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NIELSEN FIXED POINT THEORY
ON INFRA-SOLVMANIFOLDS OF SOL

Jang Hyun Jo — Jong Bum Lee

Abstract. Using averaging formulas, we compute the Lefschetz, Nielsen
and Reidemeister numbers of maps on infra-solvmanifolds modeled on Sol,
and we study the Jiang-type property for those infra-solvmanifolds.

1. Introduction

In Nielsen fixed point theory, given a continuous selfmap f on a closed ma-
nifold M , there are three important homotopy invariants L(f), N(f) and R(f)
which are the Lefschetz, Nielsen and Reidemeister numbers of f , respectively.
The non-vanishing of the Lefschetz number of f implies the existence of a fixed
point, while the Nielsen number is a lower bound for the number of fixed po-
ints, and the Reidemeister number is an upper bound of the Nielsen number. By
a classical result of Wecken [22], the Nielsen number coincides with the minimal
number of fixed points in the homotopy class of the map when the dimension
of M is at least three. The Nielsen number gives better information concerning
the number of fixed points than the Lefschetz number, but the computation of
the Nielsen number is in general much more difficult than that of the Lefschetz
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number. The problem of finding useful and practical formulas for Nielsen num-
bers is still the subject of great deal of research in Nielsen fixed point theory.
There have been some developments to find algebraic and practical computation
formulas, which are usually called averaging formulas for the Lefschetz, Nie-
lsen and Reidemeister numbers [2], [7], [8], [13]–[17]. We recall in Theorem 2.5
the averaging formulas for the Lefschetz, Nielsen and Reidemeister numbers for
a continuous map on an infra-solvmanifold M of type (R) as appeared in the
form of [2, Theorem 1.1].

On the other hand, there is the notion of the class of Jiang spaces which
includes simply connected spaces, generalized lens spaces, H-spaces and ho-
mogeneous spaces of the form G/G0, where G is a topological group and G0

a closed connected subgroup [10], [24]. It is well-known that if f is a continu-
ous selfmap on a Jiang space which is a compact polyhedron, then the converse
of Lefschetz–Hopf theorem holds, and either (i) L(f) = 0 ⇒ N(f) = 0 or
(ii) L(f) 6= 0⇒ N(f) = R(f) holds. The notion of Jiang spaces has been gene-
ralized to the notion of Jiang-type spaces. By definition, a closed manifold M is
said to be a Jiang-type space if for all continuous maps f : M →M , either (i) or
(ii) holds [24]. It is known that nilmanifolds except tori are not Jiang spaces but
are of Jiang-type, and every special solvmanifold of type (R) is of Jiang-type [2,
Theorem 7.2].

Recently, Gonçalves and Wong [3] computed the Nielsen and Reidemeister
numbers of a selfmap on infra-solvmanifolds modeled on Sol which is one of the
eight geometries in the Thurston’s geometrization theorem. Their computations
are based on the fact that any infra-solvmanifold modeled on Sol is either a torus
bundle over S1 or a sapphire space [20].

In this paper, using averaging formulas, we compute the Lefschetz, Nielsen
and Reidemeister numbers of continuous maps on infra-solvmanifolds modeled
on Sol, correct Gonçalves and Wong’s results in [3] and answer to their question
in [3, Remarks 2.1 and 3.3]. In Example 3.15, we provide an example showing
that their conjecture in [3, Remark 3.3] is not correct. Moreover, we study the
Jiang-type property for those infra-solvmanifolds.

The paper is organized as follows. We review in Section 2 necessary termino-
logies and basic facts on infra-solvmanifolds of type (R) and averaging formulas
of Lefschetz, Nielsen and Reidemeister numbers of continuous maps on them. In
Section 3, we study the lattices of Sol and the structure of SB-groups modeled
on Sol. In the following subsections, on infra-solvmanifolds modeled on Sol, we
investigate holonomy groups, Lefschetz, Nielsen and Reidemeister numbers of
continuous maps and the Jiang-type property.
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2. Averaging formulas on infra-solvmanifolds of type (R)

Let G be a connected Lie group and let Aut(G) be the group of continuous
automorphisms of G. The affine group of G is the semi-direct product Aff(G) =
G o Aut(G) with the multiplication (a,A)(b, B) = (aA(b), AB). It has a Lie
group structure and acts on G by (a,A) · x = aA(x) for all x ∈ G. Suppose that
G has a linear connection defined by left-invariant vector fields. It turns out [12]
that Aff(G) is the group of connection preserving diffeomorphisms of G.

Let S be a connected and simply connected solvable Lie group. A discrete
subgroup Γ of S is a lattice of S if the orbit space Γ \ S is compact, and in this
case, we say that Γ\S is a special solvmanifold. Let π ⊂ Aff(S) be a torsion-free
finite extension of a lattice Γ. Then π acts freely on S and the manifold π \ S
is called an infra-solvmanifold modeled on S. The finite group Φ := π/Γ is the
holonomy group of π or π \ S. It sits naturally in Aut(S). Thus every infra-
solvmanifold is finitely covered by a special solvmanifold. An infra-solvmanifold
M = π \ S is of type (R) if S is of type (R), that is, ad(X) : S → S has only
real eigenvalues for all X in the Lie algebra S of S.

Recall that a connected solvable Lie group S contains a sequence of clo-
sed subgroups 1 = N1 ⊂ . . . ⊂ Nk = S such that Ni is normal in Ni+1 and
Ni+1/Ni ∼= R or Ni+1/Ni ∼= S1. If the groups N1, . . . , Nk are normal in S, the
group S is called supersolvable. The supersolvable Lie groups are the Lie groups
of type (R) and vice versa by the following.

