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THE EXISTENCE OF POSITIVE SOLUTIONS
FOR THE SINGULAR TWO-POINT
BOUNDARY VALUE PROBLEM

YANMIN NIU — BAOQIANG YAN

ABSTRACT. In this paper, we consider the following boundary value prob-
lem:

((=u/ ()" = nt" "I f(u(t)) for0<t<1,

v/ (0) =0, wu(l)=0,
where n > 1. Using the fixed point theory on a cone and approximation
technique, we obtain the existence of positive solutions in which f may be
singular at « = 0 or f may be sign-changing.

1. Introduction

In this paper, we consider the following problem:

(=’ ()™ = nt" 1 f(u(t)) for0<t<1,

(L) W(0)=0, u(l)=0,

where n > 1 and f is not identically zero.
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Such a problem arises in the study of radially symmetric solutions to the
following Dirichlet problem for the Monge—Ampere equations in R":

det(D?*u) = A\f(—u) in B,

1.2
(12) u=20 on 0B,

where B = {z € R" : |z| < 1} is the unit ball in R” and D?*u = (9*u/dz;0x;) is
the Hessian of u (see [8]).

The Monge—-Ampeére equation has attracted a growing attention in recent
years because of its important role in several areas of applied mathematics.
In [11], Lions considered the existence of a unique eigenvalue \; to the boundary
value problem (1.2) with f(u) = u™ and showed that \; acts like a bifurcation
point for the boundary value problem (1.2). Kutev [9] obtained the existence
of a unique nontrivial convex radially symmetric solution to the boundary value
problem (1.2) with f(u) = wP, for all 0 < p # n, reducing (1.2) to (1.1). Hu
and Wang [8] established sufficient conditions for the existence and multiplic-
ity of positive solutions to problem (1.1), where the function f is continuous
on [0,400). In [3], Dai discussed unilateral global bifurcation results for the
problem with f(u) = u™ + g(u). In [17]-[18], Wang considered the existence,
multiplicity and nonexistence of nontrivial radial convex solutions to systems of
Monge-Ampeére equations with superlinearity or sublinearity assumptions for an
appropriately chosen parameter. In [16], using the Leggett—Williams fixed point
theorem, Wang and An investigated the existence of at least three nontrivial
radial convex solutions to systems of Monge-Ampere equations. We refer to [4],
[7], [12], [20] and references therein for further discussions regarding solutions to
the Monge—Ampere equations with continuous nonlinearities. For the case that
f(z) is singular at = 0, there are some interesting results also. In [10], us-
ing the existing regularity theory and a subsolution-supersolution method, Lazer
and McKennar discussed the existence and uniqueness of positive solutions to
singular BVP (1.2). Using the sub-super solution technique, Mohammed [13]-
[14] established the existence and uniqueness of negative convex solution also to
BVP (1.2).

The goal of this paper is to consider the existence of positive solutions un-
der the conditions that n > 1 and f(z) is singular at z = 0 and sign-changing.
Firstly, in order to overcome difficulties caused by singularity of f we pose new
conditions which are different from those in [8], [17]-[18], and establish the mul-
tiplicity of positive solutions to BVP (1.1) different from that in [10], [13]-[14]
under the condition that f(z) is suplinear at x = 4o0o0. Secondly, when f is
singular and sign-changing, we establish the existence of at least one positive
solution to BVP (1.1) which is different from that in [6], [8], [13]-[14], [17]-[1§]
where f is supposed to be positive on (0, +00).



