Topological Methods in Nonlinear Analysis Volume 49, No. 2, 2017, 739–756 DOI: 10.12775/TMNA.2017.007

© 2017 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University

AN INDEFINITE CONCAVE-CONVEX EQUATION UNDER A NEUMANN BOUNDARY CONDITION II

Humberto Ramos Quoirin — Kenichiro Umezu

ABSTRACT. We proceed with the investigation of the problem

$$(P_{\lambda}) \quad -\Delta u = \lambda b(x)|u|^{q-2}u + a(x)|u|^{p-2}u \quad \text{in } \Omega, \qquad \frac{\partial u}{\partial \mathbf{n}} = 0 \quad \text{on } \partial\Omega$$

where Ω is a bounded smooth domain in \mathbb{R}^N $(N\geq 2), \ 1< q<2< p,$ $\lambda\in\mathbb{R},$ and $a,b\in C^\alpha(\overline{\Omega})$ with $0<\alpha<1$. Dealing now with the case $b\geq 0,$ $b\not\equiv 0$, we show the existence (and several properties) of an unbounded subcontinuum of nontrivial nonnegative solutions of (P_λ) . Our approach is based on a priori bounds, a regularisation procedure, and Whyburn's topological method.

1. Introduction and statements of main results

Let Ω be a bounded domain of \mathbb{R}^N $(N \geq 2)$ with smooth boundary $\partial\Omega$. This paper is devoted to the study of nontrivial nonnegative solutions for the problem

(P_{\(\lambda\)})
$$\begin{cases} -\Delta u = \lambda b(x)u^{q-1} + a(x)u^{p-1} & \text{in } \Omega, \\ \frac{\partial u}{\partial \mathbf{n}} = 0 & \text{on } \partial\Omega, \end{cases}$$

where

•
$$\Delta = \sum\limits_{j=1}^N \partial^2/\partial x_j^2$$
 is the usual Laplacian in \mathbb{R}^N ;

 $2010\ Mathematics\ Subject\ Classification.\ 35J25,\ 35J61,\ 35J20,\ 35B09,\ 35B32.$

Key words and phrases. Semilinear elliptic problem; concave-convex nonlinearity; positive solution; subcontinuum; a priori bound; bifurcation; topological method.

The first author was supported by the FONDECYT Grant 1161635.

The second author was supported by JSPS KAKENHI Grant Number 15K04945.

- $\lambda \in \mathbb{R}$;
- $1 < q < 2 < p < \infty;$
- $a, b \in C^{\alpha}(\overline{\Omega})$ for some $\alpha \in (0, 1), a, b \not\equiv 0$, and $b \geq 0$;
- **n** is the unit outer normal to the boundary $\partial \Omega$.

By a nonnegative (classical) solution of (P_{λ}) we mean a nonnegative function $u \in C^{2+\theta}(\overline{\Omega})$ for some $\theta \in (0,1)$ which satisfies (P_{λ}) in the classical sense. When $\lambda \geq 0$, the strong maximum principle and the boundary point lemma apply to (P_{λ}) , and as a consequence a nontrivial nonnegative solution of (P_{λ}) is positive on $\overline{\Omega}$. In the sequel we call it a positive solution of (P_{λ}) .

In this article, we proceed with the investigation of (P_{λ}) made in [13]. We are now concerned with the case where $b \geq 0$ and we investigate the existence of an unbounded subcontinuum $C_0 = \{(\lambda, u)\}$ of nontrivial nonnegative solutions of (P_{λ}) , bifurcating from the trivial line $\{(\lambda, 0)\}$. Note that since q < 2 the nonlinearity in (P_{λ}) is not differentiable at u = 0, so that we cannot apply the standard local bifurcation theory from [5] directly. When $a \equiv 0$, $\Gamma_0 = \{(0, c) : c \text{ is a positive constant}\}$ is a continuum of positive solutions of (P_{λ}) bifurcating at (0,0), and there is no positive solution for any $\lambda \neq 0$. Throughout this paper we shall then assume $a \not\equiv 0$, and we shall observe that the existence and behavior of C_0 depend on the sign of a.

To state our main results we introduce the following sets:

$$\Omega_{+}^{a} = \{x \in \Omega : a(x) \ge 0\}, \qquad \Omega_{+}^{b} = \{x \in \Omega : b(x) > 0\}.$$

We remark that $\Omega^a_{\pm}, \Omega^b_{+}$ are all open subsets of Ω . We shall use the following conditions on these sets:

 (H_1) Ω^a_+ are both smooth subdomains of Ω , with either

(1.1)
$$\overline{\Omega_{+}^{a}} \subset \Omega \quad \text{and} \quad \Omega = \overline{\Omega_{+}^{a}} \cup \Omega_{-}^{a}, \quad \text{or}$$

(1.2)
$$\overline{\Omega_{-}^{a}} \subset \Omega \quad \text{and} \quad \Omega = \overline{\Omega_{-}^{a}} \cup \Omega_{+}^{a}.$$

(H₂) Under (H₁) there exist a function α^+ which is continuous, positive, and bounded away from zero in a tubular neighbourhood of $\partial\Omega^a_+$ in Ω^a_+ and $\gamma > 0$ such that

$$a^+(x) = \alpha^+(x) \operatorname{dist}(x, \partial \Omega^a_+)^{\gamma},$$

where dist(x, A) denotes the distance function to a set A, and moreover,

$$2 2.$$

Assumptions (H₁) and (H₂) are used to obtain a priori bounds on positive solutions of $(Q_{\lambda,\varepsilon})$ below, cf. Amann and López-Gómez [2].

REMARK 1.1. In (H₁) we may allow $\Omega_{+}^{a} = \emptyset$ (resp. $\Omega_{-}^{a} = \emptyset$). In this case it is understood that $\Omega = \Omega_{-}^{a}$ (resp. $\Omega = \Omega_{+}^{a}$).