta-

tionary points of the map ϕu. Observe that

ϕ′u(r) = rp−1‖u‖pX0
− µrq|u|q+1

Lq+1(Ω) − r
p∗s−1|u|p

∗
s

Lp
∗
s (Ω)

,(2.1)

ϕ′′u(r) = (p− 1)rp−2‖u‖pX0
− qµrq−1|u|q+1

Lq+1(Ω) − (p∗s − 1)rp
∗
s−2|u|p

∗
s

Lp
∗
s (Ω)

.(2.2)

By Lemma 2.1, we note that u ∈ Nµ if and only if ϕ′u(1) = 0. Hence for u ∈ Nµ,

using (2.1) and (2.2), we obtain that

ϕ′′u(1) = (p− 1)‖u‖pX0
− qµ|u|q+1

Lq+1(Ω) − (p∗s − 1)|u|p
∗
s

Lp
∗
s (Ω)

(2.3)

= (p− p∗s)|u|
p∗s
Lp
∗
s (Ω)

+ (1− q)µ|u|q+1
Lq+1(Ω)

= (p− 1− q)‖u‖pX0
− (p∗s − 1− q)|u|p

∗
s

Lp
∗
s (Ω)

= (p− p∗s)‖u‖
p
X0

+ (p∗s − 1− q)µ|u|q+1
Lq+1(Ω).

Therefore, we split the manifold into three parts corresponding to local minima,

maxima and points of inflection

N+
µ := {u ∈ Nµ : ϕ′′u(1) > 0}, N−µ := {u ∈ Nµ : ϕ′′u(1) < 0},

N0
µ := {u ∈ Nµ : ϕ′′u(1) = 0}.

Remark 2.2. From [13], it follows that inf
u∈N+

µ

Iµ(u) and inf
u∈N−µ

Iµ(u) are achie-

ved and those two infimum points are two critical points of Iµ. Now, if we define

I+
µ as follows:

(2.4) I+
µ (u) :=

1

p
‖u‖pX0

− µ

q + 1
|u+|q+1

Lq+1(Ω) −
1

p∗s
|u+|p

∗
s

Lp
∗
s (Ω)

and

(2.5) α̃+
µ := inf

u∈N+
µ

I+
µ (u) and α̃−µ := inf

u∈N−µ
I+
µ (u),

then repeating the same analysis as in [13] for I+
µ , it can be shown that there

exists µ∗ > 0 such that for µ ∈ (0, µ∗), there exist two non-trivial critical points

w0 ∈ N+
µ and w1 ∈ N−µ of I+

µ . It is not difficult to see that w0 and w1 are
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nonnegative in RN . Indeed,

0 = 〈(I+
µ )′(w0), w−0 〉(2.6)

=

∫
R2N

|w0(x)− w0(y)|p−2(w0(x)− w0(y))(w−0 (x)− w−0 (y))

|x− y|N+sp
dx dy

=

∫
R2N

|w0(x)− w0(y)|p−2((w−0 (x)− w−0 (y))2 + 2(w−0 (x)w+
0 (y)))

|x− y|N+sp
dx dy

≥
∫
R2N

|w−0 (x)− w−0 (y)|p

|x− y|N+sp
dx dy = ‖w−0 ‖

p
X0
.

Thus, ‖w−0 ‖X0
= 0 and hence, w0 = w+

0 . Similarly we can show that w1 = w+
1 .

Using the maximum principle [7, Theorem A.1], we conclude that both w0, w1 are

positive almost everywhere in Ω. Hence (Pµ) has at least two positive solutions.

Set

(2.7) µ̃ =

(
p− 1− q
p∗s − q − 1

)(p−1−q)/(p∗s−p)

· p∗s − p
p∗s − q − 1

|Ω|(q+1−p∗s)/(p∗p)SN(p−1−q)/p2s+(q+1)/p.

Next we prove three elementary lemmas.

Lemma 2.3. Let µ ∈ (0, µ̃). For every u ∈ X0, u 6= 0, there exists unique

t−(u) < t0(u) =

(
(p− 1− q)‖u‖pX0

(p∗s − 1− q)|u|p
∗
s

Lp
∗
s (Ω)

)(N−ps)/p2s

< t+(u),

such that

t−(u)u ∈ N+
µ and Iµ(t−u) = min

t∈[0,t0]
Iµ(tu),

t+(u)u ∈ N−µ and Iµ(t+u) = max
t≥t0

Iµ(tu).

Proof. For t ≥ 0,

Iµ(tu) =
tp

p
‖u‖pX0

− µtq+1

q + 1
|u|q+1

Lq+1(Ω) −
tp
∗
s

p∗s
|u|p

∗
s

Lp
∗
s (Ω)

.

Therefore

∂

∂t
Iµ(tu) = tq

(
tp−1−q‖u‖pX0

− tp
∗
s−q−1|u|p

∗
s

Lp
∗
s (Ω)
− µ|u|q+1

Lq+1(Ω)

)
.

Define

(2.8) ψ(t) = tp−1−q‖u‖pX0
− tp

∗
s−q−1|u|p

∗
s

Lp
∗
s (Ω)

.
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By a straight forward computation, it follows that ψ attains maximum at the

point

(2.9) t0 = t0(u) =

(
(p− 1− q)‖u‖pX0

(p∗s − 1− q)|u|p
∗
s

Lp
∗
s (Ω)

)1/(p∗s−p)

.

Thus

(2.10) ψ′(t0) = 0, ψ′(t) > 0 if t < t0, ψ′(t) < 0 if t > t0.

Moreover,

ψ(t0) =

(
p− 1− q
p∗s − 1− q

)(p−1−q)/(p∗s−p)( p∗s − p
p∗s − 1− q

)(‖u‖p(p∗s−1−q)
X0

|u|p
∗
s(p−1−q)
Lp
∗
s (Ω)

)(N−ps)/p2s

.

Therefore, using Sobolev embedding, we have

(2.11) ψ(t0) ≥
(
p− 1− q
p∗s − 1− q

)(p−1−q)(N−2s)/(4s)

·
(

p∗s − p
p∗s − 1− q

)
SN(p−1−q)/p2s‖u‖q+1

X0
.

Using the Hölder inequality followed by the Sobolev inequality, and the fact that

µ in (0, µ̃), we obtain

µ

∫
Ω

|u|q+1dx ≤ µ‖u‖q+1
X0

S−(q+1)/p|Ω|(p
∗
s−q−1)/p∗s

≤ µ̃‖u‖q+1
X0

S−(q+1)/p|Ω|(p
∗
s−q−1)/p∗s ≤ ψ(t0),

where in the last inequality we have used expression of µ̃ (see (2.7)) and (2.11).

Hence, there exists t+(u) > t0 > t−(u) such that

(2.12) ψ(t+) = µ

∫
Ω

|u|q+1 = ψ(t−) and ψ′(t+) < 0 < ψ′(t−).

This in turn, implies t+u ∈ N−µ and t−u ∈ N+
µ . Moreover, using (2.10) and

(2.12) in the expression of ∂Iµ(tu)/∂t, we have

∂

∂t
Iµ(tu) > 0 when t ∈ (t−, t+),

∂

∂t
Iµ(tu) < 0 when t ∈ [0, t−) ∪ (t+,∞),

∂

∂t
Iµ(tu) = 0 when t = t±.

We note that Iµ(tu) = 0 at t = 0 and strictly negative when t > 0 is small

enough. Therefore it is easy to conclude that

max
t≥t0

Iµ(tu) = Iµ(t+u) and min
t∈[0,t0]

Jµ(tu) = Iµ(t−u). �
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Repeating the same argument as in Lemma 2.3, we can also prove that the

following lemma holds:

Lemma 2.4. Let µ ∈ (0, µ̃), where µ̃ is defined as in (2.7). For every u ∈ X0,

u 6= 0, there exists unique

t̃−(u) < t̃0(u) =

(
(p− 1− q)‖u‖pX0

(p∗s − 1− q)|u+|p
∗
s

Lp
∗
s (Ω)

)(N−ps)/p2s

< t̃+(u)

such that

t̃−(u)u ∈ N+
µ and I+

µ (t̃−u) = min
t∈[0,t0]

I+
µ (tu),

t̃+(u)u ∈ N−µ and I+
µ (t̃+u) = max

t≥t0
I+
µ (tu),

where I+
µ is defined as in (2.4).

Lemma 2.5. Let µ̃ be defined as in (2.7). Then µ ∈ (0, µ̃), implies N0
µ = ∅.

Proof. Suppose not. Then there exists w ∈ N0
µ such that w 6= 0 and

(p− 1− q)‖w‖pX0
− (p∗s − q − 1)|w+|p

∗
s

Lp
∗
s (Ω)

= 0.(2.13)

The above expression combined with the Sobolev inequality yields

(2.14) ‖w‖X0 ≥ SN/p
2s

(
p− 1− q
p∗s − 1− q

)(N−ps)/p2s

.

As w ∈ N0
µ ⊆ Nµ, using (2.13) and the Hölder inequality followed by the Sobolev

inequality, we get

0 = ‖w‖pX0
− |w|p

∗
s

Lp
∗
s (Ω)
− µ|w|q+1

Lq+1(Ω)

≥ ‖w‖pX0
−
(
p− 1− q
p∗s − q − 1

)
‖w‖pX0

− µ|Ω|1−(q+1)/p∗sS−(q+1)/p‖w‖q+1
X0

.

