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PERIODIC SOLUTIONS

OF vdP AND vdP-LIKE SYSTEMS ON 3-TORI

Zalman Balanov — Edward Hooton — Adrian Murza

Abstract. Van der Pol equation (in short, vdP) as well as many its non-
symmetric generalizations (the so-called van der Pol-like oscillators (in

short, vdPl)) serve as nodes in coupled networks modeling real-life phe-

nomena. Symmetric properties of periodic regimes of networks of vdP/vdPl
depend on symmetries of coupling. In this paper, we consider N3 identical

vdP/vdPl oscillators arranged in a cubical lattice, where opposite faces are

identified in the same way as for a 3-torus. Depending on which nodes im-
pact the dynamics of a given node, we distinguish between DN ×DN ×DN -

equivariant systems and their ZN × ZN × ZN -equivariant counterparts.

In both settings, the local equivariant Hopf bifurcation together with the
global existence of periodic solutions with prescribed period and symmetry,

are studied. The methods used in the paper are based on the results rooted

in both equivariant degree theory and (equivariant) singularity theory.

1. Introduction

1.1. Subject and goal. The van der Pol equation (in short, vdP, cf. (2.1)),

originally introduced in [16] to study stable oscillations in electrical circuits, is
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very often considered as a starting point of applied nonlinear dynamics. An

important feature of equation (2.1) is that it respects the antipodal symme-

try. Different generalizations of vdP, which break this symmetry, have been

considered by many authors in connection to a wide range of applied problems

(in what follows, we will call these generalizations van der Pol-like equations

(in short, vdPl)). Examples of particular importance include the FitzHugh–

Nagumo model (see, for example, [14]) and the realistic kinetic model of the

chlorite-iodide-malonic acid reaction (see, for example, [7]). To be more con-

crete about the importance of considering vdPl systems with quadratic terms,

we refer to [1] and the references therein.

In real life models, vdP as well as vdPl serve as nodes in coupled networks.

Symmetries of the coupling have an impact on the symmetries of the actual

dynamics. In this paper, we will consider N3 oscillators arranged in a cubical

lattice, where opposite faces are identified in the same way as for a 3-torus. In

such a configuration, two aspects of the coupling are important: (i) which nodes

impact the dynamics of a given node (which we will call coupling topology), and

(ii) how a neighbouring node impacts a given node (which we will call coupling

structure). For the coupling topology, we consider the following two cases: (i)

all six neighbors of a given node impact on that node’s dynamics (we call such

a coupling bi-directional); (ii) only three neighbors of a given node impact on

that node’s dynamics (we call such a coupling uni-directional). In the case of bi-

directional coupling, the system respects a natural action of DN×DN×DN , while

in the case of uni-directional coupling the symmetry generated by κ is destroyed,

hence the total symmetry group is ZN ×ZN ×ZN (cf. [5] and references therein).

We will distinguish between two linear coupling structures, namely, for a given

node, either the x-variable of a neighbor or the y-variable of a neighbor is coupled

to the x variable of the specified node (compare (2.3) with (2.4)). We will call

these x-coupling and y-coupling, respectively.

The goal of this paper is three-fold, namely, in the settings introduced above,

we will: (i) establish the occurrence of the Hopf bifurcation, classify symmetric

properties of the bifurcating branches and estimate their number; (ii) study

stability of the corresponding periodic solutions, and (iii) investigate the existence

of periodic solutions with prescribed period and symmetry.

1.2. Results. Keeping in mind a wide spectrum of potential applications

in natural sciences and engineering, it is worthy to study the above mentioned

problems (occurrence, stability and existence) in all possible settings. The usual

dilemma of keeping a balance between Scylla of completeness and Charybdis of

reasonable size of the manuscript, resulted in our paper as follows:

(i) Although, using the methods developed in this paper, the occurrence/mul-

tiplicity estimates/symmetry classification of the Hopf bifurcation can be estab-
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lished for any combination of bi-directional/uni-directional vdP/vdPl x-coupled/

y-coupled systems, we only treat two cases, namely, that of bi-directionally y-

coupled vdP oscillators and uni-directionally x-coupled vdPl oscillators.

(ii) We provide an instability result for bi-directionally y-coupled vdP oscil-

lators and stability results for uni-directionally x-coupled vdPl oscillators.

(iii) We establish the existence of periodic solutions with prescribed period

and symmetry only in the case of bi-directionally y-coupled vdP oscillators.

1.3. Methods. The methods used in this paper are based on the results

rooted in both equivariant degree theory and (equivariant) singularity theory.

