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STRONGLY RESONANT ROBIN PROBLEMS

WITH IDEFINITE AND UNBOUNDED POTENTIAL

Nikolaos S. Papageorgiou — George Smyrlis

Abstract. We consider a Robin boundary value problem driven by the

Laplacian plus an indefinite and unbounded potential. We assume that
the reaction term of the equation is resonant with respect to the principal

eigenvalue and the resonance is strong. Using primarily variational tools

we prove two multiplicity theorems producing respectively two and three
nontrivial smooth solutions.

1. Introduction

In a recent paper Papageorgiou–Smyrlis [23] studied semilinear resonant

Robin problems driven by the Laplacian plus an indefinite and unbounded poten-

tial. In [23] the resonance occurs asymptotically at ±∞ with respect to any non-

principal, nonnegative eigenvalue of the differential operator u 7→ −∆u + ξ(z)u

for all u ∈ H1(Ω) with Robin boundary condition and with ξ( · ) being the in-

definite and unbounded potential function.

In the present paper we examine what happens when resonance occurs with

respect to the principal eigenvalue λ̂1. More precisely, we investigate the more

interesting and more difficult case of “strong resonance”’ with respect to λ̂1.
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So, let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. We study

the following semilinear Robin problem:

(1.1)

−∆u(z) + ξ(z)u(z) = λ̂1u(z) + g(z, u(z)) in Ω,

∂u

∂n
+ β(z)u = 0 on ∂Ω.

In this problem ξ ∈ Ls(Ω) with s > N and so it is in general unbounded. Also

ξ( · ) is in general indefinite, that is, ξ( · ) is sign changing. In the reaction term

(right-hand side of the equation), λ̂1 ∈ R is the first eigenvalue of the differential

operator u 7→ −∆u+ ξ(z)u, u ∈ H1(Ω), with Robin boundary condition. In this

reaction term the perturbation g( · , · ) is a Carathéodory function (that is, for

all x ∈ R, z 7→ g(z, x) is measurable and for almost all z ∈ Ω, x 7→ g(z, x) is

continuous) such that

g(z, x)

x
→ 0 as x→ ±∞ uniformly for a.a. z ∈ Ω.

In the Robin boundary condition, β ∈W 1,∞(∂Ω) and β(z) ≥ 0 for all z ∈ ∂Ω.

When β ≡ 0 we recover the Neumann boundary value problem. This makes

problem (1.1) resonant with respect to the principal eigenvalue λ̂1 ∈ R. In fact,

we assume that the resonance is “strong” in the sense that the perturbation

g(z, · ) has a smaller rate of increase as x → ±∞. More precisely, if G(z, x) =∫ x
0
g(z, s) ds, then there exist functions G± ∈ L1(Ω) such that

g(z, x)→ 0 and G(z, x)→ G±(z) as x→ ±∞ uniformly for a.a. z ∈ Ω.

In the terminology introduced by Landesman and Lazer [12], such problems

are called “strongly resonant” and are the most interesting class of resonant

problems, since as we will see in the sequel, exhibit a partial lack of compactness,

that is the energy (Euler) functional of the problem does not satisfy the C-

condition (the compactness condition) at all levels.

In the boundary condition ∂u
∂n denotes the usual normal derivative of u( · ),

hence ∂u
∂n = (Du, n)RN for all u ∈ H1(Ω) with n( · ) being the outward unit

normal on ∂Ω. Also the boundary coefficient β( · ) ∈ W 1,∞(∂Ω) and β(z) ≥ 0

for all z ∈ ∂Ω. When β ≡ 0 we recover the Neumann problem. So, our framework

here incorporates as a special case Neumann problems.

In the past resonant problems were studied primarily in the context of Dirich-

let problems with zero potential (that is, ξ ≡ 0) and not for strongly resonant

equations. We mention the works of Bartsch and Wang [5], Castro, Cossio and

Velez [6], Hofer [10], Liu and Li [13]. More recently, the study was extended

to resonant Neumann problems again with zero potential. In this direction we

mention the works of Gasinski and Papageorgiou [9], Motreanu, Motreanu and

Papageorgiou [15]. Equations with indefinite and unbounded potential were
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examined only very recently. We mention the papers of Kyritsi and Papageor-

giou [11], Papageorgiou and Papalini [17] (Dirichlet problems) and Papageorgiou

and Radulescu [18], [19], Papageorgiou and Smyrlis [22] (Neumann problems).

None of the aforementioned works deals with the case of strongly resonant equa-

tions.

