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GENERALIZED RECURRENCE

IN IMPULSIVE SEMIDYNAMICAL SYSTEMS

Boyang Ding — Changming Ding

Abstract. We aim to introduce the generalized recurrence into the theory

of impulsive semidynamical systems. Similarly to Auslander’s construction
in [J. Auslander, Generalized recurrence in dynamical systems, Contrib.

Differential Equations 3 (1964), 65–74], we present two different character-

izations, respectively, by Lyapunov functions and higher prolongations. In

fact, we show that if the phase space is a locally compact separable metric
space, then the generalized recurrent set is the same as the quasi prolon-

gational recurrent set. Also, we see that many new phenomena appear for

the impulse effects in the semidynamical system.

1. Introduction

Since at least the time of Poisson, mathematicians have pondered the notion

of recurrence for differential equations. Solutions that exhibit recurrent behavior

provide insight into the behavior of general solutions. In the theory of dynam-

ical systems, the different notions of recurrence all express the idea of a point

returning to itself, in some sense, for arbitrarily large time. Using continuous

real valued functions on the phase space, Auslander [1] introduced the concept

of generalized recurrence in dynamical systems. In the literature, the general-

ized recurrence is also called to be the Auslander recurrence or prolongational

recurrence. The generalized recurrent set contains periodic points, recurrent
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(or Poisson stable) points and non-wandering points. It is known that the gen-

eralized recurrence is a very important concept in the theory of stabilities, for

example, Nitecki [15] showed the role of generalized recurrence in a completely

unstable flow, and Peixoto [16] perturbed a vector field with a non-periodic pro-

longational recurrent point to get a periodic orbit. Recently, in [9] we have used

prolongational recurrence to generalize Birkhoff center and its depth.

An impulsive semidynamical system is a discontinuous semidynamical sys-

tem, which is a natural generalization of a classical dynamical system. Systems

with impulses may present many interesting and unexpected phenomena such

as ‘beating’, ‘merging’ and ‘noncontinuation of solutions’. Since an impulsive

system admits abrupt perturbations, its dynamical behavior is much richer than

that of the corresponding system. Kaul [11] began to investigate limit sets and

the periodicity of impulsive orbits. Later, using a discrete dynamical system

associated to the given impulsive semidynamical system, he studied recursive

properties in [12]. Ciesielski applied his section theory to obtain the continuity

of impulsive time functions and stabilities in [4], [5]. The second author of this

paper presented some results on the structure of limit sets in [7], [8]. Now, the

theory of impulsive systems is an important and flourishing area of investigation.

The aim of this paper is to introduce the notion of generalized recurrence

for impulsive dynamical systems. Since there exist impulse effects in the impul-

sive systems, analogous results to those established by Auslander in [1] in the

impulsive case are not true, our examples also show that many new phenomena

occur. In this paper, we will define two different prolongational recurrent sets,

and show that if the phase space is a locally compact separable metric space,

the generalized recurrent set is the same as the quasi prolongational recurrent

set (for definition, see Section 4).

This paper is organized as follows. In Section 2, we recall the definition

of an impulsive dynamical system, and fix some notations that will be used in

the sequel. In Section 3, following Auslander, we use Lyapunov functions of

an impulsive system to define the generalized recurrence. Finally, in Section 4,

we introduce the high prolongations and present their fundamental properties,

which lead to a variant characterization of generalized recurrence.

2. Impulsive dynamics

Throughout the paper, X = (X, d) denotes a metric space with metric d. For

a subset A ⊆ X, A denotes the closure of A. Let B(x, r) = {y ∈ X : d(x, y) < r}
be the open ball with center x and radius r > 0. Let R be the real line, and R+

be the subset of R consisting of nonnegative real numbers.

A semidynamical system (or semiflow) on X is a triple (X,π,R+), where π

is a continuous mapping from X × R+ onto X satisfying the following axioms:
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(1) π(x, 0) = x for each x ∈ X,

(2) π(π(x, t), s) = π(x, t+ s) for each x ∈ X and t, s ∈ R+.

We often denote a semidynamical system (X,π,R+) by (X,π). Also, for

brevity, we write x · t = π(x, t), and let A · T = {x · t : x ∈ A, t ∈ T} for

A ⊆ X and T ⊆ R+. If either A or T is a singleton, i.e. A = {x} or T = {t},
then we simply write x · T and A · t in place of {x} · T and A · {t}, respectively.

For any x ∈ X, the function πx : R+ → X defined by πx(t) = π(x, t) is clearly

continuous, which is called the trajectory of x. The set x · R+ is said to be the

(positive) orbit of x. In the above definition, replacing R+ by R, we get the

notion of a dynamical system (or flow). For elementary properties of dynamical

systems and semidynamical systems, the reader is referred to [2], [3].

