CQ METHOD FOR APPROXIMATING FIXED POINTS OF NONEXPANSIVE SEMIGROUPS AND STRICTLY PSEUDO-CONTRACTIVE MAPPINGS

Hossein Piri - Samira Rahrovi

Abstract

We use the CQ method for approximating a common fixed point of a left amenable semigroup of nonexpansive mappings, an infinite family of strictly pseudo-contraction mappings and the set of solutions of variational inequalities for monotone, Lipschitz-continuous mappings in a real Hilbert space. Our results are a generalization of a result announced by Nadezhkina and Takahashi [N. Nadezhkina and W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim. 16 (2006), 1230-1241] and some other recent results.

1. Introduction

Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and induced norm $\|\cdot\|$. Let C be a nonempty closed convex subset of H. A mapping T of C into itself is called nonexpansive if $\|T x-T y\| \leq\|x-y\|$, for all $x, y \in C$. By ne (C), we denote the set of all nonexpansive mappings of C into itself and by $\operatorname{Fix}(T)$, we denote the set of fixed points of T (i.e. $\operatorname{Fix}(T)=\{x \in C: T x=x\}$), it is well known that $\operatorname{Fix}(T)$ is closed and convex. Let $A: C \rightarrow H$ be a nonlinear

[^0]operator. The classical variational inequality problem is to find $x \in C$ such that
\[

$$
\begin{equation*}
\langle A x, y-x\rangle \geq 0, \quad \text { for all } y \in C \tag{1.1}
\end{equation*}
$$

\]

The set of solutions of variational inequality (1.1) is denoted by $\mathrm{VI}(C, A)$, that is,

$$
\mathrm{VI}(C, A)=\{x \in C:\langle A x, y-x\rangle \geq 0 \text { for all } y \in C\}
$$

Variational inequality theory has emerged as an important tool in studying a wide class of obstacle, unilateral and equilibrium problems, which arise in several branches of pure and applied sciences in a unified and general framework. Several numerical methods have been developed for solving variational inequalities and related optimization problems, see [5], [7], [9], [13], [25]-[28] and the references therein. We start with Korpelevich's extragradient method which was introduced by Korpelevich [9] in 1976. He proved that the sequence $\left\{x_{n}\right\}$ generated via the recursion

$$
\left\{\begin{array}{l}
y_{n}=P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right) \\
x_{n+1}=P_{C}\left(x_{n}-\lambda_{n} A y_{n}\right), \quad n \geq 0
\end{array}\right.
$$

where P_{C} is the metric projection from \mathbb{R}^{n} onto C, A is a monotone operator and λ is a constant, converges strongly to a solution of $\operatorname{VI}(C, A)$. Note that the setting of the problem is the Euclidean space \mathbb{R}^{n}.

Korpelevich's extragradient method has been extensively studied in the literature for solving a more general problem that consists of finding a common point that lies in the solution set of a variational inequality and the set of fixed points of a nonexpansive mapping. Especially, Nadezhkina and Takahashi [14] introduced the following iterative method which combines Korpelevich's extragradient method and the CQ method:

$$
\left\{\begin{array}{l}
x_{0} \in C \text { chosen arbitrarily, } \tag{1.2}\\
y_{n}=P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right), \\
z_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) S P_{C}\left(x_{n}-\lambda_{n} A y_{n}\right), \\
C_{n}=\left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}\right\}, \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{n}-x_{0}\right\rangle \leq 0\right\}, \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0},
\end{array}\right.
$$

where P_{C} denotes the metric projection from H onto a closed convex subset C of H.

Inspired by the ideas in Korpelevich [9], Nadezhkina and Takahashi [14], Lau et al. [11], Lau et al. [12], Katchang and Kumam [10], Piri [15], [16], Piri and Badali [18] and the references therein, we introduce some new iterative schemes based on Korpelevich's extragradient method (and the CQ method) for finding a common element of the set of solutions of the variational inequality for
a monotone, Lipschitz-continuous mapping, the set of fixed points of an infinite family of strictly pseudo-contraction mappings and the set of fixed points of a left amenable semigroup of nonexpansive mappings. We obtain strong convergence theorems for the sequences generated by the corresponding processes. The results in this paper generalize, improve and unify some well-known convergence theorems in the literature.

2. Preliminaries

Let S be a semigroup and let $l^{\infty}(S)$ be the space of all bounded real valued functions defined on S with supremum norm. For $s \in S$ and $f \in l^{\infty}(S)$, we define elements $l(s) f$ and $r(s) f$ in $l^{\infty}(S)$ by

$$
(l(s) f)(t)=f(s t), \quad(r(s) f)(t)=f(t s), \quad \text { for all } t \in S
$$

Let X be a subspace of $l^{\infty}(S)$ containing 1 and let X^{*} be its topological dual. An element μ of X^{*} is said to be a mean on X if $\|\mu\|=\mu(1)=1$. We often write $\mu_{t}(f(t))$ instead of $\mu(f)$ for $\mu \in X^{*}$ and $f \in X . X$ is said to be left invariant (resp. right invariant) if $l(s)(X) \subset X$ (resp. $r(s)(X) \subset X)$ for each $s \in S$. A mean μ on X is said to be left invariant (resp. right invariant) if $\mu((l(s) f)=\mu(f)$ (resp. $\mu(r(s) f)=\mu(f))$ for each $s \in S$ and $f \in X . X$ is said to be left (resp. right) amenable if X has a left (resp. right) invariant mean. X is amenable if X is both left and right amenable. As is well known, $l^{\infty}(S)$ is amenable when S is a commutative semigroup (see [11]). A net $\left\{\mu_{\alpha}\right\}$ of means on X is said to be strongly left regular if

$$
\lim _{\alpha}\left\|l(s)^{*} \mu_{\alpha}-\mu_{\alpha}\right\|=0
$$

for each $s \in S$, where $l(s)^{*}$ is the adjoint operator of $l(s)$.
Let C be a closed convex subset of a Banach space E and let T be a mapping of C into itself. Then $\varphi=\{T(t): t \in S\}$ is called a representation of S as nonexpansive mappings on C if $T(s) \in \operatorname{ne}(C)$ for each $s \in S, T(e)=I$ and $T(s t)=T(s) T(t)$ for each $s, t \in S$. We denote by $\operatorname{Fix}(\varphi)$ the set of common fixed points of φ, i.e.

$$
\operatorname{Fix}(\varphi)=\bigcap_{t \in S}\{x \in C: T(t) x=x\}
$$

by $l^{\infty}(S, E)$ the Banach space of all bounded mappings of S into a Banach space E with supremum norm, and by $l_{c}^{\infty}(S, E)$ the subspace of elements $f \in l^{\infty}(S, E)$ such that $f(S)=\{f(s): s \in S\}$ is a relatively weakly compact subset of E. Let X be a subspace of $l^{\infty}(S)$ containing 1 such that for each $f \in l^{\infty}(S, E)$ and $x^{*} \in E^{*}$, the function $s \mapsto\left\langle f(s), x^{*}\right\rangle$ is contained in X. Then, for each $\mu \in X^{*}$ and $f \in l_{c}^{\infty}(S, E)$, let us define a continuous linear functional $\tau(\mu) f$ on E^{*} by

$$
\tau(\mu) f: x^{*} \mapsto \mu\left\langle f(\cdot), x^{*}\right\rangle
$$

It follows from the bipolar theorem that $\tau(\mu) f$ is contained in E. We know that if μ is a mean on X, then $\tau(\mu) f$ is contained in the closure of convex hull of $\{f(s): s \in S\}$. We also know that for each $\mu \in X^{*}, \tau(\mu)$ is a bounded linear mapping of $l_{c}^{\infty}(S, E)$ into E such that for each $f \in l_{c}^{\infty}(S, E),\|\tau(\mu)\| \leq\|\mu\|\|f\|$ (see [8]). Let $\varphi=\{T(t): t \in S\}$ be a representation of S as nonexpansive mappings on C such that $T(\cdot) x \in l_{c}^{\infty}(S, E)$ for some $x \in C$. If for each $x^{*} \in E^{*}$ the function $s \mapsto\left\langle T(s) x, x^{*}\right\rangle$ is contained in X, then there exists a unique point x_{0} of E such that $\mu\left\langle T(s) x, x^{*}\right\rangle=\left\langle x_{0}, x^{*}\right\rangle$ for each $x^{*} \in E^{*}$ (see [6] and [22]). We denote such a point x_{0} by $T(\mu) x$.

Lemma 2.1 ([11]). Let S be a semigroup and C be a nonempty closed convex subset of a reflexive Banach space E. Let $\varphi=\{T(s): s \in S\}$ be a nonexpansive semigroup on H such that $\{T(s) x: s \in S\}$ is bounded for some $x \in C$, let X be a subspace of $B(S)$ such that $1 \in X$ and the mapping $t \mapsto\left\langle T_{t} x, y^{*}\right\rangle$ is an element of X for each $x \in C$ and $y^{*} \in E^{*}$, and μ is a mean on X. Then:
(a) $T(\mu)$ is nonexpansive mapping from C into C.
(b) $T(\mu) x=x$ for each $x \in \operatorname{Fix}(\varphi)$.
(c) $T(\mu) x \in \overline{\operatorname{co}}\{T(s) x: s \in S\}$ for each $x \in C$.