To be more specific:

(i) To treat the occurrence/multiplicity estimates/symmetric classification of

the Hopf bifurcation, we appeal to the abstract results presented in [4] (see also

[3], [13]).

(ii) The stability results are obtained in the framework of the theory pre-

sented in [11] (see also [8], [9]).

(iii) The main ingredient to establish the existence of periodic solutions with

prescribed period and symmetry is Theorem 6.2 which was presented in [4] and [2]

(see also [12]).

For the representation theory background, we refer to [6], [15].

1.4. Overview. After the introduction, the paper is organized as follows.

In Section 2, we formulate main results of the paper. Section 4 is devoted to

the proof of the main occurrence/multiplicity/symmetry results (Theorem 2.3

and 2.4). The proof (see Subsection 4.2) is based on an abstract Theorem 4.2

and equivariant spectral information collected in Subsections 3.1–3.3. We be-

lieve that several algebraic observations related to the computation of maximal

twisted orbit types in complexifications of tensor product representations (see

Subsection 3.3) may be interesting in their own. Section 5 contains the proof of

the instability result for system (2.3) (see Theorem 2.6) and stability result for

system (2.4) (see Theorem 2.7). The proof follows the standard lines (see [11],

Theorem 3.4.2, and [9]), and combines the spectral equavariant data from Sub-

sections 3.1–3.3 with the computations of the first Lyapunov coefficient from

Subsection 3.4. The proof of the existence result (see Theorem 2.8) is given in

Section 6, where one can also find an adapted version of the abstract existence

result given in [4], Theorem 12.7, and [2] (cf. Theorem 6.2). We conclude with

a short Appendix where several symbols frequently used in this paper to denote

some twisted groups are explained (cf. [4]).
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2. Main results

In this paper, we are interested in networks of identical vdP oscillators

(2.1)
ẋ = ν(ax− x3)− y,

ẏ = bx,

and vdP-like oscillators

(2.2)
ẋ = −y − x3 − x2 + ax,

ẏ = bx,

coupled in the symmetric configuration of a three-dimensional torus. To be

more precise, we consider N3 oscillators, where N is an odd number, with both

bi-directional coupling

(2.3)



ẋ(α,β,γ) = ν(ax(α,β,γ) − x3(α,β,γ))− y(α,β,γ)
+ δ(2y(α,β,γ) − y(α+1,β,γ) − y(α−1,β,γ))

+ ζ(2y(α,β,γ) − y(α,β+1,γ) − y(α,β−1,γ))

+ ε(2y(α,β,γ) − y(α,β,γ+1)y(α,β,γ−1)),

ẏ(α,β,γ) = bx(α,β,γ),

and uni-directional coupling

(2.4)



ẋ(α,β,γ) = − y(α,β,γ) − x3(α,β,γ) − x
2
(α,β,γ) + ax(α,β,γ)

+ δ(x(α,β,γ) − x(α+1,β,γ)) + ζ(x(α,β,γ) − x(α,β+1,γ))

+ ε(x(α,β,γ) − x(α,β,γ+1)),

ẏ(α,β,γ) = bx(α,β,γ).

Here x, y ∈ RN3

and their entries are indexed by the triple (α, β, γ) where

α, β, γ ∈ {1, . . . , N}, δ, ζ, ε ∈ R and ν, b > 0.

Remark 2.1. To avoid distinctions occurring due to the parity of N , we will

only consider the case when N is odd.

Definition 2.2. We will say that a periodic function x : R→ U with period

T has a (spatio-temporal) symmetry H < G× S1, if for every (g, eiθ) ∈ H and

g · x(t+ θT/2π) = x(t), for every t.

Theorem 2.3. For each fixed t = (t1, t2, t3), where t1, t2, t3 ∈ {1, . . . , n},
put

(2.5) Kt = 1+2δ(1−cos(2πt1/N))+2ζ(1−cos(2πt2/N))+2ε(1−cos(2πt3/N)).

If Kt > 0, then system (2.3) undergoes Hopf bifurcation as a passes 0. Further-

more, for each (Hϕ) ∈ S(t), there exist 8N3/|H1 ×H2 ×H3| branches of bifur-

cating non-constant periodic solutions of (2.3) with limit frequency ωt =
√
bKt
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and minimal symmetry (Hϕ) (here S(t) is the set of spatio-temporal symmetries

associated to t which is described in Subsection 3.3, formula (3.11)).

Theorem 2.4. For each fixed t = (t1, t2, t3), where t1, t2, t3 ∈ {1, . . . , N},
system (2.4) undergoes Hopf bifurcation as a passes

(2.6) azt = δ(1− cos(2t1π/N)) + ζ(1− cos(2t2π/N)) + ε(1− cos(2t3π/N)).