Let M be a nonempty closed subset in X and Ω = X \M . Let I : M → Ω

be a continuous function and I(M) = N . If x ∈M , we shall denote I(x) by x+

and say that x jumps to x+. Meanwhile, I and M are said to be an impulsive

function and an impulsive set, respectively. For each x ∈ Ω, by M+(x) we mean

the set x · R+ ∩M . We can define a function φ : Ω→ R+ ∪ {+∞} by

φ(x) =

s if x · s ∈M and x · t 6∈M for t ∈ [0, s),

+∞ if M+(x) = ∅.

In general, φ : Ω→ R+ ∪ {+∞} is not continuous. Ciesielski [4] has established

some easy conditions to guarantee the continuity of φ. In this paper, we always

assume that φ is a continuous function on Ω.

Now, we recall the notion of an impulsive semidynamical system (Ω, π,R+;

M, I), which is defined by portraying the trajectory of each point in Ω. The

impulsive trajectory of x ∈ Ω is an Ω-valued function π̃x defined on a subset

of R+. If M+(x) = ∅, then φ(x) = +∞, and we set π̃x(t) = x · t for all t ∈ R+.

If M+(x) 6= ∅, it is easy to see that there is a positive number t0 such that

x · t0 = x1 ∈M and x · t 6∈M for 0 ≤ t < t0. Thus, we define π̃x on [0, t0] by

π̃x(t) =

x · t for 0 ≤ t < t0,

x+1 for t = t0,

where φ(x) = t0 and x+1 = I(x1) ∈ Ω.

Since t0 < +∞, we continue the process by starting with x+1 . Similarly, if

M+(x+1 ) = ∅, i.e. φ(x+1 ) = +∞, we define π̃x(t) = x+1 · (t− t0) for t0 < t < +∞.

Otherwise, let φ(x+1 ) = t1 and x+1 · t1 = x2 ∈ M , then we define π̃x(t) on

[t0, t0 + t1] by

π̃x(t) =

x+1 · (t− t0) for t0 ≤ t < t0 + t1,

x+2 for t = t0 + t1,

where x+2 = I(x2).
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Thus, continuing inductively, the process above either ends after a finite

number of steps, whenever M+(x+n ) = ∅ for some n, or it continues infinitely, if

M+(x+n ) 6= ∅ for n = 1, 2, . . ., and π̃x is defined on the interval [0, T (x)), where

T (x) =
∞∑
i=0

ti. We call {ti} the impulsive intervals of π̃x, and call{
tn =

n∑
i=0

ti

∣∣∣∣ n = 0, 1, . . .

}
the impulsive times of π̃x. Obviously, this gives rise to either a finite or infinite

number of jumps at points {xn} for the trajectory π̃x. Having the trajectory

π̃x for each point x in Ω, we let π̃(x, t) = π̃x(t) for x ∈ Ω and t ∈ [0, T (x)),

and obtain a discontinuous system (Ω, π,R+;M, I), or (Ω, π̃), with the following

properties:

(i) π̃(x, 0) = x for x ∈ Ω,

(ii) π̃(π̃(x, t), s) = π̃(x, t+ s) for x ∈ Ω and t, s ∈ [0, T (x)), such that t+ s ∈
[0, T (x)).

We call (Ω, π,R+;M, I), or (Ω, π̃) with π̃ as defined above, an impulsive semi-

dynamical system associated with (X,π). For simplicity of exposition, in the

remainder of this paper we denote the trajectory π̃(x, t) by x∗ t. Thus, (ii) reads

(x ∗ t) ∗ s = x ∗ (t+ s). The set x ∗R+ is said to be the orbit of x, and sometimes

denoted by γ(x). Given x ∈ Ω, if M+(x) = ∅, the trajectory π̃x is continuous;

otherwise, it has discontinuities at a finite or infinite number of its impulsive

points {x+n }. At any such point, however, π̃x is continuous from the right.

From the point of view of an impulsive semidynamical system, the trajectories

that are of interest are those with an infinite number of discontinuities and with

[0,+∞) as the interval of definition. Following Kaul [11], we call them infinite

trajectories. For an impulsive system, Ciesielski [6] uses the time reparametriza-

tion to get an isomorphic system whose impulsive trajectories are global, i.e. the

resulting dynamics is defined for all positive times. In this paper, we do not deal

with the Zeno orbits, i.e. orbits that involve infinitely many resetting in finite

time. Hence, from now on we assume T (x) = +∞ for each x ∈ Ω.

Now, we recall some basic concepts in the impulsive systems, which will be

used in the sequel. A point x in Ω is a rest point if x ∗ t = x for every t ∈ R+.

Clearly, x ∈ Ω is a rest point of (Ω, π̃) if and only if it is a rest point of (X,π).