Strongly resonant elliptic Dirichlet problems with zero potential (that is,

ξ ≡ 0) were studied by Ambrosetti and Mancini [2], Arcoya and Costa [3],

Arcoya and Orsina [4], Costa and Silva [7], Lupo and Solimini [14]. With the

exception of Ambrosetti and Mancini [2], the other works prove existence results

under stronger conditions on the perturbation term g( · , · ). The works of Arcoya

and Orsina [4], Costa and Silva [7], Lupo and Solimini [14] deal with the case

of strong resonance with respect to the principal eigenvalue, while Arcoya and

Costa [3] consider the case of strong resonance at higher eigenvalues. Ambrosetti

and Mancini [2] prove a multiplicity result producing two solutions but under

more restrictive conditions on the perturbation term g( · , · ).
Using variational methods based on the critical point theory together with

critical groups (Morse theory) in order to distinguish between critical points,

we prove two multiplicity theorems for problem (1.1) producing respectively two

and three nontrivial smooth solutions.

2. Mathematical background

Let X be a Banach space and X∗ its topological dual. By 〈 · , · 〉 we denote

the duality brackets for the pair (X∗, X). Let ϕ ∈ C1(X,R). We say that ϕ

satisfies the “Cerami condition at the level set c ∈ R” (the “Cc -condition” for

short), if the following is true:

“Every sequence {un}n≥1 ⊆ X such that

ϕ(un)→ c and (1 + ||un||)ϕ′(un)→ 0 in X∗ as n→∞,

admits a strongly convergent subsequence”.

If ϕ satisfies the Cc-condition at every level c ∈ R, then we simply say that

ϕ satisfies the “Cerami condition” (the “C-condition” for short).

The following topological notion, is a basic tool in the critical point theory.

Definition 2.1. Let Y be a Hausdorff topological space and let E0, E,D be

nonempty, closed subsets of Y with E0 ⊆ E. We say that the pair {E0, E} is

linking with D in Y , if the following two conditions hold:

(a) E0 ∩D = ∅;
(b) γ(E) ∩D 6= ∅ for all γ ∈ Γ = {γ ∈ C(E,X) : γ|E0

= id|E0
}.

Using this notion, we can prove the following minimax characterization of

critical values of a ϕ ∈ C1(X,R) (see, for example Gasinski and Papageorgiou

[8, p. 644]).
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Theorem 2.2. If X is a Banach space, E0, E,D are nonempty, closed subsets

of X such that the pair {E0, E} is linking with D in X,ϕ ∈ C1(X)

sup
E0

ϕ ≤ inf
D
ϕ

c = inf
γ∈Γ

sup
u∈E

ϕ(γ(u)) where Γ = {γ ∈ C(E,X) : γ|E0
= id|E0

}

and ϕ satisfies the Cc-condition, then c ≥ inf
D
ϕ and c is a critical value of ϕ

(that is, the set Kc
ϕ = {u ∈ X : ϕ(u) = c, ϕ′(u) = 0} is nonempty). Moreover, if

c = inf
D
ϕ, then Kc

ϕ ∩D 6= ∅.

With suitable choices of the linking sets, from the above theorem we recover

as corollaries the mountain pass theorem, the saddle point theorem and the

generalized mountain pass theorem (see Gasinski and Papageorgiou [8]). For

future reference, we recall the mountain pass theorem.

Theorem 2.3. If X is a Banach space, ϕ ∈ C1(X) satisfies the C-condition,

u0, u1 ∈ X, r > 0 with ||u0 − u1|| > r > 0,

max {ϕ(u0), ϕ(u1)} ≤ inf [ϕ(u) : ||u− u0|| = r > 0] = mr,

c = inf
γ∈Γ

max
0≤t≤1

ϕ(γ(t)), where Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1},

then c ≥ mr and c is a critical value of ϕ. Moreover, if c = mr, then there exists

u ∈ Kc
ϕ such that ||u− u0|| = r.

Remark 2.4. The mountain pass theorem (Theorem 2.3) results from The-

orem 2.1 by taking

E0 = {u0, u1}, E = {u ∈ X : u = (1− t)u0 + tu1, t ∈ [0, 1]}

and D = ∂Br(u0) = {u ∈ X : ||u− u0|| = r}.

In the analysis of problem (1.1) we will use the Sobolev space H1(Ω), the

Banach space C1(Ω) and the boundary Lebesgue spaces Lq(∂Ω) (1 ≤ q ≤ ∞).

In what follows by || · || we denote the norm of the Sobolev space H1(Ω) defined

by

||u|| = [||u||22 + ||Du||22]1/2 for all u ∈ H1(Ω).

On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure

σ( · ). Using this measure, we can define in the usual way the Lebesgue spaces

Lq(∂Ω) (1 ≤ q ≤ ∞). From the theory of Sobolev spaces, we know that there

exists a unique continuous linear operator γ0 : H1(Ω) → L2(∂Ω), known as the

“trace operator”, such that

γ0(u) = u|∂Ω for all u ∈ H1(Ω) ∩ C(Ω).