Combining the above inequality with (2.14) and using µ < µ̃, we have

0 ≥ ‖w‖q+1
X0

[(
p∗s − p

p∗s − q − 1

)(
p− 1− q
p∗s − q − 1

)(N−ps)(p−1−q)/p2s

SN(p−1−q)/p2s

− µ|Ω|1−(q+1)/p∗sS−(q+1)/p

]
> 0,

which is a contradiction. �

Lemma 2.6. Let µ̃ be defined as in (2.7) and µ ∈ (0, µ̃). Given u ∈ N−µ ,

there exist ρu > 0 and a differentiable function gρu : Bρu(0)→ R+ satisfying the
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following:

gρu(0) = 1, (gρu(w))(u+ w) ∈ N−µ for all w ∈ Bρu(0),

〈g′ρu(0), φ〉 =

pA(u, φ)− p∗s
∫

Ω

|u|p
∗
s−2uφ− (q + 1)µ

∫
Ω

|u|q−1uφ

(p− 1− q)‖u‖pX0
− (p∗s − q − 1)|u|p

∗
s

Lp
∗
s (Ω)

for all φ ∈ Bρu(0), where

A(u, φ) =

∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+ps
dx dy.

Proof. Define E : R×X0 → R as follows:

E(r, w) = rp−1−q‖u+ w‖pX0
− rp

∗
s−q−1|(u+ w)|p

∗
s

Lp
∗
s (Ω)
− µ|(u+ w)|q+1

Lq+1(Ω).

We note that u ∈ N−µ ⊂ Nµ implies

E(1, 0) = 0 and
∂E

∂r
(1, 0) = (p− 1− q)‖u‖pX0

− (p∗s − q − 1)|u|p
∗
s

Lp
∗
s (Ω)

< 0.

Therefore, by the implicit function theorem, there exist a neighbourhood Bρu(0)

⊂ Nµ for some ρu > 0 and a C1 function gρu : Bρu(0)→ R+ such that

(i) gρu(0) = 1,

(ii) E(gρu(w), w) = 0, for all w ∈ Bρu(0),

(iii) Er(gρu(w), w) < 0, for all w ∈ Bρu(0),

(iv) 〈g′ρu(0), φ〉 = −
〈
∂E

∂w
(1, 0), φ

〉/
∂E

∂r
(1, 0).

Multiplying (ii) by (gρu(w))q+1, it follows that gρu(w)(u + w) ∈ Nµ. In fact,

simplifying (iii), we obtain

(p− 1− q)gρu(w)p‖u+ w‖pX0
− (p∗s − q − 1)gρu(w)p

∗
s |(u+ w)|p

∗
s
p∗s
< 0

for all w ∈ Bρu(0). Thus (gρu(w))(u+w) ∈ N−µ , for every w ∈ Bρu(0). The last

assertion of the lemma follows from (iv). �

Let S be as in (1.3). From [9], we know that for 1 < p < ∞, s ∈ (0, 1),

N > ps, there exists a minimizer for S, and for every minimizer U , there exist

x0 ∈ RN and a constant sign monotone function u : R → R such that U(x) =

u(|x − x0|). In the following, we shall fix a radially symmetric nonnegative

decreasing minimizer U = U(r) for S. Multiplying U by a positive constant if

necessary, we may assume that

(−∆)spU = Up
∗
s−1 in Rn.(2.15)

For any ε > 0 we note that the function

(2.16) Uε(x) =
1

ε(N−sp)/p U

(
|x|
ε

)
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is also a minimizer for S satisfying (2.15). From [20], we also have the following

asymptotic estimates for U .

Lemma 2.7 ([20]). Let U be the solution of (2.15). Then, there exist c1, c2 >

0 and θ > 1 such that, for all r ≥ 1,

(2.17)
c1

r(N−sp)/(p−1)
≤ U(r) ≤ c2

r(N−sp)/(p−1)

and

U(rθ)

U(r)
≤ 1

2
.(2.18)

Proof. See [20, Lemma 2.2]. �

Therefore we have

(2.19) c1
ε(N−sp)/(p(p−1))

|x|(N−sp)/(p−1)
for |x| > ε.

We consider a cut-off function ψ ∈ C∞0 (Ω) such that 0 ≤ ψ ≤ 1, ψ ≡ 1 in Ωδ,

ψ ≡ 0 in RN \ Ω, where Ωδ := {x ∈ Ω : dist(x, ∂Ω) > δ}. Define

(2.20) uε(x) = ψ(x)Uε(x).

We need the following lemmas in order to prove Theorem 1.2.

Lemma 2.8. Suppose w1 is a positive solution of (Pµ) and uε is defined as

in (2.20). Then, for every ε > 0 small enough,

(a) A1 :=

∫
Ω

w
p∗s−1
1 uε dx ≤ k1ε

(N−ps)/(p(p−1)),

(b) A2 :=

∫
Ω

wq1uε dx ≤ k2ε
(N−ps)/(p(p−1)),

(c) A3 :=

∫
Ω

w1u
q
ε dx ≤ k3ε

(N−ps)q/(p(p−1)),

(d) A4 :=

∫
Ω

w1u
p∗s−1
ε dx ≤ k4ε

(N(p−1)+ps)/(p(p−1)).

Proof. Applying the Moser iteration technique (see [8, Theorem 3.3]), it

can be shown that any positive solution of (Pµ) is in L∞(Ω). Let R,M > 0 be

such that Ω ⊂ B(0, R) and |w1|L∞(Ω) < M .
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(a)

A1 =

∫
Ω

w
p∗s−1
1 uε dx

≤C
[ ∫

Ω∩{|x|≤ε}
Uε(x) dx+ ε(N−sp)/(p(p−1))

∫
Ω∩{|x|>ε}

dx

|x|(N−sp)/(p−1)

]
≤C

[
εN−(N−sp)/p

∫
{|x|<1}

U(x) dx

+ ε(N−sp)/(p(p−1))

∫
B(0,R)

dx

|x|(N−sp)/(p−1)
dx

]
≤C

[
εN−(N−sp)/p + ε(N−sp)/(p(p−1))

∫ R

0

rN−1−(N−sp)/(p−1) dr

]
≤ k1ε

(N−sp)/(p(p−1)).

The proof of (b) is similar to (a).

(c)

A3 =

∫
Ω

w1u
q
ε dx

≤C
[ ∫

Ω∩{|x|≤ε}
Uqε (x) dx+ ε(N−sp)q/(p(p−1))

∫
Ω∩{|x|>ε}

dx

|x|(N−sp)q/(p−1)

]
≤C

[
εN−(N−sp)q/p

∫
{|x|<1}

U(x)q dx

+ ε(N−sp)q/p(p−1)

∫
B(0,R)

dx

|x|(N−sp)q/(p−1)
dx

]
≤C

[
εN−(N−sp)q/p + ε(N−sp)q/(p(p−1))

∫ R

0

rN−1−(N−sp)q/(p−1) dr

]
≤ k3ε

(N−ps)q/(p(p−1)),

since 0 < q < p− 1 < N(p− 1)/(N − sp).
(d) can be proved similarly to (c). �

Lemma 2.9. Let uε be defined as in (2.20), 0 < q < p − 1 and N > p2s.

Then, for every ε > 0 small enough,

∫
Ω

|uε|q+1 dx ≥



k5ε
(N−ps)(q+1)/(p(p−1)) if 0 < q <

N(p− 2) + ps

N − ps
,

k6ε
N/p| ln ε| if q =

N(p− 2) + ps

N − ps
,

k7ε
N−(N−ps)(q+1)/p if

N(p− 2) + ps

N − ps
< q < p− 1.
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Proof. We recall that R′ > 0 was chosen so that B(0, R′) ⊂ Ωδ. Therefore,

for ε > 0 small enough, we have∫
Ω

|uε|q+1 dx ≥
∫
B(0,R′)

|uε|q+1 dx =

∫
B(0,R′)

Uq+1
ε (x) dx(2.21)

=CεN−(N−sp)(q+1)/p

∫
B(0,R′/ε)

Uq+1(y) dy

≥CεN−(N−ps)(q+1)/p

∫
B(0,R′/ε)\B(0,1)

Uq+1(y) dy

≥CεN−(N−ps)(q+1)/p

∫ R′/ε

1

rN−1−(N−ps)(q+1)/(p−1) dr.

Case 1. 0 < q ≤ (N(p− 2) + ps)/(N − ps). We note that

(2.22)

∫ R′/ε

1

r(N−1)−(N−ps)(q+1)/(p−1) dr ≥ C1ε
−N+(N−ps)(q+1)/(p−1) − C2.

Thus substituting back in (2.17), we obtain∫
Ω

|uε|q+1 dx ≥CεN−(N−ps)(q+1)/p
[
C1ε

−N+(N−ps)(q+1)/(p−1) − C2

]
=C3ε

(N−ps)(q+1)/(p(p−1)) − C4ε
N−(N−ps)(q+1)/p

≥ k5ε
(N−ps)(q+1)/(p(p−1)).

Case 2. q = (N(p− 2) + ps)/(N − ps). In this case it follows that∫ R′/ε

1

rN−1−(N−ps)(q+1)/(p−1) dr ≥ C| ln ε|.

Plugging back in (2.17), we obtain∫
Ω

|uε|q+1dx ≥ k6ε
N−(N−ps)(q+1)/p| ln ε| = k6ε

N/p| ln ε|.

Case 3. (N(p− 2) + ps)/(N − ps) < q < p− 1.

RHS of (2.16) ≥ k7ε
N−(N−sp)(q+1)/p

∫
B(0,1)

Uq+1(x) dx(2.23)

≥ k7ε
N−(N−sp)(q+1)/p.

Hence the lemma follows. �

Definition 2.10. We say {un} is a Palais–Smale (PS) sequence of Iµ at

level c (in short (PS)c) if Iµ(un)→ c and I ′µ(un)→ 0 in (X0)′. Furthermore, we

say Iµ satisfies the Palais–Smale condition at level c if for all {un} ⊂ X0 with

Iµ(un)→ c and I ′µ(un)→ 0 in (X0)′, implies, up to a subsequence, un converges

strongly in X0.
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Let us define

(2.24) M :=
(pN − (N − ps)(q + 1))(p− 1− q)

p2(q + 1)

·
(

(p− 1− q)(N − sp)
p2s

)(q+1)/(p∗s−q−1)

|Ω|.