An orbit γ(x) is said to be periodic of period τ > 0 and order k if x ∗ R+ has k

components and τ is the least positive number such that x ∗ τ = x. A point x in

Ω is a non-wandering point, if for every neighborhood U of x and every T > 0,

U ∩ U ∗ t 6= ∅ for some t > T . The set of all non-wandering points is called the

non-wandering set of (Ω, π̃). A subset S of Ω is said to be positively invariant

if for any x ∈ S, γ(x) ⊆ S. Further, it is said to be invariant if it is positively

invariant and for any x ∈ S, t ∈ R+ there exists a y ∈ S such that y ∗ t = x.
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Clearly, a periodic orbit of (Ω, π̃) is an invariant closed set in Ω, and it is not

connected as long as k 6= 1.

We end this section with a lemma, which is proved in [8].

Lemma 2.1. Assume that {xn} is a sequence in Ω, convergent to a point

y ∈ Ω. Then for any t ≥ 0, there exists a sequence of real positive numbers {εn},
εn → 0+, such that xn ∗ (t+ εn)→ y ∗ t.

3. Generalized recurrence

In an impulsive semidynamical system (Ω, π̃), the notion of a Lyapunov func-

tion was introduced by Kaul in [12]. A function V : X → R is said to be a Lya-

punov function, if

(a) V is continuous in X,

(b) V (I(x)) ≤ V (x) for x ∈M ,

(c) V̇ (x) ≤ 0 for x ∈ X, where V̇ (x) = lim
t→0+

(V (x ∗ t)− V (x))/t.

Clearly, item (c) implies the monotonicity on orbits, i.e. V (x∗t) ≤ V (x) for every

t ≥ 0 and x ∈ Ω. In order to introduce the concept of generalized recurrence for

(Ω, π̃), we just use the monotonicity on orbits to define the Lyapunov function

as follows.

Definition 3.1. A continuous function f : Ω→ R is said to be a Lyapunov

function of (Ω, π̃), if it is decreasing along each orbit of (Ω, π̃), i.e. f(x∗t) ≤ f(x)

for all x ∈ Ω and t ∈ R+.

Let V denote the class of all Lyapunov functions of (Ω, π̃), and call it the

Lyapunov function family of π̃. Observe that if f ∈ V , then f is constant on

γ(x) for a non-wandering point x. To show this, let τ > 0. Since x is non-

wandering, there exist sequences pn → x and tn → +∞ such that pn ∗ tn → x.

By Lemma 2.1, let a sequence εn → 0+ be such that pn ∗ (τ + εn)→ x ∗ τ . For

n sufficiently large, we have tn > τ + 1, and then f(pn ∗ tn) ≤ f(pn ∗ (τ + εn)).

By the continuity of f , it follows that f(x) ≤ f(x ∗ τ). On the other hand,

f(x ∗ τ) ≤ f(x) is always true for f ∈ V , and therefore f(x ∗ τ) = f(x).

Definition 3.2. Let R = {x ∈ Ω : f(x ∗ t) = f(x) for all f ∈ V and t ≥ 0}.
The set R is called generalized recurrent set, and an element of R is said to be

a generalized recurrent point.

Lemma 3.3. In Ω, the generalized recurrent set R is a closed and positively

invariant set.

Proof. By the continuity of a Lyapunov function, R is closed. Let x ∈ R
and τ > 0. If f ∈ V and t > 0, then f((x∗τ)∗t) = f(x∗(τ+t)) = f(x) = f(x∗τ),

which implies that x ∗ τ ∈ R, and therefore R is positively invariant. �
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Note that R may not be invariant, as we can see in the following.

Example 3.4. Consider a dynamical system π on R2 defined by the dif-

ferential equations: ẋ = 0, ẏ = −(x2 + y2). Let X = {(x, y) ∈ R2 : x =

0 or 1/k, k = 1, 2, . . .} \ {(0, 0)}, M = {(x, 0) ∈ R2 : x = 1/k, k = 1, 2, . . .} is

a closed subset of X. Let Ω = X \M , define the impulsive function I : M → Ω

by I(1/k, 0) = (1/(k + 1), 1) for all k = 1, 2, . . . Then, we get an impulsive dy-

namical system (Ω, π̃). Now we define a continuous function from X to R as

follows:

v(x, y) =


y − 1 + x for 1 ≤ y,

x2

x+ 1
(y − 1) + x for 0 < y < 1,

y +
x

x+ 1
for y ≤ 0.

It is easy to see that in Ω, v(x, y) is a Lyapunov function of (Ω, π̃). Thus,

R = {(0, y) ∈ R2 : 0 < y ≤ 1} (see Theorem 3.6), it is positively invariant but

not invariant.