So, we understand the trace map as representing the “boundary values” of

a Sobolev function. We know that γ0 is compact from H1(Ω) into Lq(Ω) for
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q ∈ [1, 2(N − 1)/(N − 2)) if N ≥ 3 and into Lq(Ω) for q ∈ [1,+∞) if N = 1, 2.

Also, we have

im γ0 = H1/2,2(∂Ω) and ker γ0 = H1
0 (Ω).

Next we recall some basic facts concerning the spectrum of the differential

operator u 7→ ∆u + ξ(z)u with Robin boundary condition. So, we consider the

following linear eigenvalue problem:

(2.1)


−∆u(z) + ξ(z)u(z) = λ̂u(z) in Ω,

∂u

∂n
+ β(z)u = 0 on ∂Ω.

In what follows the below hypotheses will be in effect for the potential ξ( · )
and the boundary coefficient β( · ):

H(ξ) ξ ∈ Ls(Ω) with s > N .

H(β) β ∈W 1,∞(∂Ω) and β(z) ≥ 0 for all z ∈ ∂Ω.

We say that λ̂ ∈ R is an eigenvalue, if problem (2.1) admits a nontrivial

solution û ∈ H1(Ω), called an eigenfunction corresponding to λ̂. Using the

spectral theorem for compact self-adjoint operators on a Hilbert space (see, for

example, Gasinski and Papageorgiou [8, p. 296], we can show that the spectrum of

(2.1) consists of a sequence {λ̂k}k≥1 of distinct eigenvalues such that λ̂k → +∞.

The first eigenvalue λ̂1 ∈ R, has the following properties:

• λ̂1 is simple with eigenfunctions of constant sign,

•

(2.2) λ̂1 = inf

[
γ(u)

||u||22
: u ∈ H1(Ω), u 6= 0

]
,

where γ : H1(Ω)→ R is the C1-functional defined by

γ(u) = ||Du||22 +

∫
Ω

ξ(z)|u|2 dz +

∫
∂Ω

β(z)|u|2 dσ for all u ∈ H1(Ω)

(see Papageorgiou and Smyrlis [23]).

The infimum in (2.2) is realized on the one-dimensional eigenspace corre-

sponding to λ̂1 and denoted by E(λ̂1). Let û1 ∈ H1(Ω) be the L2-normalized

(that is, ||û1||2 = 1) positive eigenfunction corresponding to λ̂1. Hypotheses

H(ξ), H(β) and the regularity results of Wang [25] imply that û1 ∈ C1(Ω).

Moreover, invoking the Harnack inequality (see Pucci and Serrin [24, p. 163]),

we have

(2.3) û1(z) > 0 for all z ∈ Ω.

As a consequence of (2.5), we have the following simple lemma (see Papageorgiou

and Smyrlis [23]).
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Lemma 2.5. If hypotheses H(ξ), H(β) hold, ϑ ∈ L∞(Ω), ϑ(z) ≤ λ̂1 for almost

all z ∈ Ω and ϑ 6≡ λ̂1, then there exists c0 > 0 such that

γ(u)−
∫

Ω

ϑ(z)|u|2 dz ≥ c0||u||2 for all u ∈ H1(Ω).

Let E(λ̂1) be the eigenspace corresponding to the principal eigenvalue λ̂1

(that is, E(λ̂1) = Rû1). We have the following variational characterization of

the second eigenvalue λ̂2 (see Papageorgiou and Smyrlis [23]):

λ̂2 = inf

[
γ(u)

||u||22
: u ∈ E(λ̂1)⊥, u 6= 0

]
.

We say that a Banach space X has the Kadec–Klee property, if the following

is true:

un
w−→ u in X and ||un|| → ||u|| ⇒ un → u in X.

As a consequence of the parallelogram law, we see that every Hilbert space has

the Kadec–Klee property.

In what follows A ∈ L(H1(Ω), H1(Ω)∗) is the linear operator defined by

〈A(u), h〉 =

∫
Ω

(Du,Dh)RN dz for all u, h ∈ H1(Ω).

Also, by E(λ̂k) we denote the eigenspace corresponding to the eigenvalue λ̂k ∈ R,

k ∈ N. We have the following orthogonal direct sum decomposition:

H1(Ω) =
⊕
k≥1

E(λ̂k).

Moreover, for each k ∈ N, E(λ̂k) is finite dimensional and E(λ̂k) ⊆ C1(Ω).

Finally, let us recall the definition of critical groups. So, let ϕ ∈ C1(X,R)

and c ∈ R. We introduce the following sets:

ϕc = {u ∈ X : ϕ(u) ≤ c}, Kϕ = {u ∈ X : ϕ′(u) = 0},

Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c}.

Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X. For every in-

teger k ∈ N0, by Hk(Y1, Y2) we denote the kth-singular homology group for

the topological pair (Y1, Y2) with integer coefficients. Recall that for k ∈ −N,

Hk(Y1, Y2) = 0. Suppose that u ∈ Kc
ϕ is isolated. Then the critical groups of ϕ

at u ∈ X are defined by

Ck(ϕ, u) = Hk(ϕc ∩ U,ϕc ∩ U \ {u}) for all k ∈ N0,

with U a neighbuorhood of u such that Kϕ∩ϕc∩U = {u}. The excision property

of singular homology implies that this definition of critical groups is independent

of the choice of the neighbourhood U .
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If u0 is an isolated local minimizer of ϕ ∈ C1(X,R), then

Ck(ϕ, u0) = δk,0Z for all k ∈ N0,

with δk,r being the Kronecker symbol, namely

δk,r =

0 if k 6= r,

1 if k = r,
with r, k ∈ N0.

3. Two nontrivial solutions

In this section, we prove a multiplicity theorem producing two nontrivial

smooth solutions for problem (1.1). To this end we impose the following condi-

tions on the perturbation g( · , · ):
(H1) g : Ω×R→ R is a Carathéodory function such that g(z, 0) = 0 for almost

all z ∈ Ω and

(i) for every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that

|g(z, x)| ≤ aρ(z) for a.a. z ∈ Ω and all |x| ≤ ρ;

(ii) if G(z, x) =
∫ x

0
g(z, s) ds, then there exist functions G± ∈ L∞(Ω)

such that

g(z, x)→ 0, G(z, x)→ G±(z) as x→ ±∞,

uniformly for almost all z ∈ Ω, and∫
Ω

G±(z) dz ≤ 0;

(iii) G(z, x) ≤ (λ̂2 − λ̂1)x2/2 for almost all z ∈ Ω, for all x ∈ R;

(iv) there exist functions η, η̂ ∈ L∞(Ω) such that

0 ≤ η(z) ≤ η̂(z) for a.a. z ∈ Ω, η 6= 0,

η(z) ≤ lim inf
x→0

g(z, x)

x
≤ lim sup

x→0

g(z, x)

x
≤ η̂(z)

uniformly for almost all z ∈ Ω.

Remark 3.1. Hypothesis (H1) (ii) implies that the problem is strongly res-

onant with respect to λ̂1. Hypotheses (H1) (i)–(ii) imply that

(3.1) |G(z, x)| ≤ c1(1 + |x|2) for a.a. z ∈ Ω, for all x ∈ R, with c1 > 0.

Let ϕ : H1(Ω)→ R be the energy (Euler) functional for problem (1.1) defined

by

ϕ(u) =
1

2
γ(u)− λ̂1

2
||u||22 −

∫
Ω

G(z, u) dz for all u ∈ H1(Ω).
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We know that ϕ ∈ C1(H1(Ω)). As we already mentioned in the introduction,

the strong resonance implies the partial lack of compactness of ϕ. This is evident

in the next proposition.

Proposition 3.2. If hypotheses H(ξ), H(β), (H1) hold, then the functional

ϕ satisfies the Cc-condition at every level c < −
∫

Ω
G±(z) dz.

Proof. Let c < −
∫

Ω
G±(z) dz and consider a sequence {un}n≥1 ⊆ H1(Ω)

such that

ϕ(un)→ c,(3.2)

(1 + ||un||)ϕ′(un)→ 0 in H1(Ω)∗ as n→∞.(3.3)

Claim. {un}n≥1 ⊆ H1(Ω) is bounded.

Arguing by contradiction, suppose that the claim is not true. By passing to

a subsequence if necessary, we may assume that ||un|| → ∞.

Let yn = un/||un||, n ≥ 1. Then ||yn|| = 1, for all n ≥ 1 and so we may

assume that

(3.4) yn
w−→ y in H1(Ω) and yn → y in L2(Ω) and in L2(∂Ω).

From (3.2) we see that we can find M1 > 0 such that

1

2
γ(un)− λ̂1

2
||un||22 −

∫
Ω

G(z, un) dz ≤M1 for all n ∈ N

⇒ 1

2
γ(yn)− λ̂1

2
||yn||22 −

∫
Ω

G(z, un)

||un||2
dz ≤ M1

||un||2
for all n ∈ N.(3.5)

From (3.1) we see that {G( · , un( · ))/||un||2}n≥1 ⊆ L1(Ω) is uniformly integrable.

So, from the Dunford–Pettis theorem, by passing to a subsequence if necessary

and using hypothesis (H1) (ii), we have

(3.6)
G( · , un( · ))
||un||2

w−→ 0 in L1(Ω).