Lemma 2.11. Let M be as in (2.24). For any µ > 0 and for

c <
s

N
SN/sp −Mµp

∗
s/(p

∗
s−q−1),

Iµ satisfies the (PS)c condition.

Proof. Let {uk} ⊂ X0 be a (PS)c sequence for Iµ, that is, we have Iµ(uk)→
c and I ′µ(uk)→ 0 in (X0)′ as k →∞. By the standard method it is not difficult

to see that {uk} is bounded in X0. Then up to a subsequence, still denoted by

uk, there exists u∞ ∈ X0 such that

uk ⇀ u∞ weakly in X0 as k →∞,

uk ⇀ u∞ weakly in Lp
∗
s (RN ) as k →∞,

uk → u∞ strongly in Lr(RN ) for any 1 ≤ r < p∗s as k →∞,

uk → u∞ a.e. in RN as k →∞.

As 0 < q < p− 1, we have∫
Ω

|uk|q+1(x) dx→
∫

Ω

|u∞|q+1(x) dx as k →∞.

Using above properties it can be shown that 〈I ′µ(u∞), ϕ〉X0
= 0 for any ϕ ∈ X0.

Indeed, for any ϕ ∈ X0,

〈I ′µ(uk), ϕ〉 − 〈I ′µ(u∞), ϕ〉

=

∫
R2N

|uk(x)− uk(y)|p−2(uk(x)− uk(y))(ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy

−
∫
R2N

|u∞(x)− u∞(y)|p−2(u∞(x)− u∞(y))(ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy

− µ
(∫

Ω

|uk|q−1ukϕdx−
∫

Ω

|u∞|q−1u∞ϕdx

)
−
(∫

Ω

|uk|p
∗
s−2ukϕdx−

∫
Ω

|u∞|p
∗
s−2u∞ϕdx

)
.

As {
|uk(x)− uk(y)|p−2(uk(x)− uk(y))

|x− y|(N+sp)/p′

}
k≥1

is bounded in Lp
′
(R2N ), where p′ = p/(p− 1), up to a subsequence

|uk(x)− uk(y)|p−2(uk(x)− uk(y))

|x− y|(N+sp)/p′
⇀
|u∞(x)− u∞(y)|p−2(u∞(x)− u∞(y))

|x− y|(N+sp)/p′
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weakly in Lp
′
(R2N ) , uk ⇀ u∞ weakly in Lp

∗
s (RN ) and uk → u∞ strongly in

Lq+1(RN ) as k →∞.

Combining these we have 〈I ′µ(uk), ϕ〉 − 〈I ′µ(u∞), ϕ〉 → 0 as k → ∞. But

as I ′µ(uk) → 0 in X ′0 as k → ∞, we have 〈I ′µ(u∞), ϕ〉X0
= 0, for any ϕ ∈ X0.

Hence, in particular 〈I ′µ(u∞), u∞〉X0
= 0.

Furthermore, by the Brezis–Lieb lemma, as k →∞, we get∫
R2N

|uk(x)− uk(y)|p

|x− y|N+sp
dx dy =

∫
R2N

|uk(x)− u∞(x)− uk(y) + u∞(y)|p

|x− y|N+sp
dx dy

+

∫
R2N

|u∞(x)− u∞(y)|p

|x− y|N+sp
dx dy + o(1)

and ∫
Ω

|uk(x)|p
∗
s dx =

∫
Ω

|(uk − u∞)(x)|p
∗
s dx+

∫
Ω

|u∞(x)|p
∗
s dx+ o(1).

Now

〈I ′µ(uk), uk〉Xo =

∫
R2N

|uk(x)− uk(y)|p

|x− y|N+sp
dx dy

− µ
∫

Ω

|uk(x)|q+1 dx−
∫

Ω

|uk(x)|p
∗
s dx

=

∫
R2N

|uk(x)− u∞(x)− uk(y) + u∞(y)|p

|x− y|N+sp
dx dy

−
∫

Ω

|uk(x)− u∞(x)|p
∗
s dx+ 〈I ′µ(u∞), u∞〉X0

+ o(1).

Since, as 〈I ′µ(u∞), u∞〉X0
= 0 and 〈I ′µ(uk), uk〉X0

→ 0 as k → ∞, we have that

there exists b ∈ R with b ≥ 0 such that

‖uk − u∞‖pX0
=

∫
Q

|uk(x)− u∞(x)− uk(y) + u∞(y)|p

|x− y|N+sp
dx dy → b

and ∫
Ω

|(uk − u∞)(x)|p
∗
s dx→ b as k →∞.

If b = 0 we are done. Suppose b > 0. Moreover, using the Sobolev inequality, we

have

‖uk − u∞‖pX0
≥ S

(∫
Ω

(|uk − u∞)(x)|p
∗
s dx

)p/p∗s
.

Therefore, b ≥ Sb p/p
∗
s , and this implies b ≥ SN/sp. On the other hand, since

〈I ′µ(u∞), u∞〉X0
= 0, we obtain

Iµ(u∞) = Iµ(u∞)− 1

p
〈I ′µ(u∞), u∞〉X0(2.25)

=
s

N

∫
Ω

|u∞(x)|p
∗
s dx+ µ

(
1

p
− 1

q + 1

)∫
Ω

|u∞(x)|q+1 dx.
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Using (2.25) and 〈I ′µ(uk), uk〉X0
→ 0 as k →∞, we get

c = lim
k→∞

Iµ(uk) = lim
k→∞

[
Iµ(uk)− 1

p
〈I ′µ(uk), uk〉X0

]
(2.26)

= lim
k→∞

[
s

N

∫
Ω

|(uk − u∞)(x)|p
∗
s dx+

s

N

∫
Ω

|u∞(x)|p
∗
s dx

+ µ

(
1

p
− 1

q + 1

)∫
Ω

|uk(x)|q+1 dx

]
=
s

N
b+

s

N

∫
Ω

|u∞(x)|p
∗
sdx+ µ

(
1

p
− 1

q + 1

)∫
Ω

|u∞(x)|q+1 dx

≥ s

N
SN/sp +

s

N

∫
Ω

|u∞(x)|p
∗
s dx+ µ

(
1

p
− 1

q + 1

)∫
Ω

|u∞(x)|q+1 dx

=
s

N
SN/sp + Iµ(u∞).

By assumption we have c < sSN/sp/N , the last inequality implies Iµ(u∞) < 0.

In particular, u∞ 6≡ 0 and

0 <
1

p
‖u∞‖pX0

<
µ

q + 1

∫
Ω

(u∞(x))q+1 dx+
1

p∗s

∫
Ω

(u∞(x))p
∗
s dx.

Moreover, by the Hölder inequality, we have∫
Ω

|u∞(x)|q+1 dx ≤ |Ω|(p
∗
s−(q+1))/p∗s

(∫
Ω

|u∞(x)|p
∗
s dx

)(q+1)/p∗s

.

Thus, from (2.26)

c ≥ s

N
SN/sp +

s

N

∫
Ω

|u∞|p
∗
s dx

+ µ

(
1

p
− 1

q + 1

)
|Ω|(p

∗
s−(q+1))/p∗s

(∫
Ω

|u∞(x)|p
∗
s dx

)(q+1)/p∗s

:=
s

N
SN/sp + h(η),

where

h(η) =
s

N
ηp
∗
s + µ

(
1

p
− 1

q + 1

)
|Ω|(p

∗
s−(q+1))/p∗sηq+1

with

η =

(∫
Ω

|u∞(x)|p
∗
s dx

)1/p∗s

.

By elementary analysis, we can show that h attains its minimum at

η0 =

(
µ(p− 1− q)(N − sp)

p2s

)1/(p∗s−(q+1))

|Ω|1/p
∗
s
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and

h(η0) =
s

N

(
µ(p− 1− q)(N − sp)

p2s

)p∗s/(p∗s−(q+1))

|Ω|

− µ(p− 1− q)
p(q + 1)

|Ω|(p
∗
s−(q+1))/p∗s

·
(
µ(p− 1− q)(N − sp)

p2s

)(q+1)/(p∗s−(q+1))

|Ω|(q+1)/p∗s

= −Mµp
∗
s/(p

∗
s−(q+1)),

with M given in (2.24). This in turn implies

c ≥ s

N
SN/sp −Mµp

∗
s/(p

∗
s−(q+1))

and that gives a contradiction to our hypothesis. Hence b = 0. This concludes

that uk → u∞ strongly in X0.

Lemma 2.12. Let N ∈ N be such that N > sp[p+ 1 +
√

(p+ 1)2 − 4]/2 and

q ∈ (q1, p− 1), where

(2.27) q1 :=
N2(p− 1)

(N − sp)(N − s)
− 1.

Then, there exist µ̃1 > 0 and u0 ∈ X0 such that

sup
t≥0

I+
µ (tu0) <

s

N
SN/(sp) −Mµp

∗
s/(p

∗
s−q−1),(2.28)

for µ ∈ (0, µ̃1). In particular,

(2.29) α̃−µ <
s

N
SN/(sp) −Mµp

∗
s/(p

∗
s−q−1),

where I+
µ is defined as in (2.4) and α−µ and M are given as in (2.5) and (2.24),

respectively.

Proof. Let uε be defined as in (2.20). Then we claim

(2.30) |u+
ε |Lp∗s = |uε|

p∗s
Lp
∗
s
≥ SN/(sp) + o(εN/(p−1)).

To see this,

|uε|
p∗s
Lp
∗
s (Ω)

=

∫
Ω

|uε|p
∗
s dx ≥

∫
Ωδ

|uε|p
∗
s dx =

∫
Ωδ

|Uε(x)|p
∗
s dx(2.31)

=

∫
RN
|Uε(x)|p

∗
s dx−

∫
RN\Ωδ

|Uε(x)|p
∗
s dx.