Lemma 3.5. Let a and b be real numbers with a < b. Let Va,b = {f ∈ V :

a ≤ f(x) ≤ b for all x ∈ Ω}. Then x ∈ R if and only if f(x ∗ t) = f(x) for all

f ∈ Va,b and all t ≥ 0.

Proof. If x ∈ R, then f(x ∗ t) = f(x) for all f ∈ V and t ≥ 0. Since

Va,b ⊂ V , it is obviously true that f(x ∗ t) = f(x) for all f ∈ Va,b and t ≥ 0.

Next, given an x ∈ Ω, assume that f(x ∗ t) = f(x) for all f ∈ Va,b and t ≥ 0.

Let f ∈ V and t ≥ 0. Then, we have −π/2 ≤ arctan f(y) ≤ π/2 for each y ∈ Ω.

Clearly, there exist real numbers d and c > 0 such that c arctan f+d ∈ Va,b, which

implies that c arctan f(x ∗ t) + d = c arctan f(x) + d. Therefore, f(x ∗ t) = f(x)

is true for f ∈ V and t ≥ 0, it is x ∈ R. �

Theorem 3.6. Let X be a locally compact separable metric space. Then,

there is an f in V with the following properties:

(a) x ∈ R if and only if f is constant on γ(x);

(b) if x 6∈ R and t > 0, then f(x ∗ t) < f(x).

Proof. Since Ω is an open subset of the metric space X, Ω is also locally

compact and separable. Let C(Ω) denote the continuous real valued functions

on Ω, provided with the topology of uniform convergence on compact sets (i.e.

the compact-open topology). Then, C(Ω) is a separable metric space (see [17,

p. 271, Theorem 7]), and so is V−1,1. Let {fn : n = 1, 2, . . .} be a countable dense

set in V−1,1. Clearly, x ∈ R if and only if fn(x∗t) = fn(x) for all n = 1, 2, . . . and

all t ≥ 0. Then, let f0 =
+∞∑
n=1

2−nfn, since |fn(x)| ≤ 1, it follows that f0 ∈ V−1,1

is continuous.
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Now, if x ∈ R, then f0(x ∗ t) = f0(x) for all t ≥ 0. Conversely, let f0(x ∗ t)
= f0(x) for all t ≥ 0, so we have

0 =

∞∑
n=1

2−n[fn(x ∗ t)− fn(x)].

Since fn(x ∗ t)− fn(x) ≤ 0 for each n = 1, 2, . . ., it follows that fn(x ∗ t) = fn(x)

for each n = 1, 2, . . . and t ≥ 0. Thus, we have x ∈ R. Finally, we consider the

case: x 6∈ R but f0 is constant on some segments of γ(x). In this case, there is

at least a t1 > 0 such that f0(x) > f0(x ∗ t1). Define

f(x) =

+∞∫
0

e−sf0(x ∗ s) ds.

It is easy to verify that f ∈ V−1,1 and has the required properties. �

4. Higher prolongations

In the impulsive system (Ω, π̃), let x ∈ Ω, the omega limit set of x is defined by

ω̃(x) = {y ∈ Ω : x∗tn → y for some tn → +∞}. The first prolongational set and

first prolongational limit set of x are defined, respectively, by D̃1(x) = {y ∈ Ω :

there are two sequences {xn} ⊆ Ω, {tn} ⊆ R+ such that xn → x and xn∗tn → y}
and J̃1(x) = {y ∈ Ω : there are two sequences {xn} ⊆ Ω, {tn} ⊆ R+ such that

xn → x, tn → +∞ and xn ∗ tn → y}. Clearly, ω̃(x) ⊆ J̃1(x) for each x ∈ Ω, and

also D̃1(x) = x ∗ R+ ∪ J̃1(x) holds. Note that ω̃(x), J̃1(x) and D̃1(x) are closed

and positively invariant, see [13].

Let X be the collection of all subsets of Ω, and M = {Γ : Γ is a map from

Ω to X }. For Γ ∈ M and A ∈ X , we define Γ(A) =
⋃
{Γ(x) : x ∈ A}. If n is

a positive integer, the map Γn : Ω → X is defined inductively by Γ1 = Γ and

Γn = Γ ◦ Γn−1, i.e., Γ1(x) = Γ(x) and Γn(x) = Γ(Γn−1(x)) for x ∈ Ω.

Now, we introduce two operators D and S on the collection M. If Γ ∈ M,

DΓ and S Γ are defined, respectively, by

DΓ(x) =
⋂
r>0

Γ(B(x, r)) and S Γ(x) =

+∞⋃
n=1

Γn(x) for x ∈ Ω.