So, if in (3.5) we pass to the limit as n → ∞ and use (3.4) and (3.6), then we

obtain

γ(y) ≤ λ̂1||y||22 ⇒ γ(y) = λ̂1||y||22 (see (2.2))

⇒ y = ϑû1 with ϑ ∈ R.

If ϑ = 0, then y = 0. From (3.3) we have

(3.7)

∣∣∣∣〈A(un), h〉+

∫
Ω

(ξ(z)− λ̂1)unh dz

+

∫
∂Ω

β(z)unh dσ −
∫

Ω

g(z, un)h dz

∣∣∣∣ ≤ εn||h||
1 + ||un||
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for all h ∈ H1(Ω), with εn → 0+,

(3.8) ⇒
∣∣∣∣〈A(yn), h〉+

∫
Ω

(ξ(z)− λ̂1)ynh dz

+

∫
∂Ω

β(z)ynh dσ −
∫

Ω

g(z, un)

||un||
h dz

∣∣∣∣ ≤ εn||h||
(1 + ||un||)||un||

.

In (3.8) we choose h = yn ∈ H1(Ω), pass to the limit as n→∞ and use the fact

that y = 0. Then

||Dyn||2 → 0 ⇒ yn → 0 in H1(Ω) (see (3.4)),

which contradicts the fact that ||yn|| = 1 for all n ∈ N. So, ϑ 6= 0. To fix things

assume that ϑ > 0 (the reasoning is similar if ϑ < 0). Because of (2.3) we have

(3.9) un(z)→ +∞ for all z ∈ Ω.

From (3.2) we see that given ε > 0, we can find n0 = n0(ε) ∈ N such that

ϕ(un) ≤ c+ ε for all n ≥ n0,

⇒ 1

2
γ(un)− λ̂1

2
||un||22 −

∫
Ω

G(z, un) dz ≤ c+ ε for all n ≥ n0.(3.10)

From (2.2) we have

λ̂1||un||22 ≤ γ(un) for all n ∈ N,

⇒ −
∫

Ω

G(z, un) dz ≤ c+ ε (see (3.10)),

⇒ −
∫

Ω

G+(z) dz ≤ c+ ε(3.11)

(see (3.9), hypothesis (H1) (ii) and use Fatou’s lemma). Since ε > 0 is arbitrary,

we let ε→ 0+. From (3.11) we have

−
∫

Ω

G+(z) dz ≤ c,

a contradiction to the choice of the level c. This proves the claim.

Because of Claim, we may assume that

(3.12) un
w−→ u in H1(Ω) and un → u in L2(Ω) and in L2(∂Ω).

In (3.7) we choose h = un − u ∈ H1(Ω), pass to the limit as n → ∞ and

use (3.12). Then

lim
n→∞

〈A(un),un − u〉 = 0 ⇒ ||Dun||2 → ||Du||2

⇒ un → u in H1(Ω) (by the Kadec–Klee property),

⇒ ϕ satisfies the Cc-condition. �
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Now we can prove our first multiplicity theorem producing two nontrivial

smooth solutions.

Theorem 3.3. If hypotheses H(ξ), H(β), (H1) hold, then problem (1.1) ad-

mits at least two nontrivial solutions u0, û ∈ C1(Ω).

Proof. Hypothesis (H1) (iv) implies that given ε > 0, we can find δ =

δ(ε) > 0 such that

(3.13) G(z, x) ≥ 1

2
(η(z)− ε)x2 for a.a. z ∈ Ω, all |x| ≤ δ.

Recall that û1 ∈ C1(Ω) and û1(z) > 0 for all z ∈ Ω (see (2.3)). So, we can find

t ∈ (0, 1) small such that

(3.14) tû1(z) ∈ [0, δ] for all z ∈ Ω.

Then we have

ϕ(tû1) =
t2

2
[γ(û1)− λ̂1]−

∫
Ω

G(z, tû1) dz (recall that ||û1||2 = 1)

= −
∫

Ω

G(z, tû1) dz

≤ t2

2

[
ε−

∫
Ω

η(z)û2
1 dz

]
(recall that ||û1||2 = 1(3.15)

and see (3.13), (3.14)).

From hypothesis (H1) (iv) and (2.3) it follows that∫
Ω

η(z)û2
1 dz = µ > 0.

So, choosing ε ∈ (0, µ), from (3.15) we have

(3.16) ϕ(tû1) < 0.

From (2.2) we know that γ(u) ≥ λ̂1||u||22 for all u ∈ H1(Ω). Also, hypotheses

(H1) (i)–(ii) imply that we can find M > 0 such that

|G(z, x)| ≤M for a.a. z ∈ Ω, all x ∈ R.

Hence ϕ is bounded below by −M |Ω|N (here by | · |N we denote the Lebesque

measure on RN ). Therefore −∞ < m = inf [ϕ(u) : u ∈ H1(Ω)] < 0 (see (3.16)).