Notation 2.2.

(a) \rightharpoonup denotes weak convergence and \rightarrow denotes strong convergence.
(b) $\omega_{\omega}\left\{x_{n}\right\}=\left\{x \in H: \exists\left\{x_{n_{j}}\right\} \subset\left\{x_{n}\right\}\right.$ and $\left.x_{n_{j}} \rightharpoonup x\right\}$.

Let C be a nonempty subset of a normed space E and let $x \in E$. An element $y_{0} \in C$ is said to be the best approximation to x if

$$
\left\|x-y_{0}\right\|=d(x, C)
$$

where $d(x, C)=\inf _{y \in C}\|x-y\|$. The number $d(x, C)$ is called the distance from x to C or the error in approximating x by C. The (possibly empty) set of all best approximations from x to C is denoted by

$$
P_{C}(x)=\{y \in C:\|x-y\|=d(x, C)\} .
$$

This defines a mapping P_{C} from X into 2^{C} and it is called a metric (nearest point) projection onto C. It is well known that P_{C} is a nonexpansive mapping of H onto C.

Lemma 2.3 ([24]). Let C be a nonempty convex subset of a Hilbert space H and P_{C} be the metric projection mapping from H onto C. Let $x \in H$ and $y \in C$. Then, the following statements are equivalent:
(a) $y=P_{C}(x)$,
(b) $\langle x-y, y-z\rangle \geq 0$, for all $z \in C$.
(c) $\|x-y\|^{2} \geq\left\|x-P_{C}(x)\right\|^{2}+\left\|y-P_{C}(x)\right\|^{2}$.

Lemma 2.4 ([23]). Let H be a real Hilbert space. Then, for all $x, y \in H$,
(a) $\|x-y\|^{2}=\|x\|^{2}-\|y\|^{2}-2\langle x-y, y\rangle$,
(b) $\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}-2\langle x, y\rangle$.

Definition 2.5 ([2]). A mapping $T: C \rightarrow C$ is called λ-strictly pseudocontractive of Browder and Petryshyn type if there exists a constant $\lambda \in[0,1)$ such that

$$
\begin{equation*}
\|T x-T y\|^{2} \leq\|x-y\|^{2}+\lambda\|(I-T) x-(I-T) y\|^{2}, \quad \text { for all } x, y \in C . \tag{2.1}
\end{equation*}
$$

It is well known that the last inequality is equivalent to

$$
\begin{equation*}
\langle T x-T y, x-y\rangle \leq\|x-y\|^{2}-\frac{1-\lambda}{2}\|(I-T) x-(I-T) y\|^{2}, \tag{2.2}
\end{equation*}
$$

for all $x, y \in C$. If $\lambda=1$, then T is called a pseudo-contractive mapping, that is,

$$
\begin{equation*}
\|T x-T y\|^{2} \leq\|x-y\|^{2}+\|(I-T) x-(I-T) y\|^{2}, \quad \text { for all } x, y \in C \tag{2.3}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
\langle(I-T) x-(I-T) y, x-y\rangle \geq 0, \quad \text { for all } x, y \in C . \tag{2.4}
\end{equation*}
$$

Lemma 2.6 ([2]). Let $T: C \rightarrow H$ be a λ-strictly pseudo-contractive mapping. Define $S: C \rightarrow H$ by $S(x)=\delta I(x)+(1-\delta) T(x)$ for each $x \in C$. Then, as $\delta \in[\lambda, 1), T$ is a nonexpansive mapping such that $\operatorname{Fix}(S)=\operatorname{Fix}(T)$.

Let $\left\{T_{n}\right\}_{n=1}^{\infty}$ be an infinite family of λ_{n}-strictly pseudo-contractive mappings of C into itself, we define a mapping W_{n} of C into itself as follows:

$$
\begin{aligned}
U_{n, n+1} & =I \\
U_{n, n} & =\gamma_{n} S_{n} U_{n, n+1}+\left(1-\gamma_{n}\right) I \\
U_{n, n-1} & =\gamma_{n-1} S_{n-1} U_{n, n}+\left(1-\gamma_{n-1}\right) I \\
\vdots & \\
U_{n, k} & =\gamma_{k} S_{k} U_{n, k+1}+\left(1-\gamma_{k}\right) I \\
U_{n, k-1} & =\gamma_{k-1} S_{k-1} U_{n, k}+\left(1-\gamma_{k-1}\right) I \\
\vdots & \\
U_{n, 2} & =\gamma_{2} S_{2} U_{n, 3}+\left(1-\gamma_{2}\right) I \\
W_{n}=U_{n, 1} & =\gamma_{1} S_{1} U_{n, 2}+\left(1-\gamma_{1}\right) I
\end{aligned}
$$

where, $0 \leq \gamma_{n} \leq 1, S_{n}=\delta_{n} I+\left(1-\delta_{n}\right) T_{n}$ and $\gamma_{n} \leq \delta_{n}<1$, for all $n \in \mathbb{N}$. We can obtain S_{n} is a nonexpansive mapping and $\operatorname{Fix}\left(S_{n}\right)=\operatorname{Fix}\left(T_{n}\right)$ by Lemma 2.6. Furthermore, we obtain W_{n} is a nonexpansive mapping. To establish our results, we need the following technical lemmas.

Lemma 2.7 ([21]). Let C be a nonempty closed convex subset of a strictly convex Banach space. Let $\left\{S_{n}\right\}$ be an infinite family of nonexpansive mappings of C into itself and let $\left\{\lambda_{i}\right\}$ be a real sequence such that $0<\lambda_{n} \leq b<1$ for every $n \in \mathbb{N}$. Then, for every $x \in C$ and $k \in \mathbb{N}$, the limit $\lim _{n \rightarrow \infty} U_{n, k} x$ exists.

In view of the previous lemma, we will define

$$
W x:=\lim _{n \rightarrow \infty} W_{n} x=\lim _{n \rightarrow \infty} U_{n, 1}, \quad \text { for all } x \in C
$$

Lemma 2.8 ([21]). Let C be a nonempty closed convex subset of a strictly convex Banach space. Let $\left\{S_{n}\right\}$ be an infinite family of nonexpansive mappings of C into itself and let $\left\{\lambda_{i}\right\}$ be a real sequence such that $0<\lambda_{n} \leq b<1$ for every $n \in \mathbb{N}$. Then

$$
\operatorname{Fix}(W)=\bigcap_{n=1}^{\infty} \operatorname{Fix}\left(S_{n}\right) \neq \emptyset .
$$

The following lemmas follow from Lemmas 2.6-2.8.
Lemma 2.9 ([4]). Let C be a nonempty closed convex subset of a strictly convex Banach space. Let $\left\{T_{n}\right\}_{n=1}^{\infty}$ be an infinite family of λ_{n}-strictly pseudocontractive mappings of C into itself such that $\bigcap_{n=1}^{\infty} \operatorname{Fix}\left(T_{n}\right) \neq \emptyset$. Define $S_{n}=$ $\delta_{n} I_{n}+\left(1-\delta_{n}\right) T_{n}$ and $0<\lambda_{n} \leq \delta_{n}<1$ and let $\left\{\gamma_{n}\right\}$ be a real sequence such that $0<\gamma_{n} \leq b<1$ for every $n \in \mathbb{N}$. Then

$$
\operatorname{Fix}(W)=\bigcap_{n=1}^{\infty} \operatorname{Fix}\left(T_{n}\right)=\bigcap_{n=1}^{\infty} \operatorname{Fix}\left(S_{n}\right) \neq \emptyset .
$$

Lemma 2.10 ([3]). Let C be a nonempty closed convex subset of a Hilbert space. Let $\left\{S_{n}\right\}_{n=1}^{\infty}$ be an infinite family of nonexpansive mappings of C into itself such that $\bigcap_{n=1}^{\infty} \operatorname{Fix}\left(S_{n}\right) \neq \emptyset$ and let $\left\{\gamma_{n}\right\}$ be a real sequence such that $0<$ $\gamma_{n} \leq b<1$ for every $n \in \mathbb{N}$. If K is a bounded subset of C, then

$$
\lim _{n \rightarrow \infty} \sup _{x \in K}\left\|W x-W_{n} x\right\|=0
$$

Let K be a nonempty subset of a Banach space X and $\left\{x_{n}\right\}$ be a sequence in K. Consider the functional $r_{a}\left(\cdot,\left\{x_{n}\right\}\right): X \rightarrow \mathbb{R}$ defined by

$$
r_{a}\left(x,\left\{x_{n}\right\}\right)=\limsup _{n \rightarrow \infty}\left\|x_{n}-x\right\|, \quad \text { for all } x \in X
$$

The infimum of $r_{a}\left(\cdot,\left\{x_{n}\right\}\right)$ over K is called an asymptotic radius of $\left\{x_{n}\right\}$ with respect to K and it is denoted by $r_{a}\left(K,\left\{x_{n}\right\}\right)$. A point $x \in K$ is called an asymptotic center of the sequence $\left\{x_{n}\right\}$ with respect to K if

$$
r_{a}\left(x,\left\{x_{n}\right\}\right)=\inf \left\{r_{a}\left(y,\left\{x_{n}\right\}\right): y \in K\right\} .
$$

The set of all asymptotic centers of $\left\{x_{n}\right\}$ with respect to K is denoted by $C_{a}\left(K,\left\{x_{n}\right\}\right)$. This set may be empty, a singleton, or infinite.

