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MULTIPLE NODAL SOLUTIONS

FOR SEMILINEAR ROBIN PROBLEMS

WITH INDEFINITE LINEAR PART AND CONCAVE TERMS

Nikolaos S. Papageorgiou — Calogero Vetro

Francesca Vetro

Abstract. We consider a semilinear Robin problem driven by Laplacian
plus an indefinite and unbounded potential. The reaction function contains

a concave term and a perturbation of arbitrary growth. Using a variant of

the symmetric mountain pass theorem, we show the existence of smooth
nodal solutions which converge to zero in C1(Ω). If the coefficient of the

concave term is sign changing, then again we produce a sequence of smooth

solutions converging to zero in C1(Ω), but we cannot claim that they are
nodal.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper

we study the following semilinear Robin problem:

(1.1)


−∆u(z) + ξ(z)u(z) = ϑ(z)|u(z)|q−2u(z) + f(z, u(z)) in Ω,
∂u

∂n
+ β(z)u = 0 on ∂Ω,

for 1 < q < 2.
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In this problem the potential function ξ ∈ Ls(Ω), with s > N , and it is

sign changing, so the linear part of the problem is indefinite. In the reaction

part of the problem (the right hand side), there is a “concave”’ (that is, strictly

sublinear) term, which is the term ϑ(z)|u(z)|q−2u(z) (1 < q < 2) with the weight

ϑ ∈ L∞(Ω), ϑ(z) > 0 for almost all z ∈ Ω. In the last part of the paper we allow

ϑ to be sign changing. There is also a perturbation term f which is assumed to be

a Carathéodory function (that is, for all x ∈ R, z 7→ f(z, x) is measurable and for

almost all z ∈ Ω, x 7→ f(z, x) is continuous). A special feature of our work is that

we do not impose any growth condition on f(z, · ). We only impose conditions

near zero and we assume that f(z, · ) is odd and the whole reaction function

minus the potential term (that is, the function x 7→ ϑ(z)|x|q−2x+f(z, x)−ξ(z)x)

exhibits a kind of oscillatory behaviour near zero. Suitable truncations make

the behaviour of f(z, · ) near ±∞ irrelevant. Using a variant of the symmetric

mountain pass theorem, which is due to Heinz [3] and Kajikiya [5], we produce

a whole sequence of distinct smooth (that is, they belong in C1(Ω)) nodal (that

is, sign changing) solutions, which converge to zero in C1(Ω). Finally we see

what happens when the weight function ϑ is sign changing. In this case, again

we produce a sequence of smooth solutions in C1(Ω) converging to zero, but we

no longer claim that these solutions are nodal.

Infiniteness of the set of solutions for indefinite semilinear Dirichlet equations

was established by Yu, Yongqing [16], Zhang, Liu [17], Qin, Tang, Zhang [13],

Zhang, Tang, Zhang [18]. In all these works, the reaction term is superlinear

but with subcritical polynomial growth in the x variable. However, nodality

of solutions is not shown. We also mention the related works of Wang [15],

Qian [11] and Qian, Li [12]. In [15] the problem is Dirichlet with zero potential

(that is, ξ ≡ 0) and the reaction function f0 is continuous on Ω × R and no

growth condition is imposed on f0(z, · ). In [15], the author produces infinitely

many distinct solutions but also does not show that they are nodal. Infinitely

many nodal solutions were produced by Qian [11] for Neumann problems with

a coercive differential operator of the form

u→ −∆u+ au, for all u ∈ H1(Ω) with 0 < a < +∞.

In [11], the reaction function f0(z, x) is assumed to be continuous on Ω × R
and superlinear in x ∈ R, but with subcritical polynomial growth. For Robin

problems with zero potential term (that is, ξ ≡ 0), there is the work of Qian,

Li [12], where the reaction function f0(z, x) is continuous on Ω×R and superlinear

in x ∈ R, but again with subcritical polynomial growth. Qian, Li [12] produce

a whole sequence of distinct solutions but they again do not show that these

solutions are nodal.

So, the above survey of the relevant literature reveals that only Wang [15]

deals with a problem where the reaction function f0(z, x) is of arbitrary growth
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in x ∈ R. But in [15], the problem is Dirichlet with zero potential (so the dif-

ferential operator is coercive). Also, the solutions produced are not necessarily

nodal. Infinitely many nodal solutions are produced only by Qian [11] for Neu-

mann equations with a coercive differential operator and a reaction term f0(z, x)

continuous on Ω× R and of subcritical polynomial growth in x ∈ R. So, we see

that our work here is more general that all the aforementioned papers.

Finally, we mention that multiple nodal solutions (but not infinitely many)

for problems with indefinite linear part, were obtained by Papageorgiou, Pa-

palini [7] (Dirichlet problems) and by Papageorgiou, Radulescu [9] (Robin prob-

lems).

2. Mathematical background

Let X be a Banach space and X∗ its topological dual. By 〈 · , · 〉 we de-

note the duality brackets for the pair (X∗, X). Given ϕ ∈ C1(X,R), we say

that ϕ satisfies the Palais–Smale condition (the “PS-condition” for short), if the

following compactness-type condition holds:

• “Every sequence {un}n≥1 ⊆ X such that {ϕ(un)}n≥1 ⊆ R is bounded

and ϕ′(un)→ 0 in X∗ as n→ +∞ admits a strongly convergent subse-

quence”.