Moreover,∫
RN\Ωδ

|Uε(x)|p
∗
s dx ≤

∫
RN\B(0,R′)

|Uε(x)|p
∗
s dx =

1

εN

∫
RN\B(0,R′)

Up
∗
s

(
x

ε

)
dx

≤C
∫ ∞
R′/ε

rN−1−Np/(p−1) dr ≤ CεN/(p−1).
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Therefore substituting back to (2.31) we obtain

|uε|
p∗s
Lp
∗
s (Ω)
≥ SN/(sp) − CεN/(p−1).

Furthermore, a similar analysis as in [23, Proposition 21] (see also [20, Lem-

ma 2.7]) yields, for ε > 0 small enough (0 < ε < δ/2) we have,

(2.32) ‖uε‖pX0
≤ SN/(sp) + o(ε(N−ps)/(p−1)).

Define

J(u) :=
1

p
‖u‖pX0

− 1

p∗s
|u+|p

∗
s

Lp
∗
s
, u ∈ X0,

and choose ε0 > 0 small enough such that (2.32) and (2.30) hold and Lemma

2.9 is satisfied. Let ε ∈ (0, ε0). Then, consider corresponding u0 := uε0 . Let us

consider the function h : [0,∞) → R defined by h(t) = J(tu0) for all t ≥ 0. It

can be shown that h attains its maximum at

t = t∗ =

( ‖u0‖pX0

|u+
0 |
p∗s
Lp
∗
s

)1/(p∗−p)

and

sup
t≥0

J(tu0) =
s

N

( ‖u0‖pX0

|u+
0 |
p

Lp
∗
s

)N/(sp)
.

Using (2.32) and (2.30) a straight forward computation yields,

(2.33) sup
t≥0

J(tu0) ≤ s

N
SN/(sp) + o(ε(N−sp)/(p−1)).

Since I+
µ (tu0) < 0 for t small, we can find t0 ∈ (0, 1) such that

sup
0≤t≤t0

I+
µ (tu0) ≤ s

N
SN/(sp) −Mµp

∗
s/(p

∗
s−q−1),

for µ > 0 small enough. Hence, we are left to estimate sup
t0≤t

I+
µ (tu0).

sup
t≥t0

I+
µ (tu0) = sup

t≥t0

[
J(tu0)− tq+1

q + 1
|u+

0 |
q+1
Lq+1

]
≤ s

N
SN/(sp) + o(ε(N−sp)/(p−1))− tq+1

q + 1
|u0|q+1

Lq+1

≤



s

N
SN/(sp) + c1ε

(N−ps)/(p−1) − c2µε(N−ps)(q+1)/(p(p−1)),

0 < q <
N(p− 2) + ps

N − sp
,

s

N
SN/(sp) + c1ε

(N−ps)/(p−1) − c2µεN/p| ln ε|, q =
N(p− 2) + ps

N − sp
,

s

N
SN/(sp) + c1ε

(N−ps)/(p−1) − c2µεN−(N−sp)(q+1)/p,

N(p− 2) + ps

N − sp
< q < p− 1.
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Choose ε ∈ (0, δ/2) such that ε(N−sp)/(p−1) = µ(p∗s)/(p∗s−q−1). Then, for (N(p−2)

+ps)/(N − sp) < q < p− 1, the term

s

N
SN/(sp) + c1ε

(N−ps)/(p−1) − c2µεN−(N−sp)(q+1)/p

reduces to

s

N
SN/(sp) + c1µ

p∗s/(p
∗
s−q−1) − c2µ

(
µp
∗/(p∗−q−1)

)(N−(N−sp)(q+1)/p)((p−1)/(N−ps))
.

Now, note that we can make

c1µ
p∗s/(p

∗
s−q−1) − c2µ

(
µp
∗/(p∗−q−1)

)(N−(N−sp)(q+1)/p)((p−1)/(N−ps))

< −Mµp
∗
s/(p

∗
s−q−1),

for µ > 0 small enough if we further choose(
p∗s

p∗s − q − 1

)(
p− 1

p

)[
Np

N − ps
− (q + 1)

]
<

p∗s
p∗s − q − 1

− 1,

i.e., if

q + 1 >
N2(p− 1)

(N − sp)(N − s)
.

This proves (2.28). It is easy to see that (2.29) follows by combining (2.28) along

with Lemma 2.4. �

2.1. Sign changing critical points of Iµ. Define

N−µ,1 := {u ∈ Nµ : u+ ∈ N−µ }. N−µ,2 := {u ∈ Nµ : −u− ∈ N−µ },

We set

β1 = inf
u∈N−µ,1

Iµ(u) and β2 = inf
u∈N−µ,2

Iµ(u).(2.34)

Theorem 2.13. Let p ≥ 2, N > sp[p + 1 +
√

(p+ 1)2 − 4]/2 and q1 < q <

p − 1, where q1 is defined as in (2.27). Assume 0 < µ < min {µ̃, µ̃1, µ∗, µ1},
where µ̃, µ̃1 and µ1 are as in (2.7), Lemmas 2.12 and A.1, respectively. µ∗ is

chosen so that α̃−µ is achieved in (0, µ∗). Let β1, β2, α̃
−
µ be defined as in (2.34)

and (2.5), respectively.

(a) Let β1 < α̃−µ . Then, there exists a sign changing critical point w̃1 of Iµ
such that w̃1 ∈ N−µ,1 and Iµ(w̃1) = β1.

(b) If β2 < α̃−µ , then there exists a sign changing critical point w̃2 of Iµ such

that w̃2 ∈ N−µ,1 and Iµ(w̃2) = β2.

Proof. (a) Let β1 < α̃−µ . We prove the theorem in several steps.

Step 1. N−µ,1 and N−µ,2 are closed sets. To see this, let {un} ⊂ N−µ,1 be such

that un → u in X0. It is easy to note that |un|, |u| ∈ X0 and |un| → |u| in X0.
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This in turn implies u+
n → u+ in X0 and Lγ(RN ) for γ ∈ [1, p∗s] (by the Sobolev

inequality). Since, un ∈ N−µ,1, we have u+
n ∈ N−µ . Therefore

(2.35) ‖u+
n ‖

p
X0
− |u+

n |
p∗s
Lp
∗
s (Ω)
− µ|u+

n |
q+1
Lq+1(Ω) = 0

and

(2.36) (p− 1− q)‖u+
n ‖

p
X0
− (p∗s − q − 1)|u+

n |
p∗s
Lp
∗
s (Ω)

< 0 for all n ≥ 1.

Passing to the limit as n→∞, we obtain u+ ∈ Nµ and

(p− 1− q)‖u+‖pX0
− (p∗s − q − 1)|u+|p

∗
s

Lp
∗
s (Ω)
≤ 0.

But, from Lemma 2.5, we know that N0
µ = ∅. Therefore u+ ∈ N−µ and hence

N−µ,1 is closed. Similarly it can be shown that N−µ,2 is also closed. Hence Step 1

follows.

By the Ekeland Variational Principle there exists a sequence {un} ⊂ N−µ,1
such that

(2.37) Iµ(un)→ β1 and Iµ(z) ≥ Iµ(un)− 1

n
‖un − z‖X0

for all z ∈ N−µ,1.

Step 2. {un} is uniformly bounded in X0. To see this, we notice that un ∈
N−µ,1 implies un ∈ Nµ and this in turn implies 〈I ′µ(un), un〉 = 0, that is,

‖un‖pX0
= |un|

p∗s
Lp
∗
s (Ω)

+ µ|un|q+1
Lq+1(Ω).

Since Iµ(un)→ β1, using the above equality in the expression of Iµ(un), we get,

for n large enough

s

N
‖un‖pX0

≤ β1 + 1 +

(
1

q + 1
− 1

p∗s

)
µ|un|q+1

Lq+1(Ω) ≤ C
(
1 + ‖un‖q+1

X0

)
.

As p > q + 1, the above implies that {un} is uniformly bounded in X0.

We note that, for any u ∈ X0, we have

‖u‖pX0
=

∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy =

∫
R2N

(|u(x)− u(y)|2)p/2

|x− y|N+ps
dx dy(2.38)

=

∫
R2N

(
|(u+(x)− u+(y))− (u−(x)− u−(y))|2

)p/2
|x− y|N+ps

dx dy

=

∫
R2N

(
(u+(x)− u+(y))2 + (u−(x)− u−(y))2

|x− y|N+ps

+
2u+(x)u−(y) + 2u+(y)u−(x)

)p/2
|x− y|N+ps

)
dx dy

≥
∫
R2N

(
(u+(x)− u+(y))2 + (u−(x)− u−(y))2

)p/2
|x− y|N+ps

dx dy
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≥
∫
R2N

(
(u+(x)− u+(y))2

)p/2
|x− y|N+ps

dx dy

+

∫
R2N

(
(u−(x)− u−(y))2

)p/2
|x− y|N+ps

dx dy = ‖u+‖pX0
+ ‖u−‖pX0

.

By a simple calculation, it follows that

(2.39)
|u|p

∗
s

Lp
∗
s (Ω)

= |u+|p
∗
s

Lp
∗
s (Ω)

+ |u−|p
∗
s

Lp
∗
s (Ω)

,

|u|q+1
Lq+1(Ω) = |u+|q+1

Lq+1(Ω) + |u−|q+1
Lq+1(Ω).

Combining (2.38) and (2.39), we obtain

(2.40) Iµ(u) ≥ Iµ(u+) + Iµ(u−) for all u ∈ X0.

Step 3. There exists b > 0 such that ‖u−n ‖X0
≥ b for all n ≥ 1. Suppose this

is not true. Then, for each k ≥ 1, there exists unk such that

(2.41) ‖u−nk‖X0
<

1

k
for all k ≥ 1.

Therefore, ‖u−nk‖X0
→ 0 as k →∞ and by the Sobolev inequality

|u−nk |Lp∗s (Ω) → 0, |u−nk |Lq+1(Ω) → 0, as k →∞.