Lemma 2.11 ([1]). Let X be a uniformly convex Banach space satisfying the Opial condition and K a nonempty closed convex subset of X. If a sequence $\left\{x_{n}\right\} \subset K$ converges weakly to a point x_{0}, then x_{0} is an asymptotic center of $\left\{x_{n}\right\}$ with respect to K.

A set-valued mapping $U: H \rightarrow 2^{H}$ is called monotone if for all $x, y \in H, f \in$ $U(x)$ and $g \in U(y)$ imply $\langle x-y, f-g\rangle \geq 0$. A monotone mapping $U: H \rightarrow 2^{H}$ is maximal if the graph of $G(U)$ of U is not properly contained in the graph of any other monotone mapping. It is known that a monotone mapping U is maximal if and only if for $(x, f) \in H \times H,\langle x-y, f-g\rangle \geq 0$ for every $(y, g) \in G(U)$ implies that $f \in U x$.

Lemma 2.12 ([19]). Let A be a monotone mapping of C into H and let $N_{C} x$ be the normal cone to C at $x \in C$, that is, $N_{C} x=\{y \in H:\langle z-x, y\rangle \leq 0$ for all $z \in C\}$ and define

$$
U x= \begin{cases}A x+N_{C} x & \text { for } x \in C \tag{2.6}\\ \emptyset & \text { for } x \notin C\end{cases}
$$

Then U is maximal monotone and $0 \in U x$ if and only if $x \in \mathrm{VI}(C, A)$.
Notation 2.13. The open ball of radius r centered at 0 is denoted by B_{r} and for a subset D of H, by $\overline{\text { co }} D$ we denote the closed convex hull of D. For $\varepsilon>0$ and a mapping $T: D \rightarrow H$, we let $F_{\varepsilon}(T ; D)$ be the set of ε-approximate fixed points of T, i.e. $F_{\varepsilon}(T ; D)=\{x \in D:\|x-T x\| \leq \varepsilon\}$.

3. Main results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H and let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of ψ_{n}-contraction self-mappings of C such that $\left\{f_{n}\right\}_{n=1}^{\infty}$ is uniformly convergent for any $x \in D$, where D is any bounded subset of C. Let $\left\{T_{n}\right\}_{n=1}^{\infty}$ be an infinite family of λ_{n}-strictly pseudo-contractive mappings of C into itself. Let S be a semigroup and $\varphi=\left\{T_{t}: t \in S\right\}$ be a nonexpansive semigroup of C into itself such that for all $n \in \mathbb{N}, T_{n}(\operatorname{Fix}(\varphi)) \subset$ $\operatorname{Fix}(\varphi)$. Let X be a left invariant subspace of $B(S)$ such that $1 \in X, t \mapsto\left\langle T_{t} x, y\right\rangle$ is an element of X for each $x, y \in C$ and $\left\{\mu_{n}\right\}_{n=0}^{\infty}$ is a left regular sequence of means on X. Let A be a monotone and k-Lipschitz-continuous mapping of C into H and $\mathcal{F}=\bigcap_{n=1}^{\infty} \operatorname{Fix}\left(T_{n}\right) \cap \operatorname{Fix}(\varphi) \cap \mathrm{VI}(C, A)$ be nonempty and bounded. Let $\left\{\zeta_{n}\right\}_{n=0}^{\infty},\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ be sequences such that $\left\{\zeta_{n}\right\}_{n=0}^{\infty} \subset[a, b]$ for some $a, b \in(0,1 / k),\left\{\alpha_{n}\right\}_{n=0}^{\infty} \subset[0, c]$ for some $c \in[0,1), \lim _{n \rightarrow \infty} \alpha_{n}=0$, $\left\{\beta_{n}\right\}_{n=0}^{\infty} \subset[0,1), \lim _{n \rightarrow \infty} \beta_{n}=0$ and W_{n} be the mapping generated by $\left\{T_{n}\right\}_{n=1}^{\infty}$ and $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ as in (2.5). Define sequences $\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty}$ and $\left\{z_{n}\right\}_{n=0}^{\infty}$ in C
by the iteration algorithm

$$
\left\{\begin{array}{l}
x_{0} \in C, \tag{3.1}\\
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) P_{C}\left(I-\zeta_{n} A\right) x_{n}, \\
z_{n}=\alpha_{n} f_{n}\left(y_{n}\right)+\left(1-\alpha_{n}\right) T\left(\mu_{n}\right) W_{n} P_{C}\left(x_{n}-\zeta_{n} A y_{n}\right), \\
C_{n}=\left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}+r_{n}\right\}, \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{n}-x_{0}\right\rangle \leq 0\right\}, \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0},
\end{array}\right.
$$

where, $r_{n}=\alpha_{n} \delta_{n}$ and

$$
\delta_{n}=\sup \left\{\left\|f_{n}(p)-p\right\|\left[\left\|f_{n}(p)-p\right\|+2\left\|x_{n}-p\right\|\right]: p \in \mathcal{F}\right\} .
$$

Then the sequences $\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty}$ and $\left\{z_{n}\right\}_{n=0}^{\infty}$ converge strongly to $P_{\mathcal{F}} x_{0}$.
Proof. First we note that C_{n} is closed and Q_{n} is closed and convex for every $n \in \mathbb{N} \cup\{0\}$. As $C_{n}=\left\{z \in C:\left\|z_{n}-x_{n}\right\|^{2}+2\left\langle z_{n}-x_{n}, x_{n}-z\right\rangle \leq 0\right\}$, we also have C_{n} is convex for every $n \in \mathbb{N} \cup\{0\}$. As $Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{n}-x_{0}\right\rangle \leq 0\right\}$, we have $\left\langle x_{n}-z, x_{n}-x_{0}\right\rangle \leq 0$ for all $z \in Q_{n}$ and by Lemma 2.3, $x_{n}=P_{Q_{n}} x_{0}$. Put $t_{n}=P_{C}\left(x_{n}-\zeta_{n} A y_{n}\right)$ for every $n \in \mathbb{N} \cup\{0\}$. Next, we show that $\mathcal{F} \subset C_{n}$ for all $n \in \mathbb{N} \cup\{0\}$. Let $p \in \mathcal{F}$. From Lemma 2.3 and monotonicity of A, we have

$$
\begin{aligned}
\left\|t_{n}-p\right\|^{2} \leq & \left\|x_{n}-\zeta_{n} A y_{n}-p\right\|^{2}-\left\|x_{n}-\zeta_{n} A y_{n}-t_{n}\right\|^{2} \\
= & \left\|x_{n}-p\right\|^{2}-\left\|x_{n}-t_{n}\right\|^{2}+2 \zeta_{n}\left\langle A y_{n}, p-t_{n}\right\rangle \\
= & \left\|x_{n}-p\right\|^{2}-\left\|x_{n}-t_{n}\right\|^{2}+2 \zeta_{n}\left[\left\langle A y_{n}-A p, p-y_{n}\right\rangle\right. \\
& \left.+\left\langle A p, p-y_{n}\right\rangle+\left\langle A y_{n}, y_{n}-t_{n}\right\rangle\right] \\
\leq & \left\|x_{n}-p\right\|^{2}-\left\|x_{n}-t_{n}\right\|^{2}+2 \zeta_{n}\left\langle A y_{n}, y_{n}-t_{n}\right\rangle \\
= & \left\|x_{n}-p\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}-\left\|y_{n}-t_{n}\right\|^{2} \\
& -2\left\langle x_{n}-y_{n}, y_{n}-t_{n}\right\rangle+2 \zeta_{n}\left\langle A y_{n}, y_{n}-t_{n}\right\rangle \\
= & \left\|x_{n}-p\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}-\left\|y_{n}-t_{n}\right\|^{2} \\
& +2\left\langle x_{n}-\zeta_{n} A y_{n}-y_{n}, t_{n}-y_{n}\right\rangle .
\end{aligned}
$$