In the analysis of problem (1.1), we will use the following spaces:

• The Sobolev space H1(Ω).

• The Banach space C1(Ω).

• The Lebesgue space Lr(∂Ω), r ∈ [1,+∞].

We know that H1(Ω) is a Hilbert space with inner product

(u, v) =

∫
Ω

uv dz +

∫
Ω

(∇u,∇v)RN dz for all u, v ∈ H1(Ω).

The corresponding norm is

‖u‖ = [‖u‖22 + ‖∇u‖22]1/2 for all u ∈ H1(Ω).

The space C1(Ω) is an ordered Banach space with positive (order) cone given by

C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior which contains

D+ = {u ∈ C1(Ω) : u(z) > 0 for all z ∈ Ω}.

On ∂Ω we consider the (N−1)-dimensional Hausdorff (surface) measure σ. Using

this measure, we can define in the usual way the “boundary”’ Lebesgue spaces

Lr(∂Ω) (1 ≤ r ≤ +∞). From the theory of Sobolev spaces, we know that there
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is a unique continuous linear map γ0 : H1(Ω) → L2(∂Ω), known as the “trace

map”, such that

γ0(u) = u|∂Ω for all u ∈ H1(Ω) ∩ C(Ω).

So, the trace map assigns boundary values to all Sobolev functions. This map is

compact into Lr(∂Ω) with r ∈ [1, (2N − 2)/(N − 2)) if N ≥ 3 and into Lr(∂Ω)

for all r ≥ 1 if N = 1, 2. Moreover, we have

ker γ0 = H1
0 (Ω) and im γ0 = H1/2,2(∂Ω).

In the sequel for the sake of notational simplicity, we drop the use of the trace

map γ0. All restrictions of the Sobolev functions on ∂Ω are understood in the

sense of traces.

Consider the following linear eigenvalue problem:

(2.1)

−∆u(z) + ξ(z)u(z) = λ̂u(z) in Ω,
∂u

∂n
+ β(z)u = 0 on ∂Ω.

We make the following hypotheses concerning the data of (2.1):

• ξ ∈ LN/2(Ω) if N ≥ 3, ξ ∈ Lr(Ω) with r > 1 if N = 2, ξ ∈ L1(Ω) if

N = 1.

• β ∈W 1,∞(∂Ω) with β(z) ≥ 0 for all z ∈ ∂Ω.

Consider the C1-functional γ : H1(Ω)→ R defined by

γ(u) = ‖∇u‖22 +

∫
Ω

ξ(z)u2 dz +

∫
∂Ω

β(z)u2 dσ for all u ∈ H1(Ω).

From D’Agùı, Marano, Papageorgiou [1], we know that we can find µ > 0 such

that

(2.2) γ(u) + µ‖u‖22 ≥ c0‖u‖2, for all u ∈ H1(Ω), some c0 > 0.

Using (2.2) and the spectral theorem for compact self-adjoint operators, we show

that problem (2.1) admits a whole sequence {λ̂k}k∈N of distinct eigenvalues such

that λ̂k → +∞. By E(λ̂k) we denote the corresponding eigenspace. We know

that each E(λ̂k), k ∈ N, is finite dimensional and we have the orthogonal direct

sum decomposition H1(Ω) =
⊕
k≥1

E(λ̂k). Moreover, dimE(λ̂1) = 1 (that is, λ̂1

is simple) and

(2.3) λ̂1 = inf

[
γ(u)

‖u‖22
: u ∈ H1(Ω), u 6= 0

]
.

The infimum in (2.3) is realized on E(λ̂1). Evidently, the elements of E(λ̂1) have

fixed sign and by û1 we denote the positive L2-normalized (that is, ‖û1‖2 = 1)

eigenfunction. If ξ ∈ Ls with s > N , then using the regularity theory of

Wang [14], we have û1 ∈ C+ \ {0}. Moreover, the Harnack inequality (see Pucci,

Serrin [10, p. 163]) implies that û1(z) > 0 for all z ∈ Ω. Finally if ξ+ ∈ L∞(Ω),
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then by Hopf’s boundary point lemma (see Pucci, Serrin [10, p. 120]), we have

û1 ∈ D+.

To produce a whole sequence of distinct nodal solutions, we will use a variant

of the classical symmetric mountain pass theorem (see, for example, Gasiński–

Papageorgiou [2], p. 688), which is a particular case of a more general result due

to Heinz [3] and Kajikiya [5].

Theorem 2.1. If X is a Banach space, ϕ ∈ C1(X,R) satisfies the PS-

condition, it is even, bounded below, ϕ(0) = 0 and for every n ∈ N there exist a

nontrivial finite dimensional subspace Yn of X and ρn > 0 such that

sup[ϕ(u) : u ∈ Yn ∩ ∂Bρn ] < 0, where ∂Bρn = {u ∈ X : ‖u‖ = ρn},

then there exists a sequence {un}n≥1 ⊆ X such that

• ϕ′(un) = 0 for all n ∈ N (that is, un is a critical point of ϕ),

• ϕ(un) < 0 for all n ∈ N and un → 0 in X.

We conclude this section by introducing some notation which will be used in

what follows.