It is easy to see that y ∈ DΓ(x) if and only if there are sequences {xn} and {yn}
with yn ∈ Γ(xn) such that xn → x and yn → y. Also, y ∈ S Γ(x) if and only if

there are points x = x0, x1, . . ., xm = y with xi ∈ Γ(xi−1) (i = 1, 2, . . . ,m), i.e.

y ∈ Γm(x). Obviously, D and S may be regarded as a ‘closure’ operator and a

‘transitizing’ operator on M, respectively. Let Γ1,Γ2 ∈M, if Γ1(x) ⊆ Γ2(x) for

all x ∈ Ω, then we write Γ1 ⊆ Γ2. Thus, if Γ1 ⊆ Γ2, it follows that DS Γ1 ⊆
DS Γ2. Also, for every Γ ∈M, we have Γ ⊆ DS Γ.

In the study of dynamics, the set valued maps ω̃, D̃1 and J̃1 are the most

important ones in M. Starting with D̃1, we use the operators D and S to
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define higher prolongational maps {D̃α} (α is an ordinal) as follows. By means of

transfinite induction, if α is a successor ordinal, then having defined D̃α−1, we set

D̃α = DS D̃α−1; if α is a limit ordinal, then having defined D̃β for every β < α,

we set D̃α = D
( ⋃
β<α

S D̃β

)
. Similarly, we can consider the higher prolongational

limit maps, which lead to the concept of prolongational recurrence. Let Γ = J̃1,

define J̃2 = DS J̃1. Inductively, if α is a successor ordinal, having defined J̃α−1
we set J̃α = DS J̃α−1; if α is a limit ordinal, having defined J̃β for each β < α

we set J̃α = D
( ⋃
β<α

S J̃β

)
. Clearly, for each ordinal α and x ∈ Ω, D̃α(x) and

J̃α(x) are closed sets. If β < α, then J̃β(x) ⊆ J̃α(x), i.e. J̃β ⊆ J̃α, also D̃β ⊆ D̃α.

Lemma 4.1. Suppose that Ω is a separable metric space. Then, there exists

a countable ordinal η such that J̃η(x) = J̃α(x) for all ordinals α > η. Also,

D̃ς(x) = D̃α(x) for all ordinals α > ς, where ς is a countable ordinal.

Proof. For x ∈ Ω, {J̃α(x) : α ≥ 1} is a class of nested closed sets, i.e.

J̃1(x) ⊆ J̃2(x) ⊆ . . . ⊆ J̃n(x) ⊆ . . . ⊆ J̃σ(x) ⊆ J̃σ+1(x) ⊆ . . ., where σ is the

first infinite ordinal number. From the definition of J̃α, it is easy to see that if

J̃ρ(x) = J̃ρ+1(x) for some ordinal ρ, then J̃ρ(x) = J̃µ(x) for all µ ≥ ρ. Thus,

by the Baire Category Theorem (see [14, p. 312] and [10, p. 249]), there exists a

countable ordinal η such that J̃η(x) = J̃α(x) for all ordinals α > η. The same

argument works for the case of higher prolongations D̃α(x). �

Clearly, if Ω is a separable metric space, there exists a sufficiently large

ordinal ς (e.g. the first uncountable ordinal) such that for all x ∈ Ω, J̃ς(x) =

J̃α(x) and D̃ς(x) = D̃α(x) for all α > ς. We write J̃∗ = J̃ς and D̃∗ = D̃ς . In the

following, our discussion is focused on J̃α, similar results hold for D̃α.

Lemma 4.2. Let α be an ordinal and x ∈ Ω. J̃α(x) is a positively invariant

set, also is J̃nα (x), where n is a positive integer.

Proof. We prove this lemma by transfinite induction. Let y ∈ J̃1(x), and

xn ∗ tn → y for xn → x and tn → +∞. For any t ≥ 0, it follows from Lemma 2.1

that there is a sequence of real positive numbers {εn}, εn → 0+, such that

xn ∗ (tn + t+ εn)→ y ∗ t. Hence, y ∗ t ∈ J̃1(x), and J̃1(x) is positively invariant.

Since J̃n1 (x) =
⋃
{J̃1(y) : y ∈ J̃n−11 (x)}, which is the union of positively invariant

sets, then J̃n1 (x) is also positively invariant. Now let α > 1 be an ordinal, and

suppose that the lemma is true for all β < α. Let y ∈ J̃α(x) and t ≥ 0. Let

xn → x, yn → y, where yn ∈ J̃knβn
(xn) (βn < α, kn a positive integer). By

the induction hypothesis, yn ∗ (t + εn) ∈ J̃knβn
(xn), where εn → 0+ such that

yn ∗ (t + εn) → y ∗ t. Thus, y ∗ t ∈ J̃α(x), and J̃α(x) is positively invariant. So

is J̃nα (x). �

Example 3.4 shows that J̃α(x) may not be an invariant set.
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Lemma 4.3. For any ordinal α ≥ 1, J̃α(x) ⊆ J̃α(x ∗ t) for all t ≥ 0.