Furthermore, there exist a branch of bifurcating non-constant periodic solutions

of (2.4) with symmetry (Zn × Zn × Zn)(t1,t2,t3) and limit period

P 1
t =

∣∣∣∣ 4π

H +
√
H2 + 4b

∣∣∣∣,
and a branch with the same symmetry and limit period

P 2
t =

∣∣∣∣ 4π

H −
√
H2 + 4b

∣∣∣∣,
where H = δ sin(2t1π/N) + ζ sin(2t2π/N) + ε sin(2t3π/N) and the symbol (Zn×
Zn × Zn)(t1,t2,t3) is described in Appendix.

Remark 2.5. We do not guarantee that P 1
t or P 2

t are minimal periods. For

this reason, it is possible for a single solution to have both P 1
t and P 2

t as a period,

in which case we only guarantee the existence of a single branch. This can occur

in the case when P 1
t /P

2
t ∈ Q.

sign(δ) sign(ζ) sign(ε) a∗ t = (t1, t2, t3)

- - - 0 (0, 0, 0)

+ - - δ (1− cos (θN ))
(
N−1
2 , 0, 0

)
- + - ζ (1− cos (θN ))

(
0, N−12 , 0

)
- - + ε (1− cos (θN ))

(
0, 0, N−12

)
+ + - (δ + ζ) (1− cos (θN ))

(
N−1
2 , N−12 , 0

)
+ - + (δ + ε) (1− cos (θN ))

(
N−1
2 , 0, N−12

)
- + + (ζ + ε) (1− cos (θN ))

(
0, N−12 , N−12

)
+ + + (δ + ζ + ε) (1− cos (θN ))

(
N−1
2 , N−12 , N−12

)
Table 1. Details of the Hopf bifurcations from a stable equilibrium (here

θN = (N − 1)π/N)

Theorem 2.6. Put θN := (N − 1)π/N . Suppose k1δ+k2ζ+k3ε is less than

1

2(cos(θN )− 1)

for some k1, k2, k3 ∈ {0, 1}. Then, all branches of bifurcating non-constant peri-

odic solutions of (2.3) guaranteed by Theorem 2.3 are unstable.
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Theorem 2.7. For any fixed δ, ζ and ε, the equilibrium of system (2.4) is

stable for a < a∗ and unstable for a > a∗, where a∗ is described in Table 1.

Furthermore, the fully synchronized branch of system (2.4), born at a = 0, is

stable if and only if δ, ζ and ε are negative.

Theorem 2.8. Assume that Kt 6= 0 for any t = (t1, t2, t3) (cf. (2.5)). Choose

p 6∈ {2π(2k − 1)/
√
bd : k ∈ Z, d > 0, d = Kt for some t}. Then, for each t with

Kt > (2π/p)2, there exists a value of ν such that for each (Hϕ) ∈ S(t), system

(2.3) admits 8N3/|H1 ×H2 ×H3| p-periodic solutions with minimal symmetry

(Hϕ) (here S(t) is the set of symmetries associated to t which is described in

Subsection 3.3, formula (3.11)).

3. Equivariant spectral data and first Lyapunov coefficient

3.1. Isotypical decomposition of the phase space. Although (2.3) and

(2.4) have different symmetry groups, they have the same phase space (RN3

) as

a geometric set. Since it is usually unambiguous, we will use the same notation

for the representations of G1 := ZN × ZN × ZN and G2 := DN × DN × DN .

Put V := RN3

and denote by W := V ⊕ V the phase space of systems (2.3)

and (2.4). To describe spatial symmetries of system (2.4), we will consider

G1 = ZN ×ZN ×ZN as a subgroup of S1×S1×S1 and define the G1-action on

V by specifying how each of its generators acts, namely:

((e2πi/N , 1, 1) · x)(α,β,γ) = x(α+1,β,γ),

((1, e2πi/N , 1) · x)(α,β,γ) = x(α,β+1,γ),

((1, 1, e2πi/N ) · x)(α,β,γ) = x(α,β,γ+1).

Here + is taken modulo N . By direct verification, the right-hand side of system

(2.4) is G1-equivariant. To extend this action to a G2-action, we need to specify

how the remaining generators act, namely:

((κ, 1, 1) · x)(α,β,γ) = x(−α,β,γ),

((1, κ, 1) · x)(α,β,γ) = x(α,−β,γ),

((1, 1, κ) · x)(α,β,γ) = x(α,β,−γ),

where − is again taken modulo N . It is clear that the right-hand side of (2.3) is

G2-equivariant.