By A ∈ L(H1(Ω), H1(Ω)∗) we denote the linear operator defined by

〈A(u), h〉 =

∫
Ω

(∇u,∇h)RN dz for all u, h ∈ H1(Ω).

For x ∈ R we set x± = max{±x, 0}. Then for u ∈ H1(Ω) we can define

u±( · ) = u(·)±.

We know that u± ∈ H1(Ω), |u| = u+ + u−, u = u+ − u−.

3. Nodal solutions

Our hypotheses on the data of problem (1.1) are the following:

H(ξ) ξ ∈ Ls(Ω) with s > N and ξ+ ∈ L∞(Ω).

H(ϑ) ϑ ∈ Ls(Ω) with s > N , ϑ(z) > 0 for almost all z ∈ Ω.

H(β) β ∈W 1,∞(∂Ω), β(z) ≥ 0 for all z ∈ ∂Ω.

Remark 3.1. If β ≡ 0, then we recover the Neumann problem.

H(f) Let e+ ∈ H1(Ω) ∩ C(Ω) with 0 < η+ ≤ e+(z) for all z ∈ Ω, η̂ = ‖e+‖∞
and f : Ω× [−η̂, η̂]→ R is a Carathéodory function such that

(i) • for almost all z ∈ Ω, f(z, · )|[−η̂,η̂] is odd,

• ϑ(z)e+(z)q−1 + f(z, e+(z)) − ξ(z)e+(z) ≤ 0 for almost all

z ∈ Ω, and 0 ≤ A(e+) in H1(Ω)∗,

• there exists aη̂ ∈ Ls(Ω)+ with s > N such that |f(z, x)| ≤
aη̂(z) for almost all z ∈ Ω, all |x| ≤ η̂,
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(ii) there exist functions ĉ0, ĉ1 ∈ Ls(Ω) with s > N , and r > 2 such

that

−ĉ0(z) ≤ lim inf
x→0

f(z, x)

|x|r−2x
≤ lim sup

x→0

f(z, x)

|x|r−2x
≤ ĉ1(z)

uniformly for almost all z ∈ Ω.

Remark 3.2. Evidently all the hypotheses on f(z, · ) concern the interval

[−η̂, η̂]. The behaviour of f(z, · ) beyond [−η̂, η̂] is irrelevant. If

k(z, x) = ϑ(z)|x|q−2x+ f(z, x)− ξ(z)x,

then this is a Carathéodory function which is odd in x and it satisfies

k(z, e+(z)) ≤ 0 ≤ k(z,−e+(z)), for a.a. z ∈ Ω.

This fact together with

A(−e+) ≤ 0 ≤ A(e+) in H1(Ω)∗ (see H(f) (i))

allow us to treat e+ (resp. −e+) as an upper (resp. lower) solution for the problem

and work with suitable truncations and perturbations of the reaction term. Then

we obtain extremal constant sign solutions v∗ ≤ 0 ≤ u∗. This is important since

we can focus on the order interval [v∗, u∗] and apply Theorem 2.1 (the Heinz–

Kajikiya result) to generate a sequence of nodal solutions. If we can find τ > 0

such that

(3.1)

f(z, · )|[−τ,τ ] is odd for a.a. z ∈ Ω,

ϑ(z)τ q−1 + f(z, τ)− ξ(z)τ ≤ 0 for a.a. z ∈ Ω,

|f(z, x)| ≤ aτ (z) for a.a. z ∈ Ω,

all |x| ≤ τ with aτ ∈ Ls(Ω),

then hypothesis H(f) (i) is satisfied.

Hypotheses H(f) imply that we can find c1 ∈ Ls(Ω)+ and r > 2 such that

(3.2) ϑ(z)|x|q + f(z, x)x ≥ ϑ(z)|x|q − c1(z)|x|r for a.a. z ∈ Ω, all x ∈ [−τ, τ ].

Based on this unilateral growth estimate for the reaction function, we intro-

duce the following Carathéodory function:

(3.3) g(z, x) =


−ϑ(z)e+(z)q−1 + c1(z)e+(z)r−1 if x < −e+(z),

ϑ(z)|x|q−2x− c1(z)|x|r−2x if − e+(z) ≤ x ≤ e+(z),

ϑ(z)e+(z)q−1 − c1(z)e+(z)r−1 if e+(z) < x.

Using g, we consider the following auxiliary Robin problem:

(3.4)

−∆u(z) + ξ(z)u(z) = g(z, u(z)) in Ω,
∂u

∂n
+ β(z)u = 0 on ∂Ω.
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Proposition 3.3. If hypotheses H(ξ),H(ϑ),H(β),H(f) hold, then problem

has a unique positive solution u ∈ D+ and v = −u ∈ −D+ is the unique negative

solution of (3.4).

Proof. With µ > 0 as in (2.2), we introduce the following Carathéodory

function:

(3.5) ĝ(z, x) =


g(z,−e+(z))− µe+(z) if x < −e+(z),

g(z, x) + µx if − e+(z) ≤ x ≤ e+(z),

g(z, e+(z)) + µe+(z) if e+(z) < x,

we set Ĝ(z, x) =
∫ x

0
ĝ(z, s) ds and consider the C1-functional ψ̂+ : H1(Ω) → R

defined by

ψ̂+(u) =
1

2
γ(u) +

µ

2
‖u‖22 −

∫
Ω

Ĝ(z, u+) dz for all u ∈ H1(Ω).