Proof. We prove this lemma by transfinite induction. Let y ∈ J̃1(x) and

t ≥ 0. Let xn → x, xn ∗ tn → y for tn → +∞. Then, by Lemma 2.1, there is

a sequence of real positive numbers {εn}, εn → 0+, such that xn∗(t+εn)→ x∗t.
Since tn > t+εn for all n ≥ n0 for some n0, we have (xn∗(t+εn))∗(tn−t−εn) =

xn ∗ tn → y. Note that tn − t − εn → +∞, it follows that y ∈ J̃1(x ∗ t). Now,

suppose that the lemma is true for all β < α. Let y ∈ J̃α(x), and xn → x,

yn → y, where yn ∈ J̃knβn
(xn) (βn < α, kn a positive integer). Then, let εn → 0+

so that xn ∗(t+εn)→ x∗ t. By the induction hypothesis, yn ∈ J̃knβn
(xn ∗(t+εn)),

it implies y ∈ J̃α(x ∗ t). �

Note that J̃α(x ∗ t) may not be contained in J̃α(x).

Example 4.4. Consider a dynamical system π on R2 defined by the differ-

ential equations: ẋ = x(x − 1), ẏ = −y. Clearly, π has two rest points, a sink

(0, 0) and a saddle (1, 0). Let M = {(3, y) : y ∈ R}, and Ω = R2 \M .

Define the impulsive function I : M → Ω by I(3, y) = (1, 2). Thus, we get an

impulsive dynamical system (Ω, π̃).

Let p = (2, 0) and q = (1, 1), then q = p ∗ t0 for some t0 > 0. It is easy to

see that J̃1(p) = {(1, 0)} and J̃1(q) = {(x, 0) : 0 ≤ x < 3}. Hence, J̃1(p ∗ t0) is

not contained in J̃1(p).

Lemma 4.5. If y ∈ J̃α(x) and z ∈ J̃β(y), then z ∈ J̃λ+1(x), where λ =

max{α, β}.

Proof. For two ordinals ρ and %, if ρ < %, then we have J̃ρ ⊆ J̃%, i.e.

J̃ρ(x) ⊆ J̃%(x) for x ∈ Ω. It follows that J̃ρ(A) ⊆ J̃%(A) for any subset A ⊆ Ω.

Thus,

J̃β(y) ⊆ J̃β(J̃α(x)) ⊆ J̃λ(J̃λ(x)) ⊆ S J̃λ(x) ⊆ J̃λ+1(x).

So, we have z ∈ J̃λ+1(x). �

Observe that D̃1(x) = γ(x)∪ J̃1(x), its proof is straightforward. For the case

of dynamical systems, Auslander [1] established the formula Dα(x) = γ(x) ∪
Jα(x) for any ordinal α, however it is not true for the impulsive system (Ω, π̃).

Example 4.6. Consider a dynamical system π on R2 defined by the differ-

ential equations: ẋ = x, ẏ = −y. Clearly, π has a saddle O = (0, 0).

Let X = R2 \ {O}, and let the line M = {(2, y) : y ∈ R} be the impulsive

set. For Ω = X \M , define the impulsive function I : M → Ω by I(2, y) = (0, 1).

Thus, we get an impulsive dynamical system (Ω, π̃).

Let p = (1, 0), we have J̃1(p) = ∅ and D̃1(p) = γ(p) = [1, 2)×{0}∪{0}×(0, 1].

Further, it is easy to see that J̃2
1 (p) = ∅ and D̃2

1(p) = (−∞, 0)×{0}∪(0, 2)×{0}∪
{0} × (0, 1]. Hence, D̃2

1(p) 6= γ(x) ∪ J̃2
1 (p), it follows that D̃2(p) 6= γ(x) ∪ J̃2(p).
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However, we have the following new formula.

Lemma 4.7. Let α ≥ 2 be an ordinal, then D̃α(x) = γ(x) ∪ J̃α(γ(x)) for

x ∈ Ω.

Proof. First, we prove D̃n+1
1 (x) = γ(x) ∪ J̃n1 (γ(x)) ∪ J̃n+1

1 (x) for n ≥ 1 by

induction on n. Since J̃1(x) is positively invariant, γ(J̃1(x)) = J̃1(x). Also, it is

clear that J̃1(x) ⊆ J̃1(γ(x)) and J̃1(x) ⊆ J̃2
1 (x). Hence, we have

D̃2
1(x) = D̃1(γ(x) ∪ J̃1(x)) = γ(γ(x) ∪ J̃1(x)) ∪ J̃1(γ(x) ∪ J̃1(x))

= γ(x) ∪ γ(J̃1(x)) ∪ J̃1(γ(x)) ∪ J̃1(J̃1(x)) = γ(x) ∪ J̃1(γ(x)) ∪ J̃2
1 (x).