Consequently, Iµ(u−nk)→ 0 as k →∞. As a result, using (2.40) we have

β1 = Iµ(unk) + o(1) ≥ Iµ(u+
nk

) + Iµ(u−nk) + o(1) = I+
µ (u+

nk
) + o(1) ≥ α̃−µ + o(1).

This is a contradiction to the hypothesis. Hence Step 3 follows.

Step 4. I ′µ(un)→ 0 in (X0)′ as n→∞. Since un ∈ N−µ,1, we have u+
n ∈ N−µ .

Thus, by Lemma 2.6 applied to the element u+
n , there exist

(2.42) ρn := ρu+
n

and gn := gρ
u
+
n

,

such that

(2.43) gn(0) = 1, (gn(w))(u+
n + w) ∈ N−µ for all w ∈ Bρn(0).

Choose 0 < ρ̃n < ρn such that ρ̃n → 0. Let v ∈ X0 with ‖v‖X0
= 1. Define

vn := − ρ̃n[v+χ{un≥0} − v−χ{un≤0}]

zρ̃n := (gn(v−n ))(un − vn) =: z1
ρ̃n
− z2

ρ̃n
,

where

z1
ρ̃n

:= (gn(v−n ))(u+
n +ρ̃nv

+χ{un≥0}) and z2
ρ̃n

:= (gn(v−n ))(u−n +ρ̃nv
−χ{un≤0}).

Note that v−n = ρ̃nv
+χ{un≥0}. So, ‖v−n ‖X0 ≤ ρ̃n‖v‖X0 ≤ ρ̃n. Hence, taking

w = v−n in (2.43), we have z+
ρ̃n

= z1
ρ̃n
∈ N−µ so zρ̃n ∈ N

−
µ,1. Hence,

Iµ(zρ̃n) ≥ Iµ(un)− 1

n
‖un − zρ̃n‖X0 .
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This implies,

1

n
‖un − zρ̃n‖X0

≥Iµ(un)− Iµ(zρ̃n)(2.44)

=〈I ′µ(un), un − zρ̃n〉+ o(1)‖un − zρ̃n‖X0

=− 〈I ′µ(un), zρ̃n〉+ o(1)‖un − zρ̃n‖X0 ,

as 〈I ′µ(un), un〉 = 0 for all n. Let wn = ρ̃nv. Then

(2.45)
1

n
‖un − zρ̃n‖X0 ≥ −〈I ′µ(un), wn + zρ̃n〉

+ 〈I ′µ(un), wn〉+ o(1)‖un − zρ̃n‖X0
.

Now, 〈I ′µ(un), wn〉 = 〈I ′µ(un), ρ̃nv〉 = ρ̃n〈I ′µ(un), v〉. Define

vn := v+χ{un≥0} − v−χ{un≤0}.

So, zρ̃n = gn(v−n )(un − ρ̃nvn). Hence we have

(2.46) 〈I ′µ(un), wn + zρ̃n〉 = 〈I ′µ(un), wn + gn(v−n )(un − ρ̃nvn)〉

= 〈I ′µ(un), ρ̃nv − gn(v−n )ρ̃nvn〉 = ρ̃n〈I ′µ(un), v − gn(v−n )vn〉.

Using (2.46) in (2.45), we have

(2.47)
1

n
‖un − zρ̃n‖X0

≥ −ρ̃n〈I ′µ(un), v − gn(v−n )vn〉

+ ρ̃n〈I ′µ(un), v〉+ o(1)‖un − zρ̃n‖X0 .

First we will estimate 〈I ′µ(un), v − gn(v−n )vn〉. For this,

v − gn(v−n )vn = v+ − v− − gn(v−n )[v+χ{un≥0} − v−χ{un≤0}]

= v+[gn(0)− gn(v−n )χ{un≥0}]− v−[gn(0)− gn(v−n )χ{un≤0}]

= − v+[〈g′n(0), v−n 〉+ o(1)‖v−n ‖X0
] + v−[〈g′n(0), v−n 〉+ o(1)‖v−n ‖X0

]

= − v+ρ̃n[〈g′n(0), v+〉+ o(1)‖v+‖X0 ] + v−ρ̃n[〈g′n(0), v+〉+ o(1)‖v+‖X0 ]

= − ρ̃n
[
〈g′n(0), v+〉+ o(1)‖v+‖X0

]
v.

Therefore

(2.48) 〈I ′µ(un), v − gn(v−n )vn〉 = −ρ̃n
(
〈g′n(0), v+〉+ o(1)‖v+‖

)
〈I ′µ(un), v〉.

Claim. gn(v−n ) is uniformly bounded in X0.

To see this, we observe that from (2.43) we have, gn(v−n )(u+
n + v−n ) ∈ N−µ ⊂

Nµ, which implies

‖cnψ̃n‖pX0
− µ|cnψ̃n|q+1

Lq+1(Ω) − |cnψ̃n|
p∗s
Lp
∗
s (Ω)

= 0,

where cn := gn(v−n ) and ψ̃n := u+
n + v−n . Dividing by cp

∗

n we have,

(2.49) cp−p
∗

n ‖ψ̃n‖pX0
− µcq+1−p∗

n |ψ̃n|q+1
Lq+1(Ω) = |ψ̃n|

p∗s
Lp
∗
s (Ω)

.
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Note that ‖ψ̃n‖X0
is uniformly bounded above as ‖un‖X0

is uniformly bounded

and ρ̃n = o(1). Also, ‖ψ̃n‖X0
≥ ‖u+

n ‖X0
− ρ̃n‖v‖X0

. Note that ‖u+
n ‖X0

≥ b̃ for

large enough n. If not, ‖u+
n ‖X0

→ 0 as n → ∞. As un ∈ N−µ,1, so u+
n ∈ N−µ .

Now, N−µ is a closed set and 0 /∈ N−µ and therefore ‖u−n ‖X0
6→ 0 as n → ∞.

Thus there exists b̃ ≥ 0 such that ‖u+
n ‖X0

≥ b̃ > 0. This in turn implies that

‖ψ̃n‖X0
≥ C, for some C > 0, by choosing ρ̃n small enough. Consequently, if

cn is not uniformly bounded, we obtain that LHS of (2.49) converges to 0 as

n→∞.

On the other hand,

|ψ̃n|Lp∗s (Ω) ≥ |u
+
n |Lp∗s (Ω) − ρ̃n|v|Lp∗s (Ω) > c,

for some positive constant c as ρn = o(1) and u+
n ∈ N−µ implies

(p∗s − 1− q)|u+
n |
p∗s
Lp
∗
s (Ω)

> (p− 1− q)‖u+
n ‖

p
X0

> (p− 1− q)̃bp.

Hence, the claim follows.

Now using the fact that gn(0) = 1 and the above claim we obtain

‖un − zρ̃n‖X0
≤‖un‖X0

|1− gn(v−n )|+ ρ̃n‖vn‖X0
gn(v−n )

≤‖un‖X0
[|〈g′n(0), v−n 〉|+ o(1)‖vn‖X0

] + ρ̃n‖v‖X0
gn(v−n )

≤ρ̃n[‖un‖X0
〈g′n(0), vn

+〉+ o(1)‖v‖X0
+ ‖v‖X0

gn(v−n )] ≤ ρ̃nC.

Substituting this and (2.48) in (2.47) yields

ρ̃n(〈g′n(0), v+〉+ o(1)‖v+‖X0
)〈I ′µ(un), v〉+ 〈I ′µ(un), v〉ρ̃n + ρ̃no(1) ≤ ρ̃n ·

C

n
.

This implies

[(〈g′n(0), v+〉+ o(1)‖v+‖X0) + 1]〈I ′µ(un), v〉 ≤ C

n
+ o(1) for all n ≥ n0.

Since |〈g′n(0), v+〉| is uniformly bounded (see Lemma A.1 in Appendix), letting

n→∞ we have I ′µ(un)→ 0 in (X0)′. Hence Step 4 follows.

Therefore {un} is a (PS) sequence of Iµ at level β1 < α̃−µ . From Lemma 2.12,

it follows that

α̃−µ <
s

N
SN/(ps) −Mµp

∗
s/(p

∗
s−q−1) for µ ∈ (0, µ̃1),

where

M =
(pN−(N − ps)(q + 1))(p− 1− q)

p2(q + 1)

(
(p− 1− q)(N − ps)

p2s

)(q+1)/(p∗s−q−1)

|Ω|.

Thus

β1 < α̃−µ <
s

N
SN/(ps) −Mµp

∗
s/(p

∗
s−q−1).

On the other hand, it follows from Lemma 2.11 that Iµ satisfies (PS) at level c

for

c <
s

N
SN/(ps) −Mµp

∗
s/(p

∗
s−q−1),
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this yields that there exists u ∈ X0 such that un → u in X0. By doing a simple

calculation we get u−n → u− in X0. Consequently, by Step 3, ‖u−‖X0
≥ b. As

N−µ,1 is a closed set and un → u, we obtain u ∈ N−µ,1, that is u+ ∈ N−µ and

u+ 6= 0. Therefore u is a solution of (Pµ) with u+ and u− both nonzero. Hence,

u is a sign-changing solution of (Pµ). Define w̃1 := u. This completes the proof

of part (a) of the theorem.

The proof of part (b) is similar to part (a) and we omit it. �

Theorem 2.14. Let β1, β2 ≥ α̃−µ where β1, β2, α̃
−
µ are defined as in (2.34)

and (2.5) respectively. Then, there exists µ0 > 0 such that for any µ ∈ (0, µ0),

(a) for p ≥ (3 +
√

5)/2, there exists q2 := Np/(N − sp) − p/(p− 1) such

that when q > q2 and N > sp(p2−p+ 1), Iµ has a sign changing critical

point,

(b) for 2 ≤ p < (3 +
√

5)/2, there exists q3 := N(p− 1)/(N − sp)−(p− 1)/p

such that when q > q3 and N > sp(p+1), Iµ has a sign changing critical

point.

We need the following proposition to prove the above Theorem 2.14.