From (2.2) and (3.5) it follows that

ψ̂+(u) ≥ c0
2
‖u‖2 − c2 for some c2 > 0, all u ∈ H1(Ω),

implies ψ̂+ is coercive.

Moreover, the Sobolev embedding theorem and the compactness of the trace

map imply that ψ̂+ is sequentially weakly lower semicontinuous. So, by the

Weierstrass–Tonelli theorem, we can find u ∈ H1(Ω) such that

(3.6) ψ̂+(u) = inf
[
ψ̂+(u) : u ∈ H1(Ω)

]
.

Let t ∈ (0, 1) be small such that

tû1(z) ∈ (0, η+] for all z ∈ Ω (recall that û1 ∈ D+).

Using Hölder’s inequality, we have for some ĉ1

ψ̂+(tû1) =
1

2
γ(tû1)− 1

q

∫
Ω

ϑ(z)(tû1)q dz +
ĉ1
r
‖tû1‖rr (see (3.5) and (3.3))

=
t2

2
λ̂1 +

ĉ1t
r

r
‖û1‖rr −

tq

q

∫
Ω

ϑ(z)ûq1 dz (recall that ‖û1‖2 = 1).

Since q < 2 < r and using hypothesis H(ϑ), we see that by choosing t ∈ (0, 1)

even smaller if necessary, we have

ψ̂+(tû1) < 0 ⇒ ψ̂+(u) < 0 = ψ̂+(0) (see (3.6)),

⇒ u 6= 0.

From (3.6) we have ψ̂′+(u) = 0, which, for all h ∈ H1(Ω), implies

(3.7) 〈A(u), h〉+

∫
Ω

(ξ(z) + µ)uh dz +

∫
∂Ω

β(z)uh dσ =

∫
Ω

ĝ(z, u+)h dz.
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In (3.7) first we choose h = −u− ∈ H1(Ω). We obtain

γ(u−) + µ‖u−‖22 = 0 ⇒ c0‖u−‖2 ≤ 0 (see (2.2)),

⇒ u ≥ 0, u 6= 0.

Also in (3.7) we choose h = (u− e+)+ ∈ H1(Ω). Then

‖∇(u − e+)+‖22 +

∫
Ω

(ξ(z) + µ)u(u− e+)+ dz +

∫
∂Ω

β(z)u(u− e+)+ dσ

=

∫
Ω

ĝ(z, u)(u− e+)+ dz

=

∫
Ω

[g(z, e+) + µe+](u− e+)+ dz (see (3.5))

=

∫
Ω

[ϑ(z)eq−1
+ − c1(z)er−1

+ + µe+](u− e+)+ dz (see (3.3))

≤
∫

Ω

[ϑ(z)eq−1
+ + f(z, e+) + µe+](u− e+)+ dz (see (3.2))

≤
∫

Ω

[ξ(z) + µ]e+(u− e+)+dz (see hypothesis H(f) (i))

⇒ γ((u− e+)+) + µ‖(u− e+)+‖22 ≤ 0 (see hypothesis H(β))

⇒ c0‖(u− e+)+‖2 ≤ 0 (see (2.2))

⇒ u ≤ e+.

So, we have proved that

(3.8) u ∈ [0, e+] = {u ∈ H1(Ω) : 0 ≤ u(z) ≤ e+(z) for a.a. z ∈ Ω}, u 6= 0.

From (3.3), (3.5), (3.7) and (3.8) it follows that

(3.9)


−∆u(z) + ξ(z)u(z) = ϑ(z)u(z)q−1 − c1(z)u(z)r−1

for a.a. z ∈ Ω
∂u

∂n
+ β(z)u = 0 on ∂Ω

(see Papageorgiou–Radulescu [8]), which implies u ∈ H1(Ω) is a positive solution

of (3.4). Let

a(z) =


0 if u(z) ≤ η̂

2
,

ϑ(z)

u(z)2−q − c1(z)u(z)r−2 − ξ(z) if
η̂

2
< u(z),

and

b(z) =


ϑ(z)u(z)q−1 − c1(z)u(z)r−1 − ξ(z)u(z) if u(z) ≤ η̂

2
,

0 if
η̂

2
< u(z).
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Evidently a, b ∈ Ls(Ω) (see hypotheses H(ξ),H(ϑ)) and from (3.9) we have−∆u(z) = a(z)u(z) + b(z) for a.a. z ∈ Ω,
∂u

∂n
+ β(z)u = 0 on ∂Ω.

Then, from Wang [14] (see Lemmas 5.1 and 5.2), we have u ∈ C+\{0}. Moreover,

from (3.9) it follows that

∆u(z) ≤ (c1 + ξ+(z))u(z) ≤ (c1 + ‖ξ+‖∞)u(z) for a.a. z ∈ Ω

(see hypotheses H(ξ),H(ϑ)), implies u ∈ D+ (by the strong maximum principle).