To describe the isotypical decomposition of V as a G1-space, we need to clas-

sify all (real) irreducible G1-representations. For each 0 ≤ t1, t2, t3 ≤ N − 1, put

t := (t1, t2, t3) and denote by Vzt an irreducible representation of G1 associated

with t. We have

(3.1) Vz0,0,0 = R
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is the trivial real G1-representation. For (t1, t2, t3) 6= (0, 0, 0), put

(3.2) Vzt = R2

and define the G1-action as follows:(
e2k1πi/N , e2k2πi/N , e2k3πi/N

)
·

[
x

y

]
= A

[
x

y

]
,

where

A :=

[
cos
(
(k1t1 + k2t2 + k3t3)(2π/N)

)
sin
(
(k1t1 + k2t2 + k3t3)(2π/N)

)
− sin

(
(k1t1 + k2t2 + k3t3)(2π/N)

)
cos
(
(k1t1 + k2t2 + k3t3)(2π/N)

)] .
By direct verification, Vzt is G1-equivalent to Vz−t where − is taken modulo N .

Hence, there is one one-dimensional trivial representation and (N3 − 1)/2 non-

trivial two-dimensional non-equivalent G1-representations.

For each fixed t, we define vectors x1t and x2t by specifying them component-

wisely as follows: (
x1t
)
α,β,γ

= cos(αt1 + βt2 + γt3),(
x2t
)
α,β,γ

= sin(αt1 + βt2 + γt3).

Define a family of subspaces of V zt by

V zt = span(x1t , x
2
t).

Notice that V zt is a G1-irreducible component of V and is G1-equivalent to Vzt
(cf. (3.1), (3.2)).

Remark 3.1. V admits a primary G1-decomposition which includes every

G1-irreducible representation.

Let us denote by Ud0 the trivial one-dimensional real DN -representation and

by Udt the natural 2-dimensional real DN -representation, where the action is

defined by

e2kπi/N ·

[
x

y

]
=

[
cos
(
kt(2π/N)

)
sin
(
kt(2π/N)

)
− sin

(
kt(2π/N)

)
cos
(
kt(2π/N)

)] [x
y

]
and

κ ·

[
x

y

]
=

[
y

x

]
.

Denote Vdt := Udt1 ⊗U
d
t2 ⊗U

d
t3 . Since Udt is of real type for any t = 0, . . . , N , it is

easy to see that Vdt is a real irreducible G2 = (DN × DN × DN )-representation.

Furthermore, the dimension of Vdt is either 1, 2, 4 or 8 depending on how many

non-zero components t has. Put t† := (t1,−t2, t3), t# := (t1, t2,−t3) and t∗ :=

(t1, t2,−t3). Put

V dt := span
(
x1t , x

2
t , x

1
t† , x

2
t† , x

1
t# , x

2
t# , x

1
t∗ , x

2
t∗
)
.
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By simple but lengthy computations, one can easily show that V dt is G2-invariant

and equivalent to Vdt .

Remark 3.2. V admits a primary G2-decomposition, however, unlike its

decomposition as a G1-space (cf. Remark 3.1), the decomposition as a G2-space

does not include every G2-irreducible representation.

3.2. Equivariant spectral decomposition. The linearization of system

(2.3) at the origin restricted to the isotypical component V dt ⊕ V dt is given by

Adt(a) : V dt ⊕ V dt → V dt ⊕ V dt , where

(3.3) Adt(a) =

(
νa −Kt

b 0

)
⊗ Idt,

(3.4) Kt = 1+2δ(1−cos(2πt1/N))+2ζ(1−cos(2πt2/N))+2ε(1−cos(2πt3/N))

and Idt is the matrix of the identity operator on V dt (here ⊗ stands for the

Kroneker product of matrices). It is clear that the eigenvalues of Adt(a) are

given by

(3.5) λdt(a) =
νa±

√
(νa)2 − 4bKt

2
.

The linearization of system (2.4) at the origin restricted to the isotypical

component V zt ⊕ V zt is given by Azt(a) : V zt ⊕ V zt → V zt ⊕ V zt , where

Azt(a) =


Ht(a) Gt −1 0

−Gt Ht(a) 0 −1

b 0 0 0

0 b 0 0

 ,

Ht(a) = a− δ(1− cos(2πt1/N))− ζ (1− cos(2πt2/N))− ε(1− cos(2πt3/N))

and

(3.6) Gt = δ sin(2πt1/N) + ζ sin(2πt2/N) + ε sin(2πt3/N).