Further, since $y_{n}=P_{C}\left(I-\zeta_{n} A\right) x_{n}$ and A is k-Lipschitz-continuous, we have

$$
\begin{aligned}
\left\langle x_{n}-\zeta_{n} A y_{n}\right. & \left.-y_{n}, t_{n}-y_{n}\right\rangle \\
& =\left\langle x_{n}-\zeta_{n} A x_{n}-y_{n}, t_{n}-y_{n}\right\rangle+\left\langle\zeta_{n} A x_{n}-\zeta_{n} A y_{n}, t_{n}-y_{n}\right\rangle \\
& \leq\left\langle\zeta_{n} A x_{n}-\zeta_{n} A y_{n}, t_{n}-y_{n}\right\rangle \leq \zeta_{n} k\left\|x_{n}-y_{n}\right\|\left\|t_{n}-y_{n}\right\| .
\end{aligned}
$$

So, we have

$$
\begin{align*}
\left\|t_{n}-p\right\|^{2} \leq & \left\|x_{n}-p\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}-\left\|y_{n}-t_{n}\right\|^{2} \tag{3.2}\\
& +2 \zeta_{n} k\left\|x_{n}-y_{n}\right\|\left\|t_{n}-y_{n}\right\| \\
\leq & \left\|x_{n}-p\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}-\left\|y_{n}-t_{n}\right\|^{2}
\end{align*}
$$

$$
\begin{aligned}
& +\zeta_{n}^{2} k^{2}\left\|x_{n}-y_{n}\right\|^{2}+\left\|t_{n}-y_{n}\right\|^{2} \\
= & \left\|x_{n}-p\right\|^{2}+\left(\zeta_{n}^{2} k^{2}-1\right)\left\|x_{n}-y_{n}\right\|^{2} \leq\left\|x_{n}-p\right\|^{2} .
\end{aligned}
$$

From $y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) P_{C}\left(I-\zeta_{n} A\right) x_{n}$, we have

$$
\begin{align*}
\left\|y_{n}-p\right\|^{2} & =\left\|\beta_{n} x_{n}+\left(1-\beta_{n}\right) P_{C}\left(I-\zeta_{n} A\right) x_{n}-p\right\|^{2} \tag{3.3}\\
& \leq \beta_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left\|P_{C}\left(I-\zeta_{n} A\right) x_{n}-p\right\|^{2} \\
& \leq \beta_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left\|x_{n}-p\right\|^{2}=\left\|x_{n}-p\right\|^{2} .
\end{align*}
$$

From $\zeta_{n}<1 / k, z_{n}=\alpha_{n} f_{n}\left(y_{n}\right)+\left(1-\alpha_{n}\right) T\left(\mu_{n}\right) W_{n} t_{n}$, Lemma 2.1 and relations (3.2) and (3.3), we have

$$
\begin{align*}
\left\|z_{n}-p\right\|^{2}= & \left\|\alpha_{n} f_{n}\left(y_{n}\right)+\left(1-\alpha_{n}\right) T\left(\mu_{n}\right) W_{n} t_{n}-p\right\|^{2} \tag{3.4}\\
\leq & {\left[\alpha_{n}\left\|f_{n}\left(y_{n}\right)-p\right\|+\left(1-\alpha_{n}\right)\left\|T\left(\mu_{n}\right) W_{n} t_{n}-p\right\|\right]^{2} } \\
\leq & {\left[\alpha_{n}\left\|f_{n}\left(y_{n}\right)-f_{n}(p)\right\|+\left\|f_{n}(p)-p\right\|+\left(1-\alpha_{n}\right)\left\|t_{n}-p\right\|\right]^{2} } \\
\leq & {\left[\alpha_{n} \psi_{n}\left(\left\|y_{n}-p\right\|\right)\right.} \\
& \left.+\left\|f_{n}(p)-p\right\|+\left(1-\alpha_{n}\right)\left\|t_{n}-p\right\|\right]^{2} \\
\leq & {\left[\alpha_{n}\left\|y_{n}-p\right\|+\left\|f_{n}(p)-p\right\|+\left(1-\alpha_{n}\right)\left\|t_{n}-p\right\|\right]^{2} } \\
\leq & {\left[\alpha_{n}\left\|x_{n}-p\right\|+\left\|f_{n}(p)-p\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|\right]^{2} } \\
\leq & {\left[\left\|x_{n}-p\right\|+\left\|f_{n}(p)-p\right\|\right]^{2} } \\
\leq & \left\|x_{n}-p\right\|^{2}+\alpha_{n}\left[\left\|f_{n}(p)-p\right\|^{2}+2\left\|f_{n}(p)-p\right\|\left\|x_{n}-p\right\|\right] \\
\leq & \left\|x_{n}-p\right\|^{2}+\alpha_{n} \delta_{n}=\left\|x_{n}-p\right\|^{2}+r_{n}
\end{align*}
$$

for every $n \in \mathbb{N} \cup\{0\}$ and hence $p \in C_{n}$. So $\mathcal{F} \subset C_{n}$ for all $n \in \mathbb{N} \cup\{0\}$. Next, we show by induction that

$$
\begin{equation*}
\mathcal{F} \subset C_{n} \cap Q_{n}, \quad \text { for all } n \in \mathbb{N} \cup\{0\} . \tag{3.5}
\end{equation*}
$$

From $Q_{0}=C$, we have $\mathcal{F} \subset C_{0} \cap Q_{0}$. Suppose that $\mathcal{F} \subset C_{n} \cap Q_{n}$ for some $n \in \mathbb{N} \cup\{0\}$. Since $x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0}$, by Lemma 2.3, we have

$$
\left\langle x_{n+1}-z, x_{0}-x_{n+1}\right\rangle \geq 0, \quad \text { for all } z \in C_{n} \cap Q_{n}
$$

As $\mathcal{F} \subset C_{n} \cap Q_{n}$ by the induction assumption, the last inequality holds, in particular, for all $z \in \mathcal{F}$. This together with the definition of Q_{n+1} implies that $\mathcal{F} \subset Q_{n+1}$. Hence (3.9) holds. As in the proof of Theorem 3.1 in [16], we can prove that

$$
\begin{equation*}
\left\|x_{0}-x_{n}\right\| \leq\left\|x_{0}-u\right\|, \quad \text { for all } u \in \mathcal{F} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.7}
\end{equation*}
$$

From $x_{n+1} \in C_{n}$, we have $\left\|z_{n}-x_{n+1}\right\|^{2} \leq\left\|x_{n}-x_{n+1}\right\|^{2}+r_{n}$ and hence

$$
\begin{aligned}
\left\|z_{n}-x_{n}\right\|^{2} & \leq\left[\left\|z_{n}-x_{n+1}\right\|+\left\|x_{n+1}-x_{n}\right\|\right]^{2} \\
& \leq 2\left\|z_{n}-x_{n+1}\right\|^{2}+2\left\|x_{n+1}-x_{n}\right\|^{2} \leq 4\left\|x_{n}-x_{n+1}\right\|^{2}+2 r_{n}
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} r_{n}=0$, so from (3.7), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0 \tag{3.8}
\end{equation*}
$$

From $z_{n}=\alpha_{n} f_{n}\left(y_{n}\right)+\left(1-\alpha_{n}\right) T\left(\mu_{n}\right) W_{n} t_{n}$, (3.3), (3.2) and Lemma 2.1, we have

$$
\begin{aligned}
\left\|z_{n}-p\right\|^{2}= & \left\|\alpha_{n} f_{n}\left(y_{n}\right)+\left(1-\alpha_{n}\right) T\left(\mu_{n}\right) W_{n} t_{n}-p\right\|^{2} \\
\leq & \alpha_{n}\left\|f_{n}\left(y_{n}\right)-p\right\|^{2}+\left(1-\alpha_{n}\right)\left\|T\left(\mu_{n}\right) W_{n} t_{n}-p\right\|^{2} \\
\leq & \alpha_{n}\left[\left\|f_{n}\left(y_{n}\right)-f_{n}(p)\right\|+\left\|f_{n}(p)-p\right\|\right]^{2}+\left(1-\alpha_{n}\right)\left\|t_{n}-p\right\|^{2} \\
\leq & \alpha_{n}\left\|y_{n}-p\right\|^{2}+\alpha_{n}\left\|f_{n}(p)-p\right\|\left[\left\|f_{n}(p)-p\right\|+2\left\|y_{n}-p\right\|\right] \\
& +\left(1-\alpha_{n}\right)\left\|t_{n}-p\right\|^{2} \\
\leq & \alpha_{n}\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left\|f_{n}(p)-p\right\|\left[\left\|f_{n}(p)-p\right\|+2\left\|x_{n}-p\right\|\right] \\
& +\left(1-\alpha_{n}\right)\left[\left\|x_{n}-p\right\|^{2}+\left(\zeta_{n}^{2} k^{2}-1\right)\left\|x_{n}-y_{n}\right\|^{2}\right] .
\end{aligned}
$$