Next we show that this positive solution is in fact unique. So, suppose

that ũ ∈ H1(Ω) is another positive solution of (3.4). As above, we show that

ũ ∈ [0, τ ] ∩D+. We have, for all h ∈ H1(Ω),

(3.10) 〈A(u), h〉+

∫
Ω

ξ(z)uh dz +

∫
∂Ω

β(z)uh dσ

=

∫
Ω

[ϑ(z)uq−1 − c1(z)ur−1]h dz,

(3.11) 〈A(ũ), h〉+

∫
Ω

ξ(z)ũh dz +

∫
∂Ω

β(z)ũh dσ

=

∫
Ω

[ϑ(z)ũq−1 − c1(z)ũr−1]h dz.

In (3.10) we choose h = ũ ∈ H1(Ω) and in (3.11) we choose h = u ∈ H1(Ω). We

obtain

(3.12)

∫
Ω

(∇u),∇ũ)RN dz +

∫
Ω

ξ(z)uũ dz +

∫
∂Ω

β(z)uũ dσ

=

∫
Ω

[ϑ(z)uq−1 − c1(z)ur−1]ũ dz,

(3.13)

∫
Ω

(∇ũ,∇u))RN dz +

∫
Ω

ξ(z)ũu dz +

∫
∂Ω

β(z)ũu dσ

=

∫
Ω

[ϑ(z)ũq−1 − c1(z)ũr−1]u dz.

We subtract (3.13) from (3.12) and have∫
Ω

[
ϑ(z)

(
1

u2−q −
1

ũ2−q

)
− c1(z)

(
ur−2 − ũr−2

)]
uũ dz = 0

⇒ u = ũ (recall that q < 2 < r)

⇒ u ∈ D+ is the unique positive solution of problem (3.4).

Note that problem (3.4) is odd. So, we infer that v = −u ∈ [−e+, 0] ∩ (−D+) is

the unique negative solution of problem (3.4). �
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We will use the solutions from Proposition 3.3 to produce a lower (resp.

upper) bound for the positive (resp. negative) solutions of problem (1.1). So, let

S+ = {u ∈ H1(Ω) : u is a positive solution of problem (1.1) in [0, η̂]},

S− = {u ∈ H1(Ω) : u is a negative solution of problem (1.1) in [−η̂, 0]}.

Proposition 3.4. If hypotheses H(ξ),H(ϑ),H(β),H(f) hold, then u ≤ u for

all u ∈ S+ and v ≤ v for all v ∈ S−.

Proof. Let u ∈ S+. We introduce the following Carathéodory function:

(3.14) g̃+(z, x) =


0 if x < 0,

ĝ(z, x) if 0 ≤ x ≤ u(z),

ĝ(z, u(z)) if u(z) < x

with ĝ(z, x) from (3.5). We set

G̃+(z, x) =

∫ x

0

g̃+(z, s) ds

and consider the C1-functional ψ̃+ : H1(Ω)→ R defined by

ψ̃+(u) =
1

2
γ(u) +

µ

2
‖u‖22 −

∫
Ω

G̃+(z, u) dz for all u ∈ H1(Ω).

From (2.2), (3.5) and (3.14) it follows that ψ̃+ is coercive. Also, it is sequentially

weakly lower semicontinuous. So, we can find ũ ∈ H1(Ω) such that

(3.15) ψ̃+(ũ) = inf
[
ψ̃+(u) : u ∈ H1(Ω)

]
.

As before (see the proof of Proposition 3.3), since q < 2 < r, we have

ψ̃+(ũ) < 0 = ψ̃+(0) ⇒ ũ 6= 0.

From (3.15) we have

ψ̃′+(ũ) = 0

⇒ 〈A(ũ), h〉+

∫
Ω

(ξ(z) + µ)ũh dz +

∫
∂Ω

β(z)ũh dσ(3.16)

=

∫
Ω

g̃+(z, ũ)h dz, for all h ∈ H1(Ω).

In (3.16) first we choose h = −ũ− ∈ H1(Ω) and obtain

γ(ũ−)+µ‖ũ−‖22 = 0 (see (3.14)),

⇒ c0‖ũ−‖2 ≤ 0 (see (2.2)),

⇒ ũ ≥ 0, ũ 6= 0.
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Next in (3.16) we choose h = (ũ− u)+ ∈ H1(Ω). Then

〈A(ũ),(ũ− u)+〉+

∫
Ω

(ξ(z) + µ)ũ(ũ− u)+ dz +

∫
∂Ω

β(z)ũ(ũ− u)+ dσ

=

∫
Ω

ĝ(z, u)(ũ− u)+ dz (see (3.14))

=

∫
Ω

[ϑ(z)uq−1 − c1(z)ur−1 + µu](ũ− u)+ dz

(see (3.3), (3.5) and recall that u ∈ [0, τ ])

≤
∫

Ω

[ϑ(z)uq−1 + f(z, u) + µu](ũ− u)+ dz (see (3.2))

= 〈A(u), (ũ− u)+〉+

∫
Ω

(ξ(z) + µ)u(ũ− u)+ dz

+

∫
∂Ω

β(z)u(ũ− u)+ dσ (since u ∈ S+),

⇒ γ((ũ− u)+) + µ‖(ũ− u)+‖22 ≤ 0,

⇒ c0‖(ũ− u)+‖2 ≤ 0 (see (2.2))

⇒ ũ ≤ u.

So, we have proved that

(3.17) ũ ∈ [0, u] = {v ∈ H1(Ω) : 0 ≤ v(z) ≤ u(z) for a.a. z ∈ Ω}, ũ 6= 0.