Suppose that D̃n
1 (x) = γ(x) ∪ J̃n−11 (γ(x)) ∪ J̃n1 (x) for n > 2. Then, by the

induction assumption, we have

D̃n+1
1 (x) = D̃1(γ(x) ∪ J̃n−11 (γ(x)) ∪ J̃n1 (x))

= γ(x) ∪ J̃n−11 (γ(x)) ∪ J̃n1 (x) ∪ J̃1(γ(x)) ∪ J̃n1 (γ(x)) ∪ J̃1(J̃n1 (x))

= γ(x) ∪ J̃n1 (γ(x)) ∪ J̃n+1
1 (x).

So, the above formula is true.

Next, we prove this lemma by transfinite induction. Note that J̃n1 (x) ⊆
J̃n1 (γ(x)) for n ≥ 1, it is clear to see that S D̃1(x) = γ(x)∪S J̃1(γ(x)). Also, from

γ(x) ⊆ γ(x)∪J̃1(γ(x)) ⊆ γ(x)∪J̃n1 (γ(x)), it follows that D̃2(x) = γ(x)∪J̃2(γ(x)).

By a similar argument as above, we have D̃k
2 (x) = γ(x) ∪ J̃k2 (γ(x)) for k ≥ 1.

Now, using the transfinite induction, we suppose that the equality D̃β(x) =

γ(x) ∪ J̃β(γ(x)) is true for all β < α. Then,

D̃2
β(x) = D̃β(γ(x) ∪ J̃β(γ(x)))

= γ(x) ∪ γ(J̃β(γ(x))) ∪ J̃β(γ(x)) ∪ J̃2
β(γ(x)) = γ(x) ∪ J̃2

β(γ(x)).

Similarly, we have D̃k
β(x) = γ(x)∪J̃kβ (γ(x)) for k ≥ 2. By the definition, it is easy

to see that S D̃β(x) = γ(x) ∪S J̃β(γ(x)). Thus, from γ(x) ⊆ γ(x) ∪ J̃α(γ(x)),

it follows that D̃α(x) = γ(x) ∪ J̃α(γ(x)). �

It is easy to see that x is a non-wandering point if and only if x ∈ J̃1(x).

Similarly, x ∈ J̃α(x) should imply some recurrent property. Hence, following

Auslander, we introduce the prolongational recurrence in the impulsive system

(Ω, π̃).

Definition 4.8. For each ordinal α, let Rα be the set {x ∈ Ω : x ∈ J̃α(x)},
which is called the α-order prolongational recurrent set. Then, define Rp =⋃
Rα, and Rp is said to be the prolongational recurrent set. An element of Rp

is called a prolongational recurrent point.
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A point x ∈ Ω is recurrent or Poisson stable if x ∈ ω̃(x). It is not difficult

to see that a recurrent point is non-wandering, in turn a non-wandering point

is prolongational recurrent. However, easy examples show the converse may not

be true.

Definition 4.9. For each ordinal α, let R∗α be the set {x ∈ Ω : x ∈
J̃α(γ(x))}, which is called the quasi α-order prolongational recurrent set. Then,

define R∗ =
⋃
R∗α, and R∗ is said to be the quasi prolongational recurrent set.

An element of R∗ is called a quasi prolongational recurrent point.

If x is a quasi prolongational recurrent point, it means that x goes along

the orbit and arrives at a point x ∗ t0, then goes back to itself in the sense of

prolongations. Clearly, an (α-order) prolongational recurrent point is a quasi

(α-order) prolongational recurrent point, but the converse is not true. In fact,

the point p = (1, 0) in Example 4.6 is a quasi prolongational recurrent point,

but not a prolongational recurrent point. It is easy to see that all rest points,

periodic points and non-wandering points are contained in Rp and R∗.
Clearly, D̃1(x) = J̃1(x) if and only if x ∈ J̃1(x), i.e. x is non-wandering.

We assert that for α ≥ 2, D̃α(x) = J̃α(γ(x)) if and only if x ∈ R∗α. Actually,

since J̃α(γ(x)) is positively invariant, x ∈ R∗α if and only if γ(x) ⊆ J̃α(γ(x)), by

Lemma 4.7 which is true if and only if D̃α(x) = J̃α(γ(x)).

Lemma 4.10. If f ∈ V and y ∈ D̃α(x), then f(y) ≤ f(x).

Proof. Let f ∈ V and y ∈ D̃1(x) = γ(x) ∪ J̃1(x). We only need consider

the case where y ∈ J̃1(x). Let xn → x, xn ∗ tn → y for tn → +∞. Since

f(xn ∗ tn) ≤ f(xn) for tn > 0, by the continuity of f we have f(y) ≤ f(x).