It follows that

$$
\begin{align*}
\left\|x_{n}-y_{n}\right\|^{2} \leq & \frac{1}{\left(1-\alpha_{n}\right)\left(1-\zeta_{n}^{2} k^{2}\right)}\left(\left\|x_{n}-p\right\|^{2}-\left\|z_{n}-p\right\|^{2}\right. \tag{3.9}\\
& \left.+\alpha_{n}\left\|f_{n}(p)-p\right\|\left[\left\|f_{n}(p)-p\right\|+2\left\|x_{n}-p\right\|\right]\right) \\
\leq & \frac{1}{\left(1-\alpha_{n}\right)\left(1-\zeta_{n}^{2} k^{2}\right)}\left(\left[\left\|x_{n}-p\right\|+\left\|z_{n}-p\right\|\right]\left\|x_{n}-z_{n}\right\|\right. \\
& \left.+\alpha_{n}\left\|f_{n}(p)-p\right\|\left[\left\|f_{n}(p)-p\right\|+2\left\|x_{n}-p\right\|\right]\right) \\
\leq & \frac{1}{\left(1-\alpha_{n}\right)\left(1-\zeta_{n}^{2} k^{2}\right)}\left(\left[2\left\|x_{n}-p\right\|+r_{n}\right]\left\|x_{n}-z_{n}\right\|\right. \\
& \left.+\alpha_{n}\left\|f_{n}(p)-p\right\|\left[\left\|f_{n}(p)-p\right\|+2\left\|x_{n}-p\right\|\right]\right) \\
\leq & \frac{1}{\left(1-\alpha_{n}\right)\left(1-\zeta_{n}^{2} k^{2}\right)}\left(\left[2\left\|x_{0}-p\right\|+r_{n}\right]\left\|x_{n}-z_{n}\right\|\right. \\
& \left.+\alpha_{n}\left\|f_{n}(p)-p\right\|\left[\left\|f_{n}(p)-p\right\|+2\left\|x_{0}-p\right\|\right]\right)
\end{align*}
$$

Since $\lim _{n \rightarrow \infty} \alpha_{n}=0$, so from (3.8) and (3.9), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0 \tag{3.10}
\end{equation*}
$$

As A is k-Lipschitz-continuous, we have

$$
\begin{aligned}
\left\|y_{n}-t_{n}\right\|= & \left\|\beta_{n} x_{n}+\left(1-\beta_{n}\right) P_{C}\left(I-\zeta_{n} A\right) x_{n}-P_{C}\left(x_{n}-\zeta_{n} A y_{n}\right)\right\| \\
\leq & \beta_{n}\left\|x_{n}-P_{C}\left(I-\zeta_{n} A\right) x_{n}\right\| \\
& +\left(1-\beta_{n}\right)\left\|P_{C}\left(I-\zeta_{n} A\right) x_{n}-P_{C}\left(x_{n}-\zeta_{n} A y_{n}\right)\right\| \\
\leq & \beta_{n}\left\|x_{n}-P_{C}\left(I-\zeta_{n} A\right) x_{n}\right\|+\left(1-\beta_{n}\right) \zeta_{n} k\left\|x_{n}-y_{n}\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \beta_{n}\left[\left\|x_{n}-p\right\|+\left\|p-P_{C}\left(I-\zeta_{n} A\right) x_{n}\right\|\right]+\left(1-\beta_{n}\right) \zeta_{n} k\left\|x_{n}-y_{n}\right\| \\
& \leq 2 \beta_{n}\left\|x_{n}-p\right\|+\left(1-\beta_{n}\right) \zeta_{n} k\left\|x_{n}-y_{n}\right\| \\
& \leq 2 \beta_{n}\left\|x_{0}-p\right\|+\left(1-\beta_{n}\right) \zeta_{n} k\left\|x_{n}-y_{n}\right\|
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \beta_{n}=0$, from (3.10), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|t_{n}-y_{n}\right\|=0 \tag{3.11}
\end{equation*}
$$

Noticing that $z_{n}=\alpha_{n} f_{n}\left(y_{n}\right)+\left(1-\alpha_{n}\right) T\left(\mu_{n}\right) W_{n} t_{n}$, we have

$$
z_{n}-y_{n}=\alpha_{n}\left(f_{n}\left(y_{n}\right)-y_{n}\right)+\left(1-\alpha_{n}\right)\left[T\left(\mu_{n}\right) W_{n} t_{n}-y_{n}\right]
$$

It follows that

$$
\begin{aligned}
(1-c) \| T\left(\mu_{n}\right) & W_{n} t_{n}-y_{n}\left\|\leq\left(1-\alpha_{n}\right)\right\| T\left(\mu_{n}\right) W_{n} t_{n}-y_{n} \| \\
& \leq \alpha_{n}\left\|f_{n}\left(y_{n}\right)-y_{n}\right\|+\left\|z_{n}-y_{n}\right\| \\
& \leq \alpha_{n}\left[\left\|f_{n}\left(y_{n}\right)-f_{n}(p)\right\|+\left\|f_{n}(p)-p\right\|+\left\|p-y_{n}\right\|\right]+\left\|z_{n}-y_{n}\right\| \\
& \leq \alpha_{n}\left[\psi\left(\left\|y_{n}-p\right\|\right)+\left\|f_{n}(p)-p\right\|+\left\|p-y_{n}\right\|\right]+\left\|z_{n}-y_{n}\right\| \\
& \leq \alpha_{n}\left[\left\|y_{n}-p\right\|+\left\|f_{n}(p)-p\right\|+\left\|p-y_{n}\right\|\right]+\left\|z_{n}-y_{n}\right\| \\
& \leq \alpha_{n}\left[2\left\|x_{n}-p\right\|+\left\|f_{n}(p)-p\right\|\right]+\left\|z_{n}-y_{n}\right\| \\
& \leq \alpha_{n}\left[2\left\|x_{0}-p\right\|+\left\|f_{n}(p)-p\right\|\right]+\left\|z_{n}-x_{n}\right\|+\left\|x_{n}-y_{n}\right\|
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \alpha_{n}=0$, from (3.8) and (3.10), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T\left(\mu_{n}\right) W_{n} t_{n}-y_{n}\right\|=0 \tag{3.12}
\end{equation*}
$$

From Lemma 2.1, we have

$$
\begin{aligned}
& \left\|x_{n}-T\left(\mu_{n}\right) W_{n} x_{n}\right\| \\
& \quad \leq\left\|x_{n}-y_{n}\right\|+\left\|y_{n}-T\left(\mu_{n}\right) W_{n} t_{n}\right\|+\left\|T\left(\mu_{n}\right) W_{n} t_{n}-T\left(\mu_{n}\right) W_{n} x_{n}\right\| \\
& \quad \leq\left\|x_{n}-y_{n}\right\|+\left\|y_{n}-T\left(\mu_{n}\right) W_{n} t_{n}\right\|+\left\|t_{n}-x_{n}\right\| \\
& \quad \leq\left\|x_{n}-y_{n}\right\|+\left\|y_{n}-T\left(\mu_{n}\right) W_{n} t_{n}\right\|+\left\|t_{n}-y_{n}\right\|+\left\|y_{n}-x_{n}\right\| .
\end{aligned}
$$

It follows from (3.10), (3.11) and (3.12) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T\left(\mu_{n}\right) W_{n} x_{n}\right\|=0 \tag{3.13}
\end{equation*}
$$

Set $D=\left\{y \in C:\left\|y-x_{0}\right\| \leq 2\left\|x_{0}-p\right\|\right\}$, for $p \in \mathcal{F}$. We remark that D is a bounded closed convex set, from (3.2) and (3.6), $\left\{t_{n}\right\} \subset D$ and $\left\{x_{n}\right\} \subset D$, and it is invariant under φ and W_{n}. As it was proved in [11], [15], [18], we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sup _{x \in D}\left\|T\left(\mu_{n}\right) x-T(t) T\left(\mu_{n}\right) x\right\|=0, \quad \text { for all } t \in S \tag{3.14}
\end{equation*}
$$

We now claim that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T(t) x_{n}\right\|=0, \quad \text { for all } t \in S \tag{3.15}
\end{equation*}
$$

Let $t \in S$ and $\epsilon>0$. As in the proof of Shioji and Takahashi [20, Lemma 1], there exists $\delta>0$ such that

$$
\begin{equation*}
\overline{\operatorname{co}} F_{\delta}(T(t) ; D)+B_{\delta} \subset F_{\varepsilon}(T(t) ; D) . \tag{3.16}
\end{equation*}
$$

Since $\left\{W_{n} t_{n}\right\} \subset D$, from (3.14) there exists $N_{2} \in \mathbb{N}$ such that

$$
\begin{equation*}
T\left(\mu_{n}\right) W_{n} t_{n} \in F_{\delta}\left(T_{t} ; D\right), \quad n \geq N_{2} \tag{3.17}
\end{equation*}
$$

Observe that

$$
\begin{align*}
& \left\|f_{n}\left(y_{n}\right)-T\left(\mu_{n}\right) W_{n} t_{n}\right\| \tag{3.18}\\
& \quad \leq\left\|f_{n}\left(y_{n}\right)-f_{n}(p)\right\|+\left\|f_{n}(p)-p\right\|+\left\|p-T\left(\mu_{n}\right) W_{n} t_{n}\right\| \\
& \quad \leq\left\|y_{n}-p\right\|+\left\|f_{n}(p)-p\right\|+\left\|p-t_{n}\right\| \\
& \quad \leq 2\left\|x_{n}-p\right\|+\left\|f_{n}(p)-p\right\| \leq 2\left\|x_{0}-p\right\|+\left\|f_{n}(p)\right\|+\|p\| .
\end{align*}
$$