Proposition 2.15. Assume 0 < µ < min {µ∗, µ̃, µ̃1}, where µ̃ is defined as

in (2.7) and µ∗ > 0 is chosen so that α̃−µ is achieved in (0, µ∗) and µ̃1 is as

in Lemma 2.12. Then, for p ≥ (3 +
√

5)/2, there exists q2 := Np/(N − sp) −
p/(p− 1) such that when q > q2 and N > sp(p2 − p+ 1) we have

sup
a≥0, b∈R

Iµ(aw1 − buε) < α̃−µ +
s

N
SN/(ps),

for ε > 0 sufficiently small, where w1 is a positive solution of (Pµ) and uε
is as in (2.20). Furthermore, when 2 ≤ p < (3 +

√
5)/2, there exists q3 :=

N(p− 1)/(N − sp) − (p− 1)/p such that, when q > q3 and N > sp(p + 1), it

holds

sup
a≥0, b∈R

Iµ(aw1 − buε) < α̃−µ +
s

N
SN/(ps),

for ε > 0 sufficiently small.

To prove the above proposition, we need the following lemmas.

Lemma 2.16. Let w1 and µ be as in Proposition 2.15. Then

sup
s>0

Iµ(sw1) = α̃−µ .

Proof. By the definition of α̃−µ , we have α̃−µ = inf
u∈N−µ

I+
µ (u) = I+

µ (w1) =

Iµ(w1). In the last equality we have used the fact that w1 > 0. Define g(s) :=

Iµ(sw1). From the proof of Lemma 2.3, it follows that there exist only two

critical points of g, namely t+(w1) and t−(w1) and max
s>0

g(s) = g(t+(w1)). On
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the other hand, 〈I ′µ(w1), v〉 = 0 for every v ∈ X0. Therefore g′(1) = 0 which

implies either t+(w1) = 1 or t−(w1) = 1.

Claim. t−(w1) 6= 1.

To see this, we note that t−(w1) = 1 implies t−(w1)w1 ∈ N−µ as w1 ∈ N−µ .

Using Lemma 2.3, we know that t−(w1)w1 ∈ N+
µ . Thus N+

µ ∩N−µ 6= ∅, which is

a contradiction. Hence we have the claim.

Therefore t+(w1) = 1 and this completes the proof. �

Lemma 2.17. Let uε be as in (2.20) and µ be as in Proposition 2.15. Then,

for ε > 0 sufficiently small, we have

sup
t∈R

Iµ(tuε) =
s

N
SN/(ps) + Cε(N−ps)/(p−1) − k8|uε|q+1

Lq+1(Ω).

Proof. Define φ̃(t) = tp‖uε‖pX0
/p− tp∗s |uε|

p∗s
Lp
∗
s (Ω)

/p∗s. Thus Iµ(tuε) = φ̃(t)−
µtq+1|uε|q+1

Lq+1(Ω)/(q + 1). On the other hand, applying the analysis done in

Lemma 2.3 to uε, we obtain that there exists

(t0)ε =

(
(p− 1− q)‖uε‖pX0

(p∗s − 1− q)|uε|
p∗s
Lp
∗
s (Ω)

)(N−ps)/(p2s)

< t+ε

such that

sup
t∈R

Iµ(tuε) = sup
t≥0

Iµ(tuε) = Iµ(t+ε uε)

= φ̃(t+ε )− µ (t+ε )
q+1

q + 1
|uε|q+1

Lq+1(Ω) ≤ sup
t≥0

φ̃(t)− µ (t0)q+1
ε

q + 1
|uε|q+1

Lq+1(Ω).

Substituting the value of (t0)ε and using the Sobolev inequality, we have

µ
(t0)q+1

ε

q + 1
≥ µ

q + 1

(
p− 1− q
p∗s − q − 1

S

)(N−ps)(q+1)/(p2s)

= k8.

Consequently,

(2.50) sup
t∈R

Iµ(tuε) ≤ sup
t≥0

φ̃(t)− k8|uε|q+1
Lq+1(Ω).

Using elementary analysis, it is easy to check that φ̃ attains its maximum at the

point t̃0 = (‖uε‖pX0
/|uε|

p∗s
Lp
∗
s (Ω)

)1/(p∗s−p) and

φ̃(t0) =
s

N

( ‖uε‖pX0

|uε|pLp∗s (Ω)

)N/(ps)
.

Moreover, using (2.32) and (2.30), we can deduce as in (2.33) that

(2.51) φ̃(t0) ≤ s

N
SN/(ps) + Cε(N−ps)/(p−1).

Substituting back (2.51) into (2.50), completes the proof. �
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Proof of Proposition 2.15. Note that, for fixed a and b,

Iµ
(
η(aw1 − buε,δ)

)
→ −∞ as |η| → ∞.

Therefore sup
a≥0, b∈R

Iµ(aw1 − buε,δ) exists and supremum will be attained in a2 +

b2 ≤ R2, for some large R > 0. Thus it is enough to estimate Iµ(aw1 − buε,δ)
in {(a, b) ∈ R+ × R : a2 + b2 ≤ R2}. Using elementary inequality, there exists

d(m) > 0 such that

(2.52) |a+b|m ≥ |a|m+ |b|m−d(|a|m−1|b|+ |a||b|m−1) for all a, b ∈ R, m > 1.

Define, f(v) := ‖v‖pX0
. Then using Taylor’s theorem

f(aw1 − buε,δ) = f(aw1)− 〈f ′(aw1), buε〉+ o(‖buε,δ‖2X0
) ≤ ‖aw1‖pX0

− p
∫
R2N

|aw1(x)− aw1(y)|p−2(aw1(x)− aw1(y))(buε,δ(x)− buε,δ(y))

|x− y|N+ps
dx dy

+ c‖buε,δ‖2X0
,

where c > 0 is small enough. We also note that from the definition of uε,δ, it

follows that ‖uε,δ‖X0
is bounded away from 0. Therefore, since p ≥ 2 we have

c‖buε,δ‖2X0
≤ ‖buε,δ‖pX0

, for c > 0 small enough. Hence

‖aw1 − buε,δ‖pX0
= ‖aw1‖pX0

− p
∫
R2N

|aw1(x)− aw1(y)|p−2(aw1(x)− aw1(y))(buε,δ(x)− buε,δ(y))

|x− y|N+ps
dx dy

+ ‖buε,δ‖pX0
.

Consequently, a2 + b2 ≤ R2 implies

Iµ(aw1 − buε,δ) ≤
1

p
‖aw1‖pX0

−
∫
R2N

|aw1(x)− aw1(y)|p−2(aw1(x)− aw1(y))(buε,δ(x)− buε,δ(y))

|x− y|N+ps
dx dy

+
1

p
‖buε,δ‖pX0

− 1

p∗s

∫
Ω

|aw1|p
∗
sdx− 1

p∗s

∫
Ω

|buε,δ|p
∗
s dx

− µ

q + 1

∫
Ω

|aw1|q+1 dx− µ

q + 1

∫
Ω

|buε,δ|q+1 dx

+ C

(∫
Ω

|aw1|p
∗
s−1|buε,δ| dx+

∫
Ω

|aw1||buε,δ|p
∗
s−1 dx

)
+ C

(∫
Ω

|aw1|q|buε,δ| dx+

∫
Ω

|aw1||buε,δ|q dx
)

= Iµ(aw1) + Iµ(buε,δ)− aqbµ
∫

Ω

|w1|q−1w1uε,δ dx

− ap
∗
s b

∫
Ω

|w1|p
∗
s−2w1uε,δ dx
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+ C

(∫
Ω

|w1|p
∗
s−1|uε,δ| dx+

∫
Ω

|w1||uε,δ|p
∗
s−1 dx

)
+ C

(∫
Ω

|w1|q|uε,δ|dx+

∫
Ω

|w1||uε,δ|q dx
)
.

Using Lemmas 2.8, 2.16 and 2.17 we estimate in a2 + b2 ≤ R2,

Iµ(aw1 − buε,δ) ≤ α̃−µ +
s

N
SN/(ps)s − k8|uε|q+1

Lq+1(Ω) + C
(
ε(N−ps)/(p−1)

+ ε(N−ps)/(p(p− 1)) + ε(N−ps)/qp(p− 1) + ε(N(p−1)+ps)/(p(p−1))
)
.

For the term k8|uε|q+1
Lq+1(Ω), we invoke Lemma 2.9. Therefore when

N(p− 2) + ps

N − ps
< q < p− 1,

we have

(2.53) aIµ(aw1 − buε,δ) ≤ α̃−µ +
s

N
SN/(ps)s − k9ε

N−(N−ps)(q+1)/p

+C
(
ε(N−ps)/(p−1)+ε(N−ps)/(p(p−1))+ε(N−ps)q/(p(p−1))+ε(N(p−1)+ps)/(p(p−1))

)
.

We will choose q in such a way that the term k9ε
N−(N−ps)(q+1)/p dominates the

other term involving ε. Note that among the terms in the bracket, ε(N−ps)/(p(p−1))

and ε(N−ps)q/(p(p−1)) dominate the others.

This in turn implies that we have to choose q so that

(2.54) N − (N − ps)(q + 1)

p
<

N − ps
p(p− 1)

and

(2.55) N − (N − ps)(q + 1)

p
<

(N − ps)q
p(p− 1)

.

(2.54) and (2.55) imply q > q2 and q > q3 respectively, where

(2.56) q2 :=
Np

N − sp
− p

p− 1
and q3 :=

N(p− 1)

N − sp
− p− 1

p
.

Case 1. p ≥ 3 +
√

5/2. In this case by straightforward calculation it follows

that q2 > q3. So in this case, we choose q > q2. Moreover, since q < p − 1, to

make the interval (q2, p− 1) 6= ∅, we have to take N > sp(p2 − p+ 1).