Next, if y ∈ D̃2(x) = γ(x) ∪ J̃2(γ(x)), we also need to consider the case

where y ∈ J̃2(γ(x)). Let y ∈ J̃2(x ∗ t) for some t ≥ 0. Then, there exist

sequences xn → x ∗ t and yn → y, where yn ∈ J̃kn1 (xn) (kn is a positive integer).

Let yn ∈ J̃1(z1), z1 ∈ J̃1(z2), . . . , zi−1 ∈ J̃1(zi), . . . , zkn−1 ∈ J̃1(xn). Clearly,

it follows that f(yn) ≤ f(z1) ≤ . . . ≤ f(zkn−1) ≤ f(xn). Hence, we obtain

f(y) ≤ f(x ∗ t) from the continuity of f . Since f(x ∗ t) ≤ f(x) for all t ≥ 0, we

have f(y) ≤ f(x).

Now, suppose that the lemma is true for all β < α, equivalently, if y ∈
J̃β(γ(x)) then f(y) ≤ f(x). Let y ∈ D̃α(x) = γ(x) ∪ J̃α(γ(x)), we just consider

the case y ∈ J̃α(γ(x)), or y ∈ J̃α(x ∗ t) for some t ≥ 0. Let xn → x ∗ t, yn → y,

where yn ∈ J̃knβn
(xn) (βn < α, kn a positive integer). Then, using a similar

argument as above and the induction hypothesis, we have f(yn) ≤ f(xn). So, it

follows that f(y) ≤ f(x ∗ t) ≤ f(x). �

In the following, let X be a locally compact separable metric space and so

is Ω. By a quasi order on Ω we mean a reflexive, transitive, but not necessarily
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anti-symmetric relation. We define the relation 4 on Ω by y 4 x if and only

if y ∈ D̃∗(x). Clearly, x ∈ D̃∗(x), so x 4 x. Next, if y 4 x and z 4 y, then

y ∈ D̃∗(x) and z ∈ D̃∗(y), it follows that z ∈ D̃∗(y) ⊂ D̃∗(D̃∗(x)) = D̃∗(x), or

z ∈ D̃∗(x). Thus, 4 is a closed quasi order on Ω. If x 4 y but not y 4 x, we

write x ≺ y. To show the relationship between R and R∗, we recall a topological

theorem established by Auslander in [1].

Theorem 4.11 (Auslander). Let Ω be a locally compact separable metric

space and let 4 be a closed quasi-order on Ω. Let x and y in Ω be such that

x 4 y does not hold. Then there is an f : Ω→ R such that

(a) f is continuous,

(b) if z 4 z′, then f(z) ≤ f(z′),

(c) f(y) < f(x).

Theorem 4.12. If X is a locally compact separable metric space, then R =

R∗. That is x ∈ R if and only if x ∈ R∗α(x) for some ordinal α.

Proof. Let x ∈ R∗α, and let f ∈ V . We have x ∈ J̃α(x ∗ τ) for some τ ≥ 0.

Since J̃α(x ∗ t) ⊆ J̃α(γ(x ∗ t)) ⊆ D̃α(x ∗ t) for all t ≥ 0, we have x ∈ D̃α(x ∗ t) for

t ≥ τ . Thus, Lemma 4.10 implies f(x) ≤ f(x ∗ t) for t ≥ τ .

Note that f(x ∗ t) ≤ f(x) is always true for all t ≥ 0, so f(x) = f(x ∗ t)
for t ≥ τ . If θ ∈ [0, τ ], then f(x ∗ τ) ≤ f(x ∗ θ) ≤ f(x). Thus, we obtain

f(x) = f(x ∗ t) for t ≥ 0, i.e. x ∈ R. We have shown that R∗ ⊆ R. Conversely,

observe that x ∗ t 4 x holds whenever x ∈ Ω and t > 0.

Now, we assert that if x 6∈ R∗ and t > 0 then x ∗ t ≺ x, i.e. if x 6∈ R∗

then x 4 x ∗ t does not hold. Otherwise, x 4 x ∗ t, that is x ∈ D̃∗(x ∗ t) =

γ(x ∗ t) ∪ J̃∗(γ(x ∗ t)).
Since x 6∈ R∗, it follows that x 6∈ γ(x∗t). If x ∈ J̃∗(γ(x∗t)), then x ∈ J̃∗(x∗t0)

for some t0 ≥ 0, it also means x ∈ R∗, which is a contradiction. Thus, by

Theorem 4.11, if x 6∈ R∗, then there exists an f ∈ V such that f(x ∗ t) < f(x)

for t > 0. This implies that x 6∈ R, so we have R ⊆ R∗. �
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