To compute the eigenvalues of Azt(a), we should notice that Azt(a) = RLt(a),

where Lt(a) is the complex matrix

(3.7) Lt(a) =

(
Ht(a)− iGt −1

b 0

)
(here the symbol RLt stands for the realification of Lt). It is well known that

σ(RLt(a)) = σ(Lt(a)) ∪ σ(Lt(a)). It is easy to see that the eigenvalues of Lt(a)

are given by

(3.8) λzt(a) =
Ht(a)− iGt ±

√
(Ht(a)− iGt)2 − 4b

2
.

Remark 3.3. For a generic choice of parameters γ, ζ, ε, all eigenvalues λzt(a)

are distinct and in the case λzt(a) is purely imaginary, not in resonance.
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3.3. Isotropies in (V zt )c and (V dt )c. Note. For an explanation of all

symbols used in this section, see Appendix.

(a) Since (V zt ) is a real irreducible G1-representation of complex type, (V zt )c

decomposes into the direct sum of two non-equivalent conjugate irreducible (G1×
S1)-representations: V1 ⊕ V 1. Since V1 is one-dimensional, it has only two orbit

types, namely (G1 × S1) and (Zn × Zn × Zn)(t1,t2,t3). Similarly, V 1 has only

G1 × S1 and (Zn × Zn × Zn)(−t1,−t2,−t3).

(b) Let us recall the following

Definition 3.4. We will call an orbit type H < G×S1 maximal in Ucj if for

any H̃ 6= G× S1 which is an orbit type in Ucj , one has H̃ < H.

To restrict candidates for maximal isotropies in (V dt )c, we use the following

simple observation.

Lemma 3.5. Let G1 (resp. G2) be a finite group and let U1 (resp. U2) be a

unitary G1 × S1-representation (resp. G2 × S1-respresentation), where S1 acts

on U1 and U2 by complex multiplication.

(a) If Hϕ1

1 is a twisted isotropy in U1 and Hϕ2

2 is a twisted isotropy in U2,

then (H1 ×H2)(ϕ1,ϕ2) is an isotropy in U1 ⊗ U2.

(b) If (H1K1
×K2

H2)(ϕ1,ϕ2) is an isotropy in U1⊗U2, then for some v1 ∈ U1

and v2 ∈ U2, one has Gv1 ≥ K
ϕ1

1 and Gv2 ≥ K
ϕ2

2 (cf. (7.3)).

Proof. (a) Take v1 ∈ (U1)Hϕ1
1

and v2 ∈ (U2)Hϕ2
2

. Then, for any

g := (h1, h2, ϕ1(h1)ϕ2(h2)) ∈ (H1 ×H2)(ϕ1,ϕ2),

one has g(v1⊗ v2) = v1⊗ v2, i.e. Gv1⊗v2 ≥ (H1×H2)(ϕ1,ϕ2). On the other hand,

if Gv1⊗v2 3 (h1, h2, e
iθ), then

(
eiθTh1 ⊗ Th1

)
v1 ⊗ v2 = v1 ⊗ v2, which implies

that for some θ̂ and θ̃ with θ = θ̂ + θ̃ one has eiθ̂Th1
v1 = v1 and eiθ̃Th2

v2 = v2.

Hence, (h1, e
iθ̂) ∈ Gv1 = Hϕ1

1 , (h1, e
iθ̃) ∈ Gv2 = Hϕ2

2 and (h1, h2, e
iθ) = (h1, h2,

eiθ̂ · eiθ̃) ∈ (H1 ×H2)(ϕ1,ϕ2), i.e. Gv1⊗v2 ≤ (H1 ×H2)(ϕ1,ϕ2).

(b) Take v ∈ (U1 × U2)(H1×H2)(ϕ1,ϕ2) and decompose it as

v =

n∑
i=1

vi ⊗ ei.

For any g := (k1, 1H1
, ϕ1(k1)) ∈ (H1 ×H2)(ϕ1,ϕ2), one has

g · v =

n∑
i=1

eϕi(ki)Th1
vi ⊗ ei =

n∑
i=1

vi ⊗ ei,

hence, vi ∈ U
K

ϕ1
1

1 for any i = 1, . . . , n, i.e. (G1)vi ≤ Hϕ1

1 . A similar argument

shows that (G2)vi ≤ H
ϕ2

2 . �

A direct consequence of Lemma 3.5 is the following:
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Corollary 3.6. Under the notations of Lemma 3.5, assume that Hϕ1

1 and

Hϕ2

2 are maximal isotropies in U1 and U2, respectively, and NGi(Hi) = Hi.

Then, (H1 ×H2)(ϕ1,ϕ2) is a maximal isotropy in the tensor product.