Case 2. 2 ≤ p < 3 +
√

5/2. In this case again by simple calculation it follows

that q3 > q2. Thus, in this case, we choose q > q3. Furthermore, as q < p − 1,

to make the interval (q3, p− 1) 6= ∅, we have to take N > sp(p+ 1).

Hence in both the cases taking ε > 0 to be small enough in (2.53), we obtain

sup
a≥0, b∈R

Iµ(aw1 − buε,δ) < α̃−µ +
s

N
SN/(ps)s . �
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Proof of Theorem 2.14. Define µ0 := min {µ̃, µ∗},

N−∗ := N−µ,1 ∩N
−
µ,2,(2.57)

c2 := inf
u∈N−∗

Iµ(u).(2.58)

Let µ ∈ (0, µ0). Using the Ekeland Variational Principle and similarly to the

proof of Theorem 2.13, we obtain a sequence {un} ∈ N−∗ satisfying

Iµ(un)→ c2, I ′µ(un)→ 0 in (X0)′.

Thus {un} is a (PS) sequence at level c2. From Lemma 2.18, given below, it

follows that there exist a > 0 and b ∈ R such that aw1 − buε ∈ N−∗ . Therefore

Proposition 2.15 yields

(2.59) c2 < α̃−µ +
s

N
SN/(ps).

Claim 1. There exist two positive constants c and C such that 0 < c ≤
‖u±n ‖X0 ≤ C.

To see this, we note that {un} ⊂ N−∗ ⊂ N−µ,1. Thus using (2.38), Steps 2

and 3 of the proof of Theorem 2.13, we have ‖u±n ‖X0
≤ C and ‖u−n ‖X0

≥ c.

To show ‖u+
n ‖X0

≥ a for some a > 0, we use the method of contradiction.

Assume, up to a subsequence, ‖u+
n ‖X0

→ 0 as n → ∞. This together with

Sobolev embedding implies |u+
n |Lp∗s (Ω) → 0. On the other hand, u+

n ∈ N−µ
implies

(p− 1− q)‖u+
n ‖

p
X0
− (p∗s − q − 1)|u+

n |
p∗s
Lp
∗
s (Ω)

< 0.

Therefore, by the Sobolev inequality, we have

S ≤
‖u+

n ‖
p
X0

|u+
n |p
Lp
∗
s (Ω)

<
p∗s − q − 1

p− 1− q
|u+
n |
p∗s−p
Lp
∗
s (Ω)

,

which is a contradiction to the fact that |u+
n |Lp∗s (Ω) → 0. Hence the claim follows.

Going to a subsequence if necessary we have

(2.60) u+
n ⇀ η1, u−n ⇀ η2 in X0.

Claim 2. η1 6≡ 0, η2 6≡ 0.

Suppose not, that is η1 ≡ 0. Then by compact embedding, u+
n → 0 in

Lq+1(Ω). Moreover, u+
n ∈ N−µ ⊂ Nµ, implies 〈I ′µ(u+

n ), u+
n 〉 = 0. Consequently,

‖u+
n ‖

p
X0
− |u+

n |
p∗s
Lp
∗
s (Ω)

= µ|u+
n |
q+1
Lq+1(Ω) = o(1).

So we have |u+
n |
p∗s
Lp
∗
s (Ω)

= ‖u+
n ‖

p
X0

+ o(1). This together with ‖u+
n ‖X0

≥ c implies

|u+
n |
p∗s
Lp
∗
s (Ω)

‖u+
n ‖pX0

≥ 1 + o(1).
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This along with Sobolev embedding gives |u+
n |
p∗s
Lp
∗
s (Ω)
≥ SN/(ps) + o(1). Thus we

have

(2.61) Iµ(u+
n ) =

1

p
‖u+

n ‖
p
X0
− 1

p∗s
|u+
n |
p∗s
Lp
∗
s (Ω)

+ o(1) ≥ s

N
SN/(ps) + o(1).

Moreover, un ∈ N−∗ implies −u−n ∈ N−µ . Therefore using the given condition on

β2, we get

(2.62) Iµ(−u−n ) ≥ β2 ≥ α̃−µ .

Also it follows that

Iµ(u+
n ) + Iµ(−u−n ) ≤ Iµ(un) = c2 + o(1)

(see (2.40)). Combining this along with (2.62) and (2.59), we obtain

Iµ(u+
n ) ≤ c2 − α̃−µ + o(1) <

s

N
SN/(ps)s ,

which is a contradiction to (2.61). Therefore η1 6= 0. Similarly η2 6= 0 and this

proves the claim.

Set w2 := η1 − η2.

Claim 3. w+
2 = η1 and w−2 = η2 almost everywhere.

To see the claim we observe that η1η2 = 0 almost everywhere in Ω. Indeed,∣∣∣∣ ∫
Ω

η1η2 dx

∣∣∣∣ =

∣∣∣∣ ∫
Ω

(u+
n − η1)u−n dx+

∫
Ω

η1(u−n − η2) dx

∣∣∣∣(2.63)

≤ |u+
n − η1|Lp(Ω)|u−n |Lp′ (Ω) + |η1|Lp′ (Ω)|u

−
n − η2|Lp(Ω),

where 1/p + 1/p′ = 1. By compact embedding we have u+
n → η1 and u−n → η2

in Lp(Ω). As p ≥ 2N/(N + s), then p′ ≤ p∗s. Therefore, using Claim 1, we pass

to the limit in (2.63) and obtain∫
Ω

η1η2 dx = 0.

Moreover, by (2.60), η1, η2 ≥ 0 almost everywhere. Hence η1η2 = 0 almost

everywhere in Ω. We have w+
2 − w

−
2 = w2 = η1 − η2. It is easy to check that

w+
2 ≤ η1 and w−2 ≤ η2. To show that equality holds almost everywhere we apply

the method of contradiction. Suppose, there exists E ⊂ Ω such that |E| > 0 and

0 ≤ w+
2 (x) < η1(x) for all x ∈ E. Therefore η2 = 0 almost everywhere in E by

the observation that we made. Hence w+
2 (x)−w−2 (x) = η1(x) almost everywhere

in E. Clearly w−2 (x) 6> 0 almost everywhere, otherwise w+
2 (x) = 0 almost

everywhere and that would imply η1(x) = −w−2 (x) < 0 almost everywhere,

which is not possible since η1 > 0 in E. Thus w−2 (x) = 0. Hence η1(x) = w+
2 (x)

almost everywhere in E, which is a contradiction. Hence the claim follows.
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Therefore w2 is sign changing in Ω and un ⇀ w2 inX0. Moreover, I ′µ(un)→ 0

in (X0)′ implies∫
R2N

|un(x)− un(y)|p−2(un(x)− un(y))(φ(x)− φ(y))

|x− y|N+ps
dx dy

− µ
∫

Ω

|un|q−1unφdx−
∫

Ω

|un|p
∗
s−2unφdx = o(1)

for every φ ∈ X0. Passing to the limit using Vitali’s convergence theorem via

Hölder’s inequality we obtain 〈I ′µ(w2), φ〉 = 0. Hence w2 is a sign changing weak

solution to (Pµ). �

Lemma 2.18. Let uε,δ be defined as in (2.20) and w1 be a positive solution

of (Pµ) for which α̃−µ is achieved, when µ ∈ (0, µ∗). Then there exist a, b ∈ R,

a ≥ 0 such that aw1 − buε ∈ N−∗ , where N−∗ is defined as in (2.57).

This lemma can be proved in the spirit of [5, Lemma 4.8], for the convenience

of the reader we sketch the proof in Appendix.

Proof of Theorem 1.2. Define µ∗ = min {µ∗, µ̃, µ̃1, µ0, µ1}, where µ∗ is

chosen such that α̃−µ is achieved in (0, µ∗). µ̃, µ̃1, µ0 and µ1 are as in (2.7),

Lemma 2.12, Theorem 2.14 and Lemma A.1, respectively. Furthermore, define

q0 and N0 as follows:

q0 :=


max {q1, q2} when p ≥ 3 +

√
5

2
,

max {q1, q3} when 2 ≤ p < 3 +
√

5

2
,

N0 :=


sp(p2 − p+ 1) when p ≥ 3 +

√
5

2
,

sp(p+ 1) when 2 ≤ p < 3 +
√

5

2
.

Note that N0 > sp[p + 1 +
√

(p+ 1)2 − 4]/2, where the RHS appeared in The-

orem 2.13. Hence combining Theorems 2.13 and 2.14, we complete the proof of

this theorem for µ ∈ (0, µ∗), q > q0 and N > N0. �

Appendix A

Lemma A.1. Let gn be as in (2.42) in Theorem 2.13 and v ∈ X0 be such that

‖v‖X0
= 1. Then there exists µ1 > 0 such that µ ∈ (0, µ1) implies 〈g′n(0), v+〉 is

uniformly bounded in X0.

Proof. In view of Lemma 2.6 we have

〈g′n(0), v+〉 =

pA(un, v
+)− p∗s

∫
Ω

|un|p
∗
s−punv

+ − (q + 1)µ

∫
Ω

|un|q−1unv
+

(p− 1− q)‖un‖pX0
− (p∗s − q − 1)|un|

p∗s
Lp
∗
s (Ω)

.
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Using Claim 2 in Theorem 2.13, there exists C > 0 such that ||un‖X0
≤ C for

all n ≥ 1. Therefore, applying the Hölder inequality followed by the Sobolev

inequality, we have

|〈g′n(0), v+〉| ≤ C‖v‖X0∣∣(p− 1− q)‖un‖pX0
− (p∗s − q − 1)|un|

p∗s
Lp
∗
s (Ω)

∣∣ .
Hence it is enough to show that∣∣(p− 1− q)‖un‖pX0

− (p∗s − q − 1)|un|
p∗s
Lp
∗
s (Ω)

∣∣ > C,

for some C > 0 and n large enough. Suppose it does not hold. Then, up to a

subsequence,

(p− 1− q)‖un‖pX0
− (p∗s − q − 1)|un|

p∗s
Lp
∗
s (Ω)

= o(1) as n→∞.