Since $\left\{f_{n}(p)\right\}_{n=1}^{\infty}$ converges and $\lim _{n \rightarrow \infty} \alpha_{n}=0$, from (3.18), there exists $N_{3} \in \mathbb{N}$ such that

$$
\begin{equation*}
\alpha_{n}\left(f_{n}\left(y_{n}\right)-T\left(\mu_{n}\right) W_{n} t_{n}\right) \in B_{\delta}, \quad n \geq N_{3} . \tag{3.19}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
z_{n} & =\alpha_{n} f_{n}\left(y_{n}\right)+\left(1-\alpha_{n}\right) T\left(\mu_{n}\right) W_{n} t_{n} \\
& =\alpha_{n}\left(f_{n}\left(y_{n}\right)-T\left(\mu_{n}\right) W_{n} t_{n}\right)+T\left(\mu_{n}\right) W_{n} t_{n} .
\end{aligned}
$$

It follows from (3.17) and (3.19) that $z_{n} \in F_{\varepsilon}\left(T_{t} ; D\right)$ for all $n \geq N=\max \left\{N_{2}, N_{3}\right\}$. Since $t \in S$ and $\varepsilon>0$ are arbitrary, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-T(t) z_{n}\right\|=0, \quad \text { for all } t \in S \tag{3.20}
\end{equation*}
$$

Noticing that

$$
\begin{aligned}
\left\|x_{n}-T(t) x_{n}\right\| & \leq\left\|x_{n}-z_{n}\right\|+\left\|z_{n}-T(t) z_{n}\right\|+\left\|T(t) z_{n}-T(t) x_{n}\right\| \\
& \leq 2\left\|x_{n}-z_{n}\right\|+\left\|z_{n}-T(t) z_{n}\right\|,
\end{aligned}
$$

from (3.8) and (3.20), we get (3.15). Now we prove the weak ω-limit set of $\left\{x_{n}\right\}$, $\omega_{\omega}\left\{x_{n}\right\}$, is a subset of \mathcal{F}. Let $z \in \omega_{\omega}\left\{x_{n}\right\}$ and let $\left\{x_{n_{j}}\right\}$ be a subsequence of $\left\{x_{n}\right\}$ such that $x_{n_{j}} \rightharpoonup z$. Now, we prove that $z \in \operatorname{Fix}(\varphi)$. Assume by contradiction that there exists $t \in S$ such that $z \neq T(t) z$. Since every Hilbert space satisfies the Opial condition, from (3.20) we have

$$
\begin{aligned}
\limsup _{j \rightarrow \infty}\left\|x_{n_{j}}-z\right\| & <\limsup _{j \rightarrow \infty}\left\|x_{n_{j}}-T(t) z\right\| \\
& \leq \limsup _{j \rightarrow \infty}\left(\left\|x_{n_{j}}-T(t) x_{n_{j}}\right\|+\left\|T(t) x_{n_{j}}-T(t) z\right\|\right) \\
& \leq \limsup _{j \rightarrow \infty}\left(\left\|x_{n_{j}}-T(t) x_{n_{j}}\right\|+\left\|x_{n_{j}}-z\right\|\right) \leq \limsup _{j \rightarrow \infty}\left(\left\|x_{n_{j}}-z\right\|\right)
\end{aligned}
$$

which derives a contradiction. Thus, we have $z \in \operatorname{Fix}(\varphi)$. By our assumption, we have $T_{i} z \in \operatorname{Fix}(\varphi)$ for all $i \in \mathbb{N}$ and then $W_{n} z \in \operatorname{Fix}(\varphi)$, hence $T\left(\mu_{n}\right) W_{n} z=W_{n} z$.

As in the proof of Step 7 of [15, Theorem 3.1], we can show that $z \in \operatorname{Fix}(W)$. In terms of Lemma 2.9, we conclude that $z \in \bigcap_{n=1}^{\infty} \operatorname{Fix}\left(T_{n}\right)$. As in the proof of Step 7 of [17, Theorem 3.1], we can show that $z \in \operatorname{VI}(C, A)$. Since $z \in \operatorname{Fix}(\varphi)$ and $z \in \bigcap_{n=1}^{\infty} \operatorname{Fix}\left(T_{n}\right)$; therefore, $z \in \mathcal{F}$. So, $\emptyset \neq \omega_{\omega}\left\{x_{n}\right\} \subset \mathcal{F}$. Since $x_{n}=P_{Q_{n}} x_{0}$ and $P_{\mathcal{F}} x_{0} \subset \mathcal{F} \subset Q_{n}$, we have $\left\|x_{n}-x_{0}\right\| \leq\left\|x_{0}-P_{\mathcal{F}} x_{0}\right\|$. By the lower semicontinuity of the norm, we have $\left\|w-x_{0}\right\| \leq\left\|x_{0}-P_{\mathcal{F}} x_{0}\right\|$ for all $w \in \omega_{\omega}\left\{x_{n}\right\}$. However, since $\omega_{\omega}\left\{x_{n}\right\} \subset \mathcal{F}$, we must have $w=P_{\mathcal{F}} x_{0}$ for all $w \in \omega_{\omega}\left\{x_{n}\right\}$. Hence $x_{n} \rightharpoonup P_{\mathcal{F}} x_{0}$. To see that $x_{n} \rightarrow P_{\mathcal{F}} x_{0}$, we compute

$$
\begin{aligned}
\left\|x_{n}-P_{\mathcal{F}} x_{0}\right\|^{2} & =\left\|\left(x_{n}-x_{0}\right)+\left(x_{0}-P_{\mathcal{F}} x_{0}\right)\right\|^{2} \\
& =\left\|x_{n}-x_{0}\right\|^{2}+2\left\langle x_{n}-x_{0}, x_{0}-P_{\mathcal{F}} x_{0}\right\rangle+\left\|x_{0}-P_{\mathcal{F}} x_{0}\right\|^{2} \\
& \leq 2\left\langle x_{n}-x_{0}, x_{0}-P_{\mathcal{F}} x_{0}\right\rangle+2\left\|x_{0}-P_{\mathcal{F}} x_{0}\right\|^{2} \\
& =-2\left\langle x_{0}-x_{n}, x_{0}-P_{\mathcal{F}} x_{0}\right\rangle+2\left\|x_{0}-P_{\mathcal{F}} x_{0}\right\|^{2} \rightarrow 0 .
\end{aligned}
$$

That is, $\left\{x_{n}\right\}$ converges to $P_{\mathcal{F}} x_{0}$. It is easy to see that $\left\{y_{n}\right\}$ converges to $P_{\mathcal{F}} x_{0}$ and $\left\{z_{n}\right\}$ converges to $P_{\mathcal{F}} x_{0}$.

Theorem 3.2. Let $C,\left\{T_{n}\right\}_{n=1}^{\infty}, S, \varphi, X,\left\{\mu_{n}\right\}_{n=0}^{\infty}, \mathcal{F},\left\{\zeta_{n}\right\}_{n=0}^{\infty}$, $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ be as in Theorem 3.1. Define sequences $\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty}$ and $\left\{z_{n}\right\}_{n=0}^{\infty}$ in C by the iteration algorithm

$$
\left\{\begin{array}{l}
x_{0} \in C \tag{3.21}\\
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) P_{C}\left(I-\zeta_{n} A\right) x_{n} \\
z_{n}=\alpha_{n} y_{n}+\left(1-\alpha_{n}\right) T\left(\mu_{n}\right) W_{n} P_{C}\left(x_{n}-\zeta_{n} A y_{n}\right) \\
C_{n}=\left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{n}-x_{0}\right\rangle \leq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0}
\end{array}\right.
$$

Then the sequences $\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty}$ and $\left\{z_{n}\right\}_{n=0}^{\infty}$ converge strongly to $P_{\mathcal{F}} x_{0}$.
Proof. It suffices to replace f_{n} by I (identity mapping) for every $n \in \mathbb{N}$ in the proof of Theorem 3.1.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H and $\left\{T_{n}\right\}_{n=1}^{\infty}$ be an infinite family of λ_{n}-strictly pseudo-contractive mappings of C into itself. Let A be a monotone and k-Lipschitz-continuous mapping of C into H and $\mathcal{F}=\bigcap_{n=1}^{\infty} \operatorname{Fix}\left(T_{n}\right) \cap \mathrm{VI}(C, A) \neq \emptyset$. Let $\left\{\zeta_{n}\right\}_{n=0}^{\infty}$ and $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ be sequences such that $\left\{\zeta_{n}\right\}_{n=0}^{\infty} \subset[a, b]$ for some $a, b \in(0,1 / k)$ and $\left\{\alpha_{n}\right\}_{n=0}^{\infty} \subset[0, c]$ for some $c \in[0,1)$ and W_{n} be the mapping generated by $\left\{T_{n}\right\}_{n=1}^{\infty}$ and $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ as in (2.5). Define sequences $\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty}$ and $\left\{z_{n}\right\}_{n=0}^{\infty}$ in C by the iteration
algorithm

$$
\left\{\begin{array}{l}
x_{0} \in C, \tag{3.22}\\
y_{n}=P_{C}\left(I-\zeta_{n} A\right) x_{n}, \\
z_{n}=\alpha_{n} y_{n}+\left(1-\alpha_{n}\right) W_{n} P_{C}\left(x_{n}-\zeta_{n} A y_{n}\right), \\
C_{n}=\left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}\right\}, \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{n}-x_{0}\right\rangle \leq 0\right\}, \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x .
\end{array}\right.
$$

Then the sequences $\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty}$ and $\left\{z_{n}\right\}_{n=0}^{\infty}$ converge strongly to $P_{\mathcal{F}} x_{0}$.
Proof. It suffices to take $T(t)=I$, for all $t \in S$ in Theorem 3.1 and replace f_{n} by I (identity mapping) for every $n \in \mathbb{N}$ in the proof of Theorem 3.1.