Proof. From Lemma 3.5 (a) it immediately follows that (H1×H2)(ϕ1,ϕ2) is

an isotropy. Assume for contradiction that it is submaximal. Then

(3.9) (H1 ×H2)(ϕ1,ϕ2) � (H̃1K1
×K2

H̃2)(ϕ̃1,ϕ̃2),

where

(3.10) H̃i B Ki > Hi

and ϕ̃i is an extension of ϕi to H̃i. If Ki  Hi then by Lemma 3.5 (b), Kϕi

i

is contained in an isotropy, which contradicts maximality of Hϕi

i . Since, by

assumption, NGi(Hi) = Hi it follows from (3.10) that H̃i = Hi which contra-

dicts (3.9). �

Returning to the particular situation, where Gi = DN and Ui = (Udti)
c, we

have the following:

Lemma 3.7. If Hϕ1

1 , Hϕ2

2 and Hϕ3

3 are maximal isotropies in (Udt1)c, (Udt2)c

and (Udt3)c respectively, then (H1×H2×H3)ϕ1ϕ2ϕ3 is a maximal isotropy in (Vdt )c.

Proof. Let us begin by observing that the maximal orbit types in (Udti)
c are

either DN × {1} in the case when ti = 0, or (ZtiN ), (D+
1 ) and (D−1 ) if ti 6= 0. By

assumption, N is odd, therefore N(D1) = D1. This means that Lemma 3.5

and Corollary 3.6 exclude the possibility that (H1 × H2 × H3)ϕ1ϕ2ϕ3 is not

a maximal isotropy except in the case when (H1 × H2 × H3)ϕ1ϕ2ϕ3 = (ZN ×
ZN ×ZN )t1t2t3 . However, it follows from Lemma 3.5 that the only candidate for

a twisted subgroup of DN × DN × DN × S1, which is an isotropy in (Vdt )c and

contains (ZN × ZN × ZN )t1t2t3 , is of the form Hϕ, where

H = {(g1, g2, g3) ∈ DN × DN × DN : ψ(g1) = ψ(g2) = ψ(g3)}

(here ψ : DN → Z2 is the homomorphism with kernel ZN ). On the other hand,

it can be easily seen that any vector x ∈ (Vdt )c which is fixed by (ZN × ZN ×
ZN )t1t2t3 cannot be fixed by the element (κ, κ, κ, eiθ) for any eiθ ∈ S1, hence

(ZN × ZN × ZN )t1t2t3 is also maximal. �

Being motivated by Lemma 3.7, we introduce the following notations:

S(ti) =

{(DN × {1})} if ti = 0,

{(ZtiN ), (D+
1 ), (D−1 )} if ti 6= 0

and

(3.11) S(t) = {(H1 ×H2 ×H3)ϕ1ϕ2ϕ3 : (Hϕi

i ) ∈ S(ti)}.
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3.4. Stability analysis of system (2.2). In this subsection, we analyze

stability of Hopf branches of periodic solutions to system (2.2). This information

will be used later for the stability analysis of the fully synchronized Hopf branches

of periodic solutions to system (2.4).

Lemma 3.8. For the parameter a crossing zero, system (2.2) undergoes a su-

percritical Hopf bifurcation.

Proof. By inspection, the eigenvalues of the linearization of (2.2) at the

origin have the form λ = (a±
√
a2 − 4b)/2, in particular, the Hopf bifurcation

takes place when a crosses zero. To analyze the character of the bifurcation, take

the linear change of coordinates:

(3.12)

x̃ =
a√

4b− a2
x− 2√

4b− a2
y,

ỹ = x,

⇒


˙̃x =

a

2
x̃−
√

4b− a2
2

ỹ − aỹ2 − aỹ3√
4b− a2

,

˙̃y =

√
4b− a2

2
x̃+

a

2
ỹ − ỹ2 − ỹ3.

By direct computation, near a = 0, one has:

(3.13)
∂

∂a
(Re(λ)) =

1

2
> 0 and l1 = −3

8
< 0,

where l1 stands for the first Lyapunov coefficient. Combining (3.13) with [11],

Theorem 3.4.2, completes the proof. �

4. Occurrence of Hopf bifurcations

4.1. Abstract result. Let G be a finite group and U be an orthogonal

G-representation which admits a G-isotypical decomposition

(4.1) U = U0 ⊕ . . .⊕ Uk,

where Uj is modeled on the irreducible representation Uj . We will denote by Ucj
the complexification of Uj which is a G× S1-representation.

Suppose f : R⊕ U → U is a C1-smooth function and consider the system

(4.2) ẋ(t) = f(α, x).