Hence,

‖un‖pX0
=
p∗ − q − 1

p− 1− q
|un|

p∗s
Lp
∗
s (Ω)

+ o(1) as n→∞.(A.1)

Combining the above expression along with the fact that un ∈ Nµ, we obtain

µ|un|q+1
Lq+1(Ω) =

p∗s − p
p− 1− q

|un|
p∗s
Lp
∗
s (Ω)

+ o(1) =
p∗s − p

p∗s − 1− q
‖un‖pX0

+ o(1).(A.2)

After applying the Hölder inequality and followed by the Sobolev inequality,

expression (A.2) yields

(A.3) ‖un‖X0
≤
(
µ
p∗s − q − 1

p∗s − p
|Ω|(p

∗
s−q−1)/p∗sS−(q+1)/p

)1/(p−1−q)

+ o(1).

Combining (2.38) and Claim 3 in the proof of Theorem 2.13, we have ‖un‖X0
≥ b,

for some b > 0. Therefore from (A.1) we get

(A.4) |un|
p∗s
Lp
∗
s (Ω)
≥ C for some constant C > 0, and n large enough.

Define ψµ : Nµ → R as follows:

ψµ(u) = k0

(
‖u‖p(p

∗
s−1)

X0

|u|p
∗
s(p−1)

Lp
∗
s (Ω)

)1/(p∗s−p)

− µ|u|q+1
Lq+1(Ω),

where

k0 =

(
p− 1− q
p∗s − q − 1

)(p∗s−1)/(p∗s−p)( p∗s − p
p− 1− q

)
.

Simplifying ψµ(un) using (A.2), we obtain

(A.5) ψµ(un) = k0

[(
p∗s − q − 1

p− 1− q

)p∗s−1 |un|
(p∗s−1)p∗s
Lp
∗
s (Ω)

|un|
p∗s(p−1)

Lp
∗
s (Ω)

]1/(p∗s−p)

− p∗s − p
p− 1− q

|un|
p∗s
Lp
∗
s (Ω)

+ o(1) = o(1).
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On the other hand, using the Hölder inequality in the definition of ψµ(un), we

obtain

ψµ(un) = k0

(
‖un‖

p(p∗s−1)
X0

|un|
p∗s(p−1)

Lp
∗
s (Ω)

)1/(p∗s−p)

− µ|un|q+1
Lq+1(Ω)(A.6)

≥ k0

(
‖un‖

p(p∗s−1)
X0

|un|
p∗s(p−1)

Lp
∗
s (Ω)

)1/(p∗s−p)

− µ|Ω|(p
∗
s−q−1)/p∗s |un|q+1

Lp
∗
s (Ω)

= |un|q+1

Lp
∗
s (Ω)

{
k0

(
‖un‖

p(p∗s−1)
X0

|un|
p∗s(p−1)

Lp
∗
s (Ω)

)1/(p∗s−p)
1

|un|q+1

Lp
∗
s (Ω)

− µ|Ω|(p
∗
s−q−1)/p∗s

}
.

Using Sobolev embedding and (A.3), we simplify the term(
‖un‖

p(p∗s−1)
X0

|un|
p∗s(p−1)

Lp
∗
s (Ω)

)1/(p∗s−p)
1

|un|q+1

Lp
∗
s (Ω)

and obtain(
‖un‖

p(p∗s−1)
X0

|un|
p∗s(p−1)

Lp
∗
s (Ω)

)1/(p∗s−p)
1

|un|q+1

Lp
∗
s (Ω)

≥ S(p∗s−1)/(p∗s−p)|un|−qLp∗s (Ω)
(A.7)

≥ S(p∗s−1)/(p∗s−p)+q/p‖un‖−qX0

≥ S(p∗s−1)/(p∗s−p)+q/p
(
µ
p∗s − q − 1

p∗s − p
|Ω|(p

∗−q−1)p∗sS−(q+1)/p

)−q/(p−1−q)

.

Substituting back (A.7) into (A.6) and using (A.4), we obtain

ψµ(un) ≥ Cq+1

[
k0S

(p∗s−1)/(p∗s−p)+q/(p−1−q)µ−q/(p−1−q)

·
(
p∗s − q − 1

p∗s − p
|Ω|(p

∗
s−q−1)/p∗s

)−q/(p−1−q)

− µ|Ω|(p
∗
s−q−1)/p∗s

]
≥ d0,

for some d0 > 0, n large and µ < µ1, where µ1 = µ1(k0, s, q,N, |Ω|). This is

a contradiction to (A.5). Hence the lemma follows. �

Proof of Lemma 2.18. We will show that there exist a > 0, b ∈ R such

that

a(w1 − buε)+ ∈ N−µ and − a(w1 − buε)− ∈ N−µ .
Let us denote r1 = inf

x∈Ω
w1(x)/uε(x), r2 = sup

x∈Ω
w1(x)/uε(x). As both w1 and

uε are positive in Ω, we have r1 ≥ 0 and r2 can be +∞. Let r ∈ (r1, r2).

Then w1, uε ∈ X0 implies (w1 − ruε) ∈ X0 and (w1 − ruε)+ 6≡ 0. Otherwise,

(w1−ruε)+ ≡ 0 would imply r2 ≤ r, which is not possible. Define vr := w1−ruε.
Hence 0 6≡ v+

r ∈ X0 (since for any u ∈ X0, we have |u| ∈ X0). Similarly

0 6≡ v−r ∈ X0. Therefore, by Lemma 2.3, there exist 0 < s+(r) < s−(r) such
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that s+(r)v+
r ∈ N−µ , and −s−(r)(v−r ) ∈ N−µ . Let us consider the functions

s± : R→ (0,∞) defined as above.

Claim. The functions r 7→ s±(r) are continuous and

lim
r→r+1

s+(r) = t+(v+
r1

) and lim
r→r−2

s+(r) = +∞,

where the function t+ is the same as defined in Lemma 2.3.

To see the claim, choose r0 ∈ (r1, r2) and {rn}n≥1 ⊂ (r1, r2) such that

rn → r0 as n → ∞. We need to show that s+(rn) → s+(r0) as n → ∞.

Corresponding to rn and r0, we have v+
rn = (w1−rnuε)+ and v+

r0 = (w1−r0uε)
+.

By Lemma 2.3 we note that s+(r) = t+(v+
r ). Let us define the function

F (s, r) := sp−1−q‖(w1 − ruε)+‖pX0

− sp
∗
s−q−1|(w1 − ruε)+|p

∗
s

Lp
∗
s (Ω)
− µ|(w1 − ruε)+|q+1

Lq+1(Ω)

=φ(s, r)− µ|(w1 − ruε)+|q+1
Lq+1(Ω),

where φ(s, r) := sp−1−q‖(w1 − ruε)+‖pX0
− sp∗s−q−1|(w1 − ruε)+|p

∗
s

Lp
∗
s (Ω)

.

Doing a similar calculation as in Lemma 2.3, we obtain that for any fixed r,

the function F (s, r) has only two zeros s = t+(v+
r ) and s = t−(v+

r ). Conse-

quently, s+(r) is the largest 0 of F (s, r) for any fixed r. As rn → r0 we have

v+
rn → v+

r0 in X0. Indeed, by a straightforward computation it follows that

vrn → vr0 in X0. Therefore |vrn | → |vr0 | in X0. This in turn implies that

v+
rn → v+

r0 in X0. Hence ‖v+
rn‖X0

→ ‖v+
r0‖X0

. Moreover, by the Sobolev in-

equality, we have |v+
rn |Lp∗s (Ω) → |v+

r0 |Lp∗s (Ω) and |v+
rn |Lq+1(Ω) → |v+

r0 |Lq+1(Ω). As

a result, we have F (s, rn)→ F (s, r0) uniformly. Therefore an elementary analy-

sis yields s+(rn)→ s+(r0).

Moreover, r2 ≥ w1/uε implies w1 − r2uε ≤ 0. As a consequence r → r−2
implies (w1 − ruε)

+ → 0 pointwise. Moreover, since |(w1 − ruε)
+|L∞(Ω) ≤

|w1|L∞(Ω), using the dominated convergence theorem we have |(w1−ruε)+|Lp∗s (Ω)

→ 0. From the analysis in Lemma 2.3, for any r, we also have s+(r) > t0(v+
r ),

where the function t0 is defined as in Lemma 2.3, which is the maximum point

of φ( · , r). Therefore it is enough to show that lim
r→r−2

t0(v+
r ) = ∞. Applying the

Sobolev inequality in the definition of t0(v+
r ) we get

t0(v+
r ) =

(
(p− 1− q)‖v+

r ‖
p
X0

(p∗s − 1− q)|v+
r |p

∗
s

Lp
∗
s (Ω)

)1/(p∗s−p)

≥
(
S(p− 1− q)
p∗s − 1− q

)1/(p∗s−p)

|v+
r |−1

Lp
∗
s (Ω)

.

Hence lim
r→r−2

t0(v+
r ) =∞.
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Proceeding similarly, we can show that if r → r−1 then v+
r → vr1 and

lim
r→r+1

s+(r) = t+(v+
r1

), and

lim
r→r+1

s−(r) = +∞, lim
r→r−2

s−(r) = t+(v−r ) < +∞.

The continuity of s± implies that there exists b ∈ (r1, r2) such that s+(r) =

s−(r) = a > 0. Therefore, a(w1 − buε)+ ∈ N−µ and −a(w1 − buε)− ∈ N−µ , that

is, the function a(w1 − buε) ∈ N−∗ and this completes the proof. �

References

[1] A. Ambrosetti, G.J. Azorero and I. Peral, Multiplicity results for some nonlinear

elliptic equations, J. Funct. Anal. 137 (1996), 219–242.

[2] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex

nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519–543.

[3] B. Barrios, E. Colorado, R. Servadei and F. Soria, A critical fractional equation

with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire 32
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