From (3.3), (3.5), (3.14) and (3.17) it follows that−∆ũ(z) + ξ(z)ũ(z) = ϑ(z)ũ(z)q−1 − c1(z)ũ(z)r−1 for a.a. z ∈ Ω,
∂ũ

∂n
+ β(z)ũ = 0 on ∂Ω, ũ 6= 0

(see Papageorgiou–Radulescu [8]), which implies ũ = u ∈ D+ (see Proposi-

tion 3.3) and hence u ≤ u for all u ∈ S+ (see (3.17)).

In a similar fashion we show that v ≤ v for all v ∈ S−. �

Using these bounds we can produce extremal constant sign solutions for

problem (1.1), that is, a smallest element in S+ and a biggest element in S−.

Proposition 3.5. If hypotheses H(ξ),H(ϑ),H(β),H(f) hold, then there ex-

ists u∗ ∈ S+ ⊆ [0, e+] ∩ D+ such that u∗ ≤ u for all u ∈ S+ and there exists

v∗ ∈ S− ⊆ [−e+, 0] ∩ (−D+) such that v ≤ v∗ for all v ∈ S−.

Proof. Invoking Lemma 3.10 of Hu and Papageorgiou [4, p. 178], we can

find {un}n≥1 ⊆ S+ such that

inf S+ = inf
n≥1

un.
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We have

(3.18) 〈A(un), h〉+

∫
Ω

ξ(z)unh dz +

∫
∂Ω

β(z)unh dσ

=

∫
Ω

[ϑ(z)uq−1
n + f(z, un)]h dz for all h ∈ H1(Ω), all n ∈ N.

Since un(z) ∈ [0, τ ] for all z ∈ Ω, all n ∈ N, from (3.18) it follows that

{un}n≥1 ⊆ H1(Ω) is bounded.

(Just choose h = un ∈ H1(Ω) in (3.18) and use hypotheses H(ξ),H(ϑ),H(β) and

H(f) (i).) So, we may assume that

(3.19) un
w−→ u∗ in H1(Ω) and un → u∗ in Lr(Ω) and in L2(∂Ω).

If in (3.18) we pass to the limit as n→ +∞ and use (3.19), then

(3.20) 〈A(u∗), h〉+

∫
Ω

ξ(z)u∗h dz +

∫
∂Ω

β(z)u∗h dσ

=

∫
Ω

[ϑ(z)uq−1
∗ − c1(z)ur−1

∗ ]h dz for all h ∈ H1(Ω).

From Proposition 3.4 we know that u ≤ un for all n ∈ N, which implies

(3.21) u ≤ u∗ (see (3.19)).

From (3.20) and (3.21) it follows that

u∗ ∈ S+ ⊆ [0, e+] ∩D+ and u∗ = inf S+.

Similarly, we produce

v∗ ∈ S− ⊆ [−e+, 0] ∩ (−D+) and v∗ = supS−. �

Now we are ready to produce a whole sequence of distinct nodal solutions

for problem (1.1).

Theorem 3.6. If hypotheses H(ξ), H(ϑ), H(β), H(f) hold, then there exists

a whole sequence {un}n≥1 ⊆ C1(Ω) of distinct nodal solutions for problem (1.1)

such that un → 0 in C1(Ω).

Proof. Let u∗ ∈ D+ and v∗ ∈ −D+ be the two extremal constant sign solu-

tions of problem (1.1) produced in Proposition 3.5. We introduce the following

Carathéodory function:

(3.22) f̂(z, x) =



ϑ(z)|v∗(z)|q−2v∗(z) + f(z, v∗(z)) + µv∗(z)

if x < v∗(z),

ϑ(z)|x|q−2x+ f(z, x) + µx if v∗(z) ≤ x ≤ u∗(z),
ϑ(z)u∗(z)

q−1 + f(z, u∗(z)) + µu∗(z)

if u∗(z) < x.
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We set F̂ (z, x) =
∫ x

0
f̂(z, s) ds and consider the C1-functional ϕ̂ : H1(Ω) → R

defined by

ϕ̂(u) =
1

2
γ(u) +

µ

2
‖u‖22 −

∫
Ω

F̂ (z, u) dz for all u ∈ H1(Ω).

Claim. Kϕ̂ = {u ∈ H1(Ω) : ϕ̂′(u) = 0} ⊆ [v∗, u∗] ∩ C1(Ω).

Let u ∈ Kϕ̂. Then, for all h ∈ H1(Ω), ϕ̂′(u) = 0 implies

(3.23) 〈A(u), h〉+

∫
Ω

(ξ(z) + µ)uh dz +

∫
∂Ω

β(z)uh dσ =

∫
Ω

f̂(z, u)h dz.

In (3.23) we choose h = (u− u∗)+ ∈ H1(Ω). Then

〈A(u),(u− u∗)+〉+

∫
Ω

(ξ(z) + µ)u(u− u∗)+ dz +

∫
∂Ω

β(z)u(u− u∗)+ dσ

=

∫
Ω

f̂(z, u)(u− u∗)+ dz

=

∫
Ω

[ϑ(z)uq−1
∗ + f(z, u∗) + µu∗](u− u∗)+ dz (see (3.22))

= 〈A(u∗), (u− u∗)+〉+

∫
Ω

(ξ(z) + µ)u∗(u− u∗)+ dz

+

∫
∂Ω

β(z)u∗(u− u∗)+ dσ (since u∗ ∈ S+),

⇒ γ((u− u∗)+) + µ‖(u− u∗)+‖22 ≤ 0,

⇒ c0‖(u− u∗)+‖2 ≤ 0 (see (2.2)),

⇒ u ≤ u∗.