Definition 4.1. We will say that (α0, 0) is an isolated center with limit

frequency β0 of (4.2) if:

(a) (α0, 0) is a center of (4.2) with limit frequency β0, that is Dxf(α0, 0)

admits iβ0 as a purely imaginary eigenvalue;

(b) (α0, 0) is the only center in a neighborhood of (α0, 0) in R⊕ U .
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We are now in a position to formulate the abstract occurrence result which

we will apply to the system considered in this paper.

Theorem 4.2 (cf. [4]). Suppose f in system (4.2) satisfies the following

conditions:

(P1) f is a C1-smooth equivariant map (we assume G acts trivially on R);

(P2) f(α, 0) = 0 for all α ∈ R;

(P3) (α0, 0) is an isolated center for (4.2) (cf. Definition 4.1);

(P4) detDxf(α0, 0) 6= 0;

(P5) Dxf(α0, 0)|Uj
decreases stability as α passes α0, while the stability of

Dxf(α0, 0)|Uk
does not increase for any Uk (cf. (4.1)).

Then, for every maximal orbit type (Hϕ) in Ucj , there exist |(G × S1)/Hϕ|S1

branches of non-constant periodic solutions of (4.2) bifurcating from the ori-

gin with (spatio-temporal) symmetry (Hϕ) and limit period 2π/β0 (cf. Defi-

nition 2.2). Here |(G × S1)/Hϕ|S1 is the number of S1-orbits in the space

(G× S1)/H.

Remark 4.3. Using the concept of isotypical crossing number one can relax

condition (P5) (see, for example, [4], [3], [13]).

4.2. Proofs of Theorems 2.3 and 2.4. To detect the occurrence of the

equivariant Hopf bifurcation in systems (2.3) and (2.4) and to classify symmetric

properties of the resulting branches, we will combine the equivariant spectral

data collected in Subsections 3.1–3.3 with Theorem 4.2.

Proof of Theorem 2.3. We begin by observing that conditions (P1) and

(P2) are obvious. It follows immediately from (3.3)–(3.5) and b > 0 that sys-

tem (2.3) can only have a center (a, 0) when a = 0. Also, since b,Kt > 0,

formula (3.3) implies (P4). Finally, all eigenvalues cross the imaginary axis in

the same direction (see (3.5)), meaning that (P5) is also satisfied. Combining

this with the description of isotropies in Subsection 3.3 (a) completes the proof

of Theorem 2.3. �

Proof of Theorem 2.4. Observe that (P1) and (P2) are obvious. Plug-

ging λ = iω into the characteristic equation of matrix Lt(a) (cf. (3.7)) and

separating real and imaginary parts yields that all centers (azt , 0) of system (2.4)

are given by (2.6). From this (P3) follows immediately, while (P4) is provided

by b > 0. Finally, differentiating (3.8) with respect to a at a = azt shows that all

eigenvalues cross the imaginary axis in the same direction. Combining this with

the description of isotropies in Subsection 3.3 (b) (in particular, formula (3.11))

completes the proof of Theorem 2.4. �
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5. Stability of bifurcating branches

Proof of Theorem 2.6. Recall that if the equilibrium is unstable then

any bifurcating branch of non-constant periodic solutions will also be unstable.

Since the eigenvalues of the linearization of system (2.3) at the origin are given

by
√
−bKt, it is easy to see that if Kt is negative for some t, then the theorem is

proved. Take k1, k2, k3 provided by the hypothesis of Theorem 2.6. Clearly, Kt <

0 for t = (k1(n− 1)/2, k2(n− 1)/2, k3(n− 1)/2) which completes the proof. �

Proof of Theorem 2.7. It is clear from formulas (3.6) and (3.8) that the

sign of Re(λzt(a)) is given by the sign of Ht(a). Observe that the largest value of

Ht(a) is achieved by the value of t specified in the Table 1 and changes its sign

at a = a∗. Therefore, for any t and a < a∗, one has Re(λzt(a)) < 0. Therefore,

for a < a∗, the equilibrium is stable while for a > a∗, the equilibrium is unstable.

In the case when δ, ζ, ε < 0, only one pair of eigenvalues crosses the imaginary

axis at a∗ = 0. Observe that the central manifold coincides with the central

space. To complete the proof we combine Lemma 3.8 with the fact that all other

eigenvalues have negative real part (cf. [11], Theorem 3.4.2). �

6. Existence of periodic solutions

with prescribed period and symmetry

Abstract result. To prove Theorem 2.8, we will use a slight modification

of the main result from [4], Chapter 12 (cf. Theorem 12.7). To begin with, we

need the following

Definition 6.1. Let G be a finite group and let V be a real orthogonal

G-representation. Assume A : V → V is an equivariant linear operator and

λ ∈ σ(Ac). Take the eigenspace E(λ) ⊂ V c and denote by O(λ) the set of all

maximal G× S1-orbit types occurring in E(λ).