Since m < 0 ≤ −
∫

Ω
G±(z) dz, from Proposition 3.2 it follows that ϕ satisfies the

Cm-condition. Then invoking Theorem 5.2.10, p. 650, of Gasinski and Papage-

orgiou [8], we can find u0 ∈ H1(Ω) such that

ϕ(u0) = inf [ϕ(u) : u ∈ H1(Ω)] = m < 0 = ϕ(0)

⇒ u0 6= 0, u0 ∈ Kϕ.(3.17)
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From (3.17) we have

〈A(u0), h〉 +

∫
Ω

ξ(z)u0h dz +

∫
∂Ω

β(z)u0h dσ

= λ̂1

∫
Ω

u0h dz +

∫
Ω

g(z, u0)h dz for all h ∈ H1(Ω)

⇒ −∆u0(z) + ξ(z)u0(z) = λ̂1u0(z) + g(z, u0(z)) for a.a. z ∈ Ω,

(3.18)
∂u0

∂n
+ β(z)u0 = 0 on ∂Ω

(see Papageorgiou–Radulescu [20], [21]). Hypotheses H1(i), (ii), (iv) imply that

(3.19) |g(z, x)| ≤ c2|x| for a.a. z ∈ Ω, all x ∈ R and some c2 > 0.

We define

ζ(z) =


g(z, u0(z))

u(z)
if u0(z) 6= 0,

0 if u0(z) = 0.

We have ζ( · ) ∈ L∞(Ω) (see (3.19)).

We rewrite (3.18) as follows:−∆u0(z) = k(z)u0(z) for a.a. z ∈ Ω,
∂u0

∂n
+ β(z)u0 = 0 on ∂Ω,

with k( · ) = (λ̂1 + ζ( · ) + ξ( · )) ∈ Ls(Ω) (see hypothesis H(ξ)). Invoking

Lemma 5.1 of Wang [25], we have u0 ∈ L∞(Ω). Then the Calderon–Zygmund

estimates (see Lemma 5.2 of Wang [25]) imply

u0 ∈W 2,s(Ω) ⇒ u0 ∈ C1,α(Ω) with α = 1− N

s
> 0

(by the Sobolev embedding theorem).

We consider the orthogonal direct sum decomposition H1(Ω) = E(λ̂1) ⊕ V
of the Sobolev space H1(Ω) with E(λ̂1) = Rû1 and V = E(λ̂1)⊥ =

⊕
i≥2

E(λ̂i).

Let u ∈ V . Then

ϕ(u) =
1

2
γ(u)− λ̂1

2
||u||22 −

∫
Ω

G(z, u) dz

≥ 1

2
γ(u)− λ̂2

2
||u||22 (see hypothesis (H1) (iii))

≥ 0 (see Section 2)

⇒ inf
V
ϕ = 0.(3.20)

On the other hand, if r > 0 is small enough, then

(3.21) τ = sup
[
ϕ(u) : u ∈ Br ∩ E(λ̂1)

]
< 0 (see (3.16))
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with Br = {u ∈ H1(Ω) : ||u|| ≤ r}. We assume that

(3.22) Kϕ = {0, u0}

(or otherwise we already have a second nontrivial smooth solution and so we are

done) and consider the following set of maps:

(3.23) Γ =
{
γ ∈ C(Br ∩ E(λ̂1), H1(Ω)) : γ|∂Br∩E(λ̂1) = id

}
,

with ∂Br = {u ∈ H1(Ω) : ||u|| = r}. We have

(3.24) m = ϕ(u0) = inf ϕ < 0 = ϕ(0).

Let h(t, u) be the deformation map postulated by the second deformation

theorem for the values b = 0 and a = m (see Gasinski and Papageorgiou [8]

(p. 268)). Because of (3.22) and (3.24), we have ϕm = {u0} and so

(3.25) h(1, u) = u0 for all u ∈ ϕ0 \ {0}.

If ||u|| = r/2, then

h

(
2(r − ||u||)

r
,
ru

||u||

)
= h(1, 2u) = u0

(since 2||u|| = r, see (3.21), (3.25)). Therefore the map γ∗ : Br∩E(λ̂1)→ H1(Ω)

defined by

γ∗(u) =


u0 if ||u|| < r

2
,

h

(
2(r − ||u||)

r
,
ru

||u||

)
if ||u|| ≥ r

2

is continuous. Moreover, if ||u|| = r (that is, if u ∈ ∂Br ∩ E(λ̂1)), then

γ∗(u) = h(0, u) = u ⇒ γ∗|∂Br∩E(λ̂1) = id,

⇒ γ∗ ∈ Γ (see (3.23)).(3.26)

From the second deformation theorem, we know that the deformation h( · , u) is

ϕ-decreasing. Hence from (3.21) and (3.24) it follows that

(3.27) ϕ(γ∗(u)) < 0 for all u ∈ Br ∩ E(λ̂1).