Similarly, if in (3.23) we choose h = (v∗ − u)+ ∈ H1(Ω), then we show that

v∗ ≤ u. Therefore, we have proved that

u ∈ [v∗, u∗] = {v ∈ H1(Ω) : v∗(z) ≤ v(z) ≤ u∗(z) for a.a. z ∈ Ω}.

Moreover, using the regularity theory of Wang [14], we conclude that

Kϕ̂ ⊆ [v∗, u∗] ∩ C1(Ω).

This proves the claim.

On account of this claim, we infer that the elements of Kϕ̂ \{0, u∗, v∗} are all

nodal solutions of problem (1.1). Let m0 = min
{

min
Ω
u∗,min

Ω
(−v∗)

}
> 0 (recall

that u∗ ∈ D+ and v∗ ∈ −D+). Hypothesis H(f) (ii) implies that we can find

c3 ∈ Ls(Ω) and δ ∈ (0,m0) such that

f(z, x)x ≥ −c3(z)|x|r for a.a. z ∈ Ω, all |x| ≤ δ,(3.24)

⇒ F (z, x) ≥ −c3(z)

r
|x|r for a.a. z ∈ Ω, all |x| ≤ δ.
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Let Ym (m ∈ N) be an m-dimensional subspace of H1(Ω). All norms on Ym are

equivalent. So, we can find ρm ∈ (0, 1) such that

(3.25) u ∈ Ym and ‖u‖ ≤ ρm ⇒ |u(z)| ≤ δ for a.a. z ∈ Ω.

Therefore for u ∈ Ym with ‖u‖ ≤ ρm we have

ϕ̂(u) =
1

2
γ(u)− 1

q

∫
Ω

ϑ(z)u2 dz −
∫

Ω

F (z, u) dz(3.26)

(see (3.22) and (3.25))

≤ 1

2
γ(u)− 1

q

∫
Ω

ϑ(z)u2 dz +
ĉ3
r
‖u‖r for some ĉ3 > 0 (see (3.24))

≤ 1

2
‖∇u‖22 +

1

2

∫
Ω

ξ+(z)u2 dz

+
1

2

∫
∂Ω

β(z)u2 dσ +
ĉ3
r
‖u‖rr −

1

q

∫
Ω

ϑ(z)u2 dz

≤ c4‖u‖2 −
1

q

∫
Ω

ϑ(z)|u|q dz for some c4 > 0

(see hypotheses H(ξ),H(β) and recall 2 < r, ρm < 1).

Consider the functional k : H1(Ω)→ R defined by

k(u) = c4‖u‖2 −
1

q

∫
Ω

ϑ(z)|u|q dz for all u ∈ H1(Ω).

Suppose that {un}n≥1 ⊆ H1(Ω) is a sequence such that

(3.27) un ∈ Ym for all n ∈ N and un → 0 in H1(Ω).

Let yn = un/‖un‖ for all n ∈ N. We have ‖yn‖ = 1 for all n ∈ N and

(3.28)
k(un)

‖un‖q
≤ c4‖un‖2−q −

1

q

∫
Ω

ϑ(z)|yn|q dz for all n ∈ N.

We have {yn}n≥1 ⊆ Ym and ‖yn‖ = 1 for all n ∈ N. The finite dimensionality of

Ym implies that at least for a subsequence we have

(3.29) yn → y in H1(Ω) and ‖y‖ = 1.

Passing to the limit as n→ +∞ in (3.28) and using (3.27) and (3.29), we obtain

lim sup
n→+∞

k(un)

‖un‖q
≤ −1

q

∫
Ω

ϑ(z)|y|q dz < 0

(recall q < 2 and see hypothesis H(ϑ) and (3.29)). This fact in conjunction with

(3.26), imply that if we take ρm ∈ (0, 1) even smaller if needed, then

sup
[
ϕ̂(u) : u ∈ Ym, ‖u‖ = ρm

]
< 0.

Clearly, ϕ̂ is coercive (see (2.2) and (3.22)). So, it satisfies the PS-condition (see

Marano and Papageorgiou [6]) and it is bounded below. Moreover, ϕ̂ is even
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(see hypothesis H(f) (i)) and ϕ̂(0) = 0. So, we can apply Theorem 2.1 and find

a sequence {un}n≥1 ⊆ H1(Ω) such that

ϕ̂′(un) = 0, ϕ̂(un) < 0 for all n ∈ N and un → 0.

On account of Claim, we have {un}n≥1 ⊆ [v∗, u∗] ∩ C1(Ω) for all n ∈ N.

The extremality of u∗, v∗ implies that {un}n≥1 are smooth nodal solutions of

problem (1.1). Moreover, from Wang [14], we know that we can find α ∈ (0, 1)

and c5 > 0 such that

un ∈ C1,α(Ω) and ‖un‖C1,α(Ω) ≤ c5 for all n ∈ N.