Let V := Rn be an orthogonal permutational G-representation and consider

the system

(6.1)


ẋi = ν

(
axi −

x3i
3

)
−

n∑
j=1

Cijyj ,

ẏi = bxi,

(i = 1, . . . , n).

Theorem 6.2. Assume C is a non-singular G-equivariant symmetric matrix.

Then, for each real positive p 6∈ {2π(2k − 1)/
√
µ : µ ∈ σ+(bC), k ∈ N} and each

µ ∈ σ(bC) satisfying 0 < (2π/p)2 < µ, there exists ν > 0 such that for every

(Hϕ) ∈ O(µ), system (6.1) admits |G|/|H| p-periodic solutions with minimal

symmetry (Hϕ).
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Proof of Theorem 2.8. The linearization of system (6.1) at the origin

has the form:

A =

[
νa Id −C
b Id 0

]
where Id stands for the n× n-identity matrix. Since in the case of system (2.3),

the isotypical decomposition of V contains only irreducible representations of

real type, then A|Vi
is of the form[

νa −λ
b 0

]
⊗ Id|Vi

where λ is an eigenvalue of C|Vi
. It follows from Remark 3.2 and formula (3.3)

that

σ(C) = {Kt : 0 < ti < (N − 1)/2}.

Also note that O(Kt) = S(t). Combining this with Theorem 6.2 completes the

proof of Theorem 2.8. �

7. Appendix

If W is a G-representation, then for any function x : S1 → W the spatio-

temporal symmetry of x is a group H < G× S1 such that g · x(t− θ) = x(t) for

any t ∈ R/2πZ ' S1 and any (g, eiθ) ∈ H. If x is non-constant, then its spatio-

temporal symmetry group will have the structure of a graph of a homomorphism

from some subgroup H < G to S1. In our general discussion, we used the

following notation:

Hϕ := {(h, ϕ(h) : h ∈ H)}.

We call this a twisted symmetry group with twisting homomorpism ϕ. If the

domain of the twisting homomorphism is a direct product of groups, we can de-

scribe the twisting homomorphism by its restrictions to each of the components.

Therefore, we use the following notation:

(7.1) (H1 ×H2 ×H3)ϕ1ϕ2ϕ3 := {(h1, h2, h3, ϕ1(h1)ϕ2(h2)ϕ3(h3)) :

(h1, h2, h3) ∈ H1 ×H2 ×H3}.

Given two groups G1 and G2, to describe subgroups of G1 × G2, define the pro-

jection homomorphisms:

π1 : G1 × G2 → G1, π1(g1, g2) = g1;

π2 : G1 × G2 → G2, π2(g1, g2) = g2.

The following result, being a reformulation of the well-known Goursat’s Lemma

(cf. [10]), provides the desired description of subgroups H of the product group

G1 × G2.



vdP and vdP-like Systems on 3-Tori 267

Theorem 7.1. Let H be a subgroup of the product group G1×G2. Put H :=

π1(H ) and K := π2(H ). Then, there exist a group L and two epimorphisms

ϕ : H → L and ψ : K → L, such that

(7.2) H = {(h, k) ∈ H ×K : ϕ(h) = ψ(k)}.

For the needs of our paper, it is enough to characterize such subgroups up

to the kernels of the homomorphisms ϕ and ψ. For this reason, we put

(7.3) H =: H1K1
×K2

H2

where K1 is the kernel of ϕ and K2 is the kernel of ψ.

In the particular case of DN , we denote by ZN the subgroup generated by

e2πi/N , and by D1 the subgroup generated by κ. Furthermore, we put

ZtiN := ZϕN where ϕ : ek2πi/N 7→ ekti2πi/N ,

D+
1 := Dϕ1 where ϕ : κ→ 1,

D−1 := Dϕ1 where ϕ : κ 7→ −1.

We combine this with the notation for twisted groups given in (7.1) in the obvious

way, for example:

(ZN × D1 × ZN )(t1,−,t2) := (ZN × D1 × ZN )ϕ1ϕ2ϕ3 ,

where ϕ1 : ek2πi/N 7→ ekt12πi/N , ϕ2 : κ 7→ −1 and ϕ3 : ek2πi/N 7→ ekt22πi/N .
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