The pair (Br ∩ E(λ̂1), ∂Br ∩ E(λ̂1)) and V link in H1(Ω) (see Gasinski and

Papageorgiou [8], Example 5.2.3 (b), p. 642). Hence

γ(Br ∩ E(λ̂1)) ∩ V 6= ∅ for all γ ∈ Γ (see Definition 1)

⇒ sup [ϕ(γ(u)) : u ∈ Br ∩ E(λ̂1)] ≥ 0 for all γ ∈ Γ (see (3.20))

⇒ sup [ϕ(γ∗(u)) : u ∈ Br ∩ E(λ̂1)] ≥ 0 (see (3.26)).

But this contradicts (3.27). So, (3.22) is not true and there exists û ∈ Kϕ,

û 6∈ {0, u0}. Then û is the second nontrivial solution of (1.1). Moreover, as we

did for u0, we show that û ∈ C1(Ω). �
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4. Three nontrivial solutions

In this section, we prove a second multiplicity theorem for problem (1.1),

producing at least three nontrivial smooth solutions. To this end, we need to

impose the following conditions on the perturbation g( · , · ).
(H2) g : Ω×R→ R is a Carathéodory function such that g(z, 0) = 0 for almost

all z ∈ Ω and

(i) for every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that

|g(z, x)| ≤ aρ(z) for a.a. z ∈ Ω and all |x| ≤ ρ;

(ii) if G(z, x) =
∫ x

0
g(z, s) ds, then there exist functions G± ∈ L∞(Ω)

such that
∫

Ω
G±(z) dz > 0 and

g(z, x)→ 0, G(z, x)→ G±(z) as x→ ±∞

uniformly for almost all z ∈ Ω;

(iii) there exist constants η− < 0 < η+ such that∫
Ω

G±(z) ≤
∫

Ω

G(z, η±û1) dz;

(iv) G(z, x) ≤ (λ̂2 − λ̂1)x2/2 for almost all z ∈ Ω and all x ∈ R;

(v) there exist functions ϑ̂, ϑ ∈ L∞(Ω) such that

ϑ̂(z) ≤ ϑ(z) ≤ 0 for a.a. z ∈ Ω, ϑ 6= 0,

ϑ̂(z) ≤ lim inf
x→0

g(z, x)

x
≤ lim sup

x→0

g(z, x)

x
≤ ϑ(z) uniformly for a.a. z ∈ Ω.

Reasoning as in the proof of Proposition 3.2, we can have the following result.

Proposition 4.1. If hypotheses H(β), H(ξ) and (H2) hold, then the func-

tional ϕ satisfies the Cc-condition for all c 6= −
∫

Ω
G±(z) dz.

Using this proposition, we can have a second multiplicity theorem for problem

(1.1) producing at least three nontrivial smooth solutions.

Theorem 4.2. If hypotheses H(ξ), H(β), (H2) hold, then problem (1.1) ad-

mits at least three nontrivial solutions û+, û−, ŷ ∈ C1(Ω).

Proof. As before we consider the following orthogonal direct sum decom-

position:

H1(Ω) = E(λ̂1)⊕ V with V = E(λ̂1)⊥ =
⊕
i≥2

E(λ̂i).

We introduce the following two open sets:

U+ = {tû1 + v : t > 0, v ∈ V } and U− = {tû1 + v : t < 0, v ∈ V }.
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Note that (see hypothesis (H2) (iii))

ϕ(η±û1) = −
∫

Ω

G(z, η±û1) dz ≤ −
∫

Ω

G±(z) dz < 0,

⇒ inf
U±

ϕ < 0.(4.1)

On the other hand, hypothesis (H2) (iv) implies that

(4.2) inf
V
ϕ = 0

(see the proof of Theorem 3.3).

We introduce the functional ϕ± : H1(Ω)→ R = R ∪ {+∞} defined by

ϕ+(u) =

ϕ(u) if u ∈ U+,

+∞ otherwise.

Evidently ϕ+ is lower semicontinuous and bounded below (see hypotheses (H2)

(i)–(ii)). Invoking the extended Ekeland variational principle (see, for example,

Gasinski and Papageorgiou [8, Theorem 4.6.33, p. 598]), we can find a sequence

{un}n≥1 ⊆ U+ such that

ϕ+(un) = ϕ(un) ↓ inf ϕ+,(4.3)

ϕ+(un) = ϕ(un) ≤ ϕ+(y) +
1

n(1 + ||un||)
||y − un|| for all y ∈ H1(Ω).(4.4)

Let h ∈ H1(Ω) and choose t ∈ (0, 1) small enough such that un+ th ∈ U+. Since

ϕ+|U+
= ϕ|U+

, from (4.4) we have

− ||h||
n(1 + ||un||)

≤ ϕ(un + th)− ϕ(un)

t

⇒ − ||h||
n(1 + ||un||)

≤ 〈ϕ′(un), h〉 for all n ∈ N and all h ∈ H1(Ω).