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H and A be a monotone and k-Lipschitz-continuous mapping of C into H. Let S be a semigroup and $\varphi=\{T(t): t \in S\}$ be a nonexpansive semigroup of C into itself such that $\mathcal{F}=\mathrm{VI}(C, A) \cap \operatorname{Fix}(\varphi) \neq \emptyset$. Let X be a left invariant subspace of $L^{\infty}(S)$ such that $1 \in X, t \mapsto\langle T(t) x, y\rangle$ an element of X for each $x, y \in C$ and $\left\{\mu_{n}\right\}_{n=0}^{\infty}$ is a left regular sequence of means on X. Let $\left\{\zeta_{n}\right\}_{n=0}^{\infty}$ and $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ be sequences such that $\left\{\zeta_{n}\right\}_{n=0}^{\infty} \subset[a, b]$ for some $a, b \in(0,1 / k)$ and $\left\{\alpha_{n}\right\}_{n=0}^{\infty} \subset[0, c]$ for some $c \in[0,1)$. Define sequences $\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty}$ and $\left\{z_{n}\right\}_{n=0}^{\infty}$ in C by the iteration algorithm

$$
\left\{\begin{array}{l}
x_{0} \in C, \tag{3.23}\\
y_{n}=P_{C}\left(I-\zeta_{n} A\right) x_{n}, \\
z_{n}=\alpha_{n} y_{n}+\left(1-\alpha_{n}\right) T\left(\mu_{n}\right) P_{C}\left(x_{n}-\zeta_{n} A y_{n}\right), \\
C_{n}=\left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}\right\}, \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{n}-x_{0}\right\rangle \leq 0\right\}, \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x .
\end{array}\right.
$$

Then the sequences $\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty}$ and $\left\{z_{n}\right\}_{n=0}^{\infty}$ converge strongly to $P_{\mathcal{F}} x_{0}$.
Proof. It suffices to take $\beta_{n}=0$ and $W_{n}=I$, for all $n \in \mathbb{N}$ in Theorem 3.1 and replace f_{n} by I for every $n \in \mathbb{N}$ in the proof of Theorem 3.1.

Corollary 3.5 ([14, Theorem 3.1]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let A be a monotone and k-Lipschitz-continuous mapping of C into H and S be nonexpansive mappings of C into itself such that $\mathcal{F}=\operatorname{VI}(C, A) \cap \operatorname{Fix}(S) \neq \emptyset$. Let $\left\{\zeta_{n}\right\}_{n=0}^{\infty}$ and $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ be sequences such that $\left\{\zeta_{n}\right\}_{n=0}^{\infty} \subset[a, b]$ for some $a, b \in(0,1 / k)$ and $\left\{\alpha_{n}\right\}_{n=0}^{\infty} \subset[0, c]$ for some $c \in[0,1)$.

Define sequences $\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty}$ and $\left\{z_{n}\right\}_{n=0}^{\infty}$ in C by the iteration algorithm

$$
\left\{\begin{array}{l}
x_{0} \in C \tag{3.24}\\
y_{n}=P_{C}\left(I-\zeta_{n} A\right) x_{n} \\
z_{n}=\alpha_{n} y_{n}+\left(1-\alpha_{n}\right) S P_{C}\left(x_{n}-\zeta_{n} A y_{n}\right), \\
C_{n}=\left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{n}-x_{0}\right\rangle \leq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x
\end{array}\right.
$$

Then the sequences $\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty}$ and $\left\{z_{n}\right\}_{n=0}^{\infty}$ converge strongly to $P_{\mathcal{F}} x_{0}$.
Proof. It suffices to take $\beta_{n}=0$ and $W_{n}=S$, for all $n \in \mathbb{N}$ in Theorem 3.1 and replace f_{n} by I for every $n \in \mathbb{N}$ in the proof of Theorem 3.1.

Corollary 3.6 ([14, Theorem 4.1]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let A be a monotone and k-Lipschitz-continuous mapping of C into H such that $\mathcal{F}=\mathrm{VI}(C, A) \neq \emptyset$. Let $\left\{\zeta_{n}\right\}_{n=0}^{\infty}$ and $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ be sequences such that $\left\{\zeta_{n}\right\}_{n=0}^{\infty} \subset[a, b]$ for some $a, b \in(0,1 / k)$ and $\left\{\alpha_{n}\right\}_{n=0}^{\infty} \subset[0, c]$ for some $c \in[0,1)$. Define sequences $\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty}$ and $\left\{z_{n}\right\}_{n=0}^{\infty}$ in C by the iteration algorithm

$$
\left\{\begin{array}{l}
x_{0} \in C, \tag{3.25}\\
y_{n}=P_{C}\left(I-\zeta_{n} A\right) x_{n}, \\
z_{n}=P_{C}\left(x_{n}-\zeta_{n} A y_{n}\right) \\
C_{n}=\left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}\right\}, \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{n}-x_{0}\right\rangle \leq 0\right\}, \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x .
\end{array}\right.
$$

Then the sequences $\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty}$ and $\left\{z_{n}\right\}_{n=0}^{\infty}$ converge strongly to $P_{\mathcal{F}} x_{0}$.
Proof. It suffices to take $\alpha_{n}=\beta_{n}=0$ and $W_{n}=I$, for all $n \in \mathbb{N}$ and $T(t)=I$, for all $t \in S$ in Theorem 3.1.

Example 3.7. Let C be a nonempty closed convex subset of a real Hilbert space H and let T be a nonexpansive mapping of C into itself. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of ψ_{n}-contraction self-mappings of C such that $\left\{f_{n}\right\}_{n=1}^{\infty}$ is uniformly convergent for any $x \in D$, where D is any bounded subset of C. Let $\left\{T_{n}\right\}_{n=1}^{\infty}$ be an infinite family of λ_{n}-strictly pseudo-contractive mappings of C into itself such that, for all $n \in \mathbb{N}, T_{n}(\operatorname{Fix}(T)) \subset \operatorname{Fix}(T)$. Let A be a monotone and k-Lipschitzcontinuous mapping of C into H and $\mathcal{F}=\bigcap_{n=1}^{\infty} \operatorname{Fix}\left(T_{n}\right) \cap \operatorname{Fix}(T) \cap \operatorname{VI}(C, A)$ be nonempty and bounded. Let $\left\{\zeta_{n}\right\}_{n=0}^{\infty},\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ be sequences such that $\left\{\zeta_{n}\right\}_{n=0}^{\infty} \subset[a, b]$ for some $a, b \in(0,1 / k),\left\{\alpha_{n}\right\}_{n=0}^{\infty} \subset[0, c]$ for some $c \in[0,1)$,
$\lim _{n \rightarrow \infty} \alpha_{n}=0,\left\{\beta_{n}\right\}_{n=0}^{\infty} \subset[0,1), \lim _{n \rightarrow \infty} \beta_{n}=0$ and W_{n} be the mapping generated by $\left\{S_{n}\right\}_{n=1}^{\infty}$ and $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ as in (2.5). Define sequences $\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty}$ and $\left\{z_{n}\right\}_{n=0}^{\infty}$ in C by the iteration algorithm

$$
\left\{\begin{array}{l}
x_{0} \in C, \tag{3.26}\\
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) P_{C}\left(I-\zeta_{n} A\right) x_{n}, \\
z_{n}=\alpha_{n} f_{n}\left(y_{n}\right)+\left(1-\alpha_{n}\right) \frac{2}{n^{2}+n} \sum_{k=0}^{n} W_{n} P_{C}\left(x_{n}-\zeta_{n} A y_{n}\right), \\
C_{n}=\left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}+r_{n}\right\}, \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{n}-x_{0}\right\rangle \leq 0\right\}, \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0},
\end{array}\right.
$$

where $r_{n}=\alpha_{n} \delta_{n}$ and $\delta_{n}=\sup \left\{\left\|f_{n}(p)-p\right\|\left[\left\|f_{n}(p)-p\right\|+2\left\|x_{n}-p\right\|\right]: p \in \mathcal{F}\right\}$. Then the sequences $\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty}$ and $\left\{z_{n}\right\}_{n=0}^{\infty}$ converge strongly to $P_{\mathcal{F}} x_{0}$.