The compact embedding of C1,α(Ω) into C1(Ω) implies that un → u in C1(Ω).�

Remark 3.7. As the referee kindly pointed out the second condition in

hypothesis H(f) (i) can be dropped. In fact, if this condition is not present,

using a cut-off technique we can always transform the problem to an equivalent

one in which the perturbation term f satisfies that second condition in H(f) (i).

In any case we need to go through the previous argument to establish that the

sequence of solutions we produce are nodal. So, essentially there is no loss of

generality in assuming from the beginning that condition.

If the coefficient ϑ of the concave term is indefinite (that is, sign changing),

then we can still have a sequence of distinct nontrivial smooth solutions con-

verging to zero in C1(Ω). However, we can not claim that these solutions are

nodal.

Now the condition on the coefficient ϑ is the following:

H(ϑ)′ ϑ ∈ L∞(Ω) and there exist U ⊂ Ω open such that ϑ(z) > 0 for almost

all z ∈ U .

Theorem 3.8. If hypotheses H(ξ),H(ϑ)′,H(β),H(f) hold, then there exists

a whole sequence {un}n≥1 ⊆ C1(Ω) of distinct nontrivial solutions of problem

(1.1) such that un → 0 in C1(Ω).

Proof. Let k : Ω× R→ R be the Carathéodory function defined by

(3.30) k(z, x) =



−ϑ(z)e+(z)q−1 − f(z, e+(z))− µe+(z)

if x < −e+(z),

ϑ(z)|x|q−2x+ f(z, x) + µx if − e+(z) ≤ x ≤ e+(z),

ϑ(z)e+(z)q−1 + f(z, e+(z)) + µe+(z)

if e+(z) < x.

Here µ > 0 is as in (2.2). We set K(z, x) =
∫ x

0
k(z, s) ds and consider the

C1-functional ϕ0 : H1(Ω)→ R defined by

ϕ0(u) =
1

2
γ(u) +

µ

2
‖u‖22 −

∫
Ω

K(z, u) dz for all u ∈ H1(Ω).
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From (2.2) and (3.30) it is clear that ϕ0 is coercive. So, ϕ0 is bounded below

and satisfies the PS-condition. Also, ϕ0 is even and ϕ0(0) = 0.

Let m ∈ N and choose {wi}mi=1 ⊆ C1
c (U) linearly independent. We set

Ym = span{wi}mi=1.

Then as before (see the proof of Theorem 3.6), using hypothesis H(f) (ii), we

have

ϕ0(u) ≤ c6‖u‖2 −
1

q

∫
U

ϑ(z)|u|q dz

for some c6 > 0 and all u ∈ Ym with ‖u‖m ≤ ρm ∈ (0, 1).

By hypothesis H(ϑ)′, ϑ|U > 0 and so as in the proof of Theorem 3.6, by

choosing ρm ∈ (0, 1) even smaller if necessary, we have

(3.31) sup[ϕ0(u) : u ∈ Ym, ‖u‖ = ρm] < 0.

Claim. Kϕ0
= {u ∈ H1(Ω) : ϕ′0(u) = 0} ⊆ [−e+, e+] ∩ C1(Ω).

Let u ∈ Kϕ0
. Then ϕ′0(u) = 0, which implies

(3.32) 〈A(u), h〉+

∫
Ω

(ξ(z) + µ)uh dz +

∫
∂Ω

β(z)uh dσ =

∫
Ω

k(z, u)h dz

for all h ∈ H1(Ω). In (3.32) we choose h = (u− e+)+ ∈ H1(Ω). Then

〈A(u),(u− e+)+〉+

∫
Ω

(ξ(z) + µ)u(u− e+)+ dz +

∫
∂Ω

β(z)u(u− e+)+ dσ

=

∫
Ω

k(z, u)(u− e+)+ dz

=

∫
Ω

[ϑ(z)eq−1
+ + f(z, e+) + µe+](u− e+)+ dz (see (3.30))

≤〈A(e+), (u− e+)+〉

+

∫
Ω

(ξ(z) + µ)e+(u− e+)+ dz +

∫
∂Ω

β(z)e+(u− e+)+ dσ

(see hypotheses H(β),H(f) (i)) which implies

γ((u− e+)+)+µ‖(u− e+)+‖22 ≤ 0,

⇒ c0‖(u− e+)+‖2 ≤ 0 (see (2.2)),

⇒ u ≤ e+.

Similarly, choosing h = (−e+ − u)+ ∈ H1(Ω) in (3.32), we show that −e+ ≤ u.

Moreover, from the regularity theory of Wang [14], we have that u ∈ C1(Ω).

Therefore Kϕ0
⊆ [−τ, τ ] ∩ C1(Ω) and this proves the claim.

Then (3.31), Claim and the properties of ϕ0 mentioned in the beginning of

the proof, permit the use of Theorem 2.1. So, we can find a sequence {un}n≥1 ⊆
H1(Ω) such that

(3.33) un ∈ Kϕ0 , ϕ0(un) < 0 for all n ∈ N, un → 0 in H1(Ω).
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From Claim and (3.30) we have that

{un}n≥1 ⊆ C1(Ω) are solutions of (1.1).

Moreover, (3.33) and the results of Wang [14] (Lemmas 5.1 and 5.2) imply that

un → 0 in C1(Ω). �
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