Using Lemma 5.1.38, p. 639 of Gasinski and Papageorgiou [8], we can find u∗n ∈
H1(Ω)∗ with ||u∗n|| ≤ 1 such that〈

u∗n
n
, h

〉
≤ (1 + ||un||)〈ϕ′(un), h〉 for all n ∈ N, all h ∈ H1(Ω),

⇒ (1 + ||un||)ϕ′(un) =
u∗n
n
→ 0 in H1(Ω)∗

⇒ un → û+ in H1(Ω) (see Proposition 4.1)

and û+ ∈ U+

⇒ ϕ(û+) = inf ϕ+ = inf
U+

ϕ (see (4.3)).

Suppose that û+ ∈ ∂U+. Then û+ ∈ V and so ϕ(û+) ≥ 0 (see (4.2)), which

contradicts (4.1). Therefore û+ ∈ U+ and so û+ is a local minimizer of the
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functional ϕ (recall that ϕ+|U+
= ϕ|U+

). Then û+ ∈ Kϕ is a solution of prob-

lem (1.1) and as in the proof of Theorem 3.3 we show that û+ ∈ C1(Ω).

Similarly, using the functional

ϕ−(u) =

ϕ(u) if u ∈ U−,
+∞ otherwise,

and working as above, we obtain û− ∈ C1(Ω) a second nontrivial solution of

problem (1.1) which is also a local minimizer of the functional ϕ. Without loss

of generality, we may assume that ϕ(û−) ≤ ϕ(û+) (the reasoning is similar if the

opposite inequality holds). We assume that Kϕ is finite or otherwise we already

have an infinity of nontrivial smooth solutions (recall Kϕ ⊆ C1(Ω), see the proof

of Theorem 3.3) and so we are done. Because û+ ∈ C1(Ω) is a local minimizer

of ϕ, we can find ρ ∈ (0, 1) small enough such that

(4.5) ϕ(û−) ≤ ϕ(û+) < inf [ϕ(u) : ||u− û+|| = ρ] = m+
ρ

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 29). Let

Γ =
{
γ ∈ C([0, 1], H1(Ω)) : γ(0) = û−, γ(1) = û+

}
, c = inf

γ∈Γ
max

0≤t≤1
ϕ(γ(t)).

Note that for every γ ∈ Γ we have

γ([0, 1]) ∩ V 6= ∅ ⇒ c ≥ 0 (see (4.2))

⇒ ϕ satisfies the Cc-condition(4.6)

(see hypothesis (H2) (ii)). Because of (4.5) and (4.6), we can apply Theorem 2.2

and obtain ŷ ∈ H1(Ω) such that

(4.7) ŷ ∈ Kϕ ⊆ C1(Ω) and m+
ρ ≤ c = ϕ(ŷ).

From (4.5) and (4.7) it is clear that ŷ 6= û±. Also, since ŷ ∈ C1(Ω) is a critical

point of ϕ of mountain pass type, we have

(4.8) C1(ϕ, ŷ) 6= 0

(see Motreanu, Motreanu and Papageorgiou [16, Corollary 6.81, p. 168].

On the other hand, hypothesis (H2) (v) implies that given ε > 0, we can find

δ = δ(ε) > 0 such that

(4.9) G(z, x) ≤ 1

2
(ϑ(z) + ε)x2 for a.a. z ∈ Ω and all |x| ≤ δ.
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So, if u ∈ C1(Ω) with ||u||C1(Ω) ≤ δ, then

ϕ(u) =
1

2
γ(u)− λ̂1

2
||u||22 −

∫
Ω

G(z, u) dz

≥ 1

2
γ(u)− 1

2

∫
Ω

(λ̂1 + ϑ(z))u2 dz − ε

2
||u||2 (see (4.9))

≥ 1

2
(c2 − ε)||u||2 for some c2 > 0(4.10)

(see Lemma 2.5). Choosing ε ∈ (0, c2) from (4.10) we infer that

u = 0 is a local C1(Ω)-minimizer of ϕ

⇒ u = 0 is a local H1(Ω)-minimizer of ϕ

(see Papageorgiou and Radulescu [20, Proposition 3])

⇒ Ck(ϕ, 0) = δk,0Z for all k ∈ N0.(4.11)

Comparing (4.8) and (4.11), we conclude that ŷ 6= 0. So, ŷ ∈ C1(Ω) is the third

nontrivial smooth solution of problem (1.1). �
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