Proof. Let $S=\{0,1, \ldots\}$ and $\varphi=\left\{T^{n}: n \in S\right\}$. For each $f=\left(x_{0}, x_{1}, \ldots\right)$ in $B(S)$, define

$$
\mu_{n}=\frac{2}{n^{2}+n} \sum_{k=0}^{n} k x_{k} .
$$

Then $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ is a left regular sequence of means on $B(S)$. In fact, for $f \in B(S)$,

$$
\left|\mu_{n}(f)\right| \leq \frac{2}{n^{2}+n} \sum_{k=0}^{n} k\left|x_{k}\right| \leq \frac{2}{n^{2}+n} \sum_{k=0}^{n} k\|f\|=\|f\|,
$$

and

$$
\mu_{n}(1)=\frac{2}{n^{2}+n} \sum_{k=0}^{n} k=1 .
$$

It follows that $\left\|\mu_{n}\right\|=\mu_{n}(1)=1$, i.e., μ_{n} is a mean on $B(S)$. Next, for each $f \in B(S)$ and $m \in S$,

$$
\begin{aligned}
& \left|\mu_{n}(f)-\mu_{n}\left(l_{m} f\right)\right|=\left|\frac{2}{n^{2}+n} \sum_{k=0}^{n} k x_{k}-\frac{2}{n^{2}+n} \sum_{k=0}^{n} k x_{k+m}\right| \\
& \quad=\frac{2}{n^{2}+n}\left|\sum_{k=0}^{m} k x_{k}+\sum_{k=m+1}^{n} k x_{k}-\sum_{k=0}^{n-m} k x_{k+m}-\sum_{k=n-m+1}^{n} k x_{k+m}\right| \\
& \quad=\frac{2}{n^{2}+n}\left|\sum_{k=0}^{m} k x_{k}+m \sum_{k=m+1}^{n} x_{k}-\sum_{k=n-m+1}^{n} k x_{k+m}\right| \\
& \quad \leq \frac{2\|f\|}{n^{2}+n}\left[\sum_{k=0}^{m} k+m \sum_{k=m+1}^{n} 1-\sum_{k=n-m+1}^{n} k\right] \\
& \quad=\frac{2\|f\|}{n^{2}+n}\left[\sum_{k=0}^{m} k+m \sum_{k=m+1}^{n} 1-\sum_{k=n-m+1}^{n-m+m} k\right]
\end{aligned}
$$

$$
=\frac{2\|f\|}{n^{2}+n}\left[2 \sum_{k=0}^{m} k+2 m(n-m)\right]=\frac{2\|f\|}{n^{2}+n}\left[2 m n+m-m^{2}\right],
$$

for every $n \in \mathbb{N}$. So, we get $\lim _{n \rightarrow \infty}\left|\mu_{n}(f)-\mu_{n}\left(l_{m} f\right)\right|=0$. Hence $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ is a left regular sequence of means on $B(S)$. Further, for $x \in C$ and $y \in H$,

$$
\left(\mu_{n}\right)_{k}\left\langle T^{k} x, y\right\rangle=\frac{2}{n^{2}+n} \sum_{k=0}^{m} k\left\langle T^{k} x, y\right\rangle=\left\langle\frac{2}{n^{2}+n} \sum_{k=0}^{m} k T^{k} x, y\right\rangle
$$

and hence

$$
T\left(\mu_{n}\right) x=\frac{2}{n^{2}+n} \sum_{k=0}^{m} k T^{k} x .
$$

Therefore, the result follows from Theorem 3.1.
Acknowledgements. The authors are extremely grateful to the reviewers for careful reading, valuable comments and suggestions that improved the content of this paper.

References

[1] R.P. Agarwal, D. O'Regan and D.R. Sahu, Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Topological Fixed Point Theory and Its Applications, vol. 6, Springer, New York, 2009.
[2] F.E. Browder and W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228.
[3] S.-S. Chang, H.W.J. Lee and C.K. Chan, A new method for solving equilibrium problem, fixed point problem and variational inequality problem with application to optimization, Nonlinear Anal. 70 (2009), 3307-3319.
[4] H. Che, M. Li and X. Pan, Convergence theorems for equilibrium problems and fixedpoint problems of an infinite family of strictly pseudocontractive mapping in Hilbert spaces, J. Appl. Math. 2012 (2012), Article ID 416476, 23 pages.
[5] B.S. He, Z.H. Yang and X.M. Yuan, An approximate proximal- extragradient type method for monotone variational inequalities, J. Math. Anal. Appl. 300 (2004), 362-374.
[6] N. Hirano, K. Kido and W. Takahashi, Nonexpansive retractions and nonlinear ergodic theorems in Banach spaces, Nonlinear Anal. 12 (1988), 1269-1281.
[7] A.N. Iusem, An iterative algorithm for the variational inequality problem, Comput. Appl. Math. 13 (1994), 103-114.
[8] O. Kada and W. Takahashi, Strong convergence and nonlinear ergodic theorems for commutative semigroups of nonexpansive mappings, Nonlinear Anal. 28 (1997) 495-511.
[9] G.M. Korpelevich, An extragradient method for finding saddle points and for other problems, Ekonomika i Matematicheskie Metody 12 (1976), 747-756.
[10] P. Katchang and P. Kumam, A composite explicit iterative process with a viscosity method for Lipschitzian semigroup in smooth Banach space, Bull. Iranian Math. Soc. $\mathbf{3 7}$ (2011), 143-159.
[11] A.T. Lau, H. Miyake and W. Takahashi, Approximation of fixed points for amenable semigroups of nonexpansive mappings in Banach spaces, Nonlinear Anal. 67 (2007), 12111225.
[12] A.T. Lau, N. Shioji and W. Takahashi, Existence of nonexpansive retractions for amenable semigroups of nonexpansive mappings and nonlinear ergodic theorems in $B a$ nach spaces, J. Funct. Anal. 161 (1999), 62-75.
[13] J.L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493-517.
[14] N. Nadezhkina and W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim. 16 (2006), 1230-1241.
[15] H. Piri, Hybrid pseudo-viscosity approximation schemes for systems of equilibrium problems and fixed point problems of infinite family and semigroup of non-expansive mappings, Nonlinear Anal. 74 (2011), 6788-6804.
[16] H. Piri, Strong convergence of the $C Q$ method for fixed points of semigroups of nonexpansive mappings, J. Nonlinear Funct. Anal. 2015 (2015), Article ID 18.
[17] H. Piri, Approximating fixed points of semigroups of nonexpansive mappings and solving systems of variational inequalities, Math. Reports. 16 (2014), 295-317.
[18] H. Piri and A.H. Badali, Strong convergence theorem for amenable semigroups of nonexpansive mappings and variational inequalities, Fixed Point Theory Appl. 2011 (2011), doi:10.1186/1687-1812-2011-55
[19] R.T. Rockafellar, On the maximality of sums of nonlinear monotone operator, Trans. Amer. Math. Soc. 149 (1970), 75-88.
[20] N. Shioji and W. Takahashi, Strong convergence of averaged approximants for asymptotically nonexpansive mappings in Banach spaces, J. Approx. Theory 97 (1999), 53-64.
[21] K. Shimoji and W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math. 5 (2001), 387-404.
[22] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981), 253-256.
[23] C.M. Yanes and H.K. Xu, Strong convergence of the $C Q$ method for fixed point iteration processes, Nonlinear Anal. 64 (2006), 2400-2411.
[24] Y. Yao, Y.C. Liou and J.C. Yao, Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings, Fixed Point Theory and Applications 2007 (2007), Article ID 64363, 12 pages, doi:10.1155/2007/64363.
[25] Y. Yao and M.A. Noor, On viscosity iterative methods for variational inequalities, J. Math. Anal. Appl. 325 (2007), 776-787.
[26] Y. Yao and M.A. Noor, On modified hybrid steepest-descent methods for general variational inequalities, J. Math. Anal. Appl. 334 (2007), 1276-1289.
[27] Y. Yao and M.A. Noor, On modified hybrid steepest-descent method for variational inequalities, Carpathian J. Math. 24 (2008), 139-148.
[28] Y. Yao and J.C. Yao, On modified iterative method for nonexpansive map- pings and monotone mappings, Appl. Math. Comput. 186 (2007), 1551-1558.

E-mail address: h.piri@bonabu.ac.ir, s.rahrovi@bonabu.ac.ir

[^0]: 2010 Mathematics Subject Classification. Primary: 47H09, 43A07; Secondary: 47A64, 65 J 15.

 Key words and phrases. CQ method; amenable semigroup; pseudo-contraction mappings. This work is supported by the University of Bonab under Research Projection 94-I-ER2868.