Proposition 2.1. For a connected Lie group S, the following are equivalent:

(a) S is supersolvable.
(b) All elements of Ad(S) have only positive eigenvalues.
(c) S is of type (R).

Proof. (a)⇔ (b) is exactly [23, Lemma 4.1]. Since exp ad(X) = Ad(expX),
(b) implies that ad(X) has only real eigenvalues for all X ∈ S. Thus (b) ⇒ (c)
holds. Assume (c) holds. Then S is of type (E), or exp: S → S is surjective.
For any g ∈ S, since exp is surjective, g = expX for some X. Hence Ad(g) =
Ad(expX) = exp ad(X) has only positive eigenvalues, which implies (b). �

An important property of solvable Lie groups of type (R) related to our paper
is the Rigidity of Lattices ([9, Theorem 2.2], [23, Corollary 8.3]):

Theorem 2.2 (Rigidity of Lattices). Let S and S′ be connected and simply
connected solvable Lie groups of type (R), and let Γ be a lattice of S. Then any
homomorphism from Γ to S′ extends uniquely to a Lie group homomorphism of
S to S′.

Let M = π \ S be an infra-solvmanifold of type (R) and let f : M → M

be a continuous map. Then f induces a homomorphism ϕ on the group π of
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covering transformations of the universal covering projection S → M , which is
given by the identity

ϕ(α) ◦ f̃ = f̃ ◦ α, for all α ∈ π,

where f̃ : S → S is a (fixed) lifting of f .
By [17, Lemma 2.1], we choose a lattice Λ(⊂ Γ := π ∩ S) of S which is

a fully invariant subgroup of π so that any homomorphism θ : π → π maps
Λ into Λ. Thus, ϕ maps Λ into Λ and f can be lifted to f : Λ \ S → Λ \ S on
a special solvmanifold Λ\S. Since S is of type (R), by Theorem 2.2, the restriction
ϕ|Λ : Λ → Λ extends to a homomorphism on the Lie group S in a unique way.
Now its differential is a Lie algebra homomorphism, denoted by f∗ : S → S

or simply f∗. On the other hand, by [17, Theorem 2.2], the homomorphism
ϕ : π → π is semi-conjugate by an “affine map”. That is, there exist d ∈ S and
a homomorphism D : S → S such that

ϕ(α) ◦ (d,D) = (d,D) ◦ α, for all α ∈ π.

This implies that the affine map (d,D) : S → S induces a map M →M , which is
homotopic to f . For λ ∈ Λ, the above identity is reduced to the identity ϕ(λ) =
τdD(λ), where τd is the conjugation by d. That is, ϕ|Λ =τdD : Λ→Λ. In parti-
cular, f is homotopic to the map induced by the homomorphism τdD : S → S,
and so f∗ = Ad(d)D∗. We call such a homomorphism D or its differential D∗
a linearization of f . In particular we obtain:

Theorem 2.3.

(a) Any continuous map f : π \ S → π \ S on an infra-solvmanifold π \ S of
type (R) has an affine map (d,D) : S → S as a homotopy lift.

(b) Any continuous map f : Γ \S → Γ \S on a special solvmanifold Γ \S of
type (R) has a Lie group homomorphism D : S → S as a homotopy lift.

Let f : Γ \ S → Γ \ S be a continuous map on a special solvmanifold Γ \ S
of type (R). By Theorem 2.3, f has a Lie group homomorphism D : S → S as
homotopy lift. Let f denote the map induced by D so that f ' f . Since the type
(R) implies the type (NR), it follows from [13, Theorem 1] that N(f) = |L(f)|.
Noting that the Nielsen and Lefschetz numbers are homotopy invariants, we
have the following corollary which says that the Anosov relation holds for any
continuous map on a special solvmanifold Γ \ S of type (R).

Corollary 2.4. Let f : Γ \ S → Γ \ S be a continuous map on a special
solvmanifold Γ \ S of type (R). Then N(f) = |L(f)|.

The following are averaging formulas for the Lefschetz, Nielsen and Reide-
meister numbers of a continuous map on an infra-solvmanifold M of type (R).
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Theorem 2.5 ([17, Theorem 4.3], [2, Theorem 1.1], [6]). Let f : M →M be
a continuous map on an infra-solvmanifold M of type (R) with holonomy group
Φ and linearization D∗. Then

L(f) =
1

# Φ

∑
A∈Φ

det(I −A∗D∗),

N(f) =
1

# Φ

∑
A∈Φ

|det(I −A∗D∗)|,

R(f) =
1

# Φ

∑
A∈Φ

σ(det(I −A∗D∗)),

where σ : R→ R ∪ {∞} is defined by σ(0) =∞ and σ(x) = |x| for all x 6= 0.

3. Nielsen fixed point theory on infra-solvmanifolds of Sol

Recall that Sol = R2 oϕ R where

ϕ(t) =

[
et 0
0 e−t

]
.

Then Sol is a connected and simply connected unimodular 2-step solvable Lie
group of type (R). It has a faithful representation into Aff(R3) as follows:

Sol =



et 0 0 x

0 e−t 0 y

0 0 1 t

0 0 0 1

 : x, y, t ∈ R

 .

Thus its Lie algebra sol can be identified with

sol =



s 0 0 a

0 −s 0 b

0 0 0 s

0 0 0 0

 : a, b, s ∈ R


with a (linear) basis

(3.1) b1 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , b2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , b3 =


1 0 0 0
0 −1 0 0
0 0 0 1
0 0 0 0

 .
The diffeomorphism exp: sol→ Sol is given by

s 0 0 a

0 −s 0 b

0 0 0 s

0 0 0 0

 7→

es 0 0 a(es − 1)/s
0 e−s 0 b(1− e−s)/s
0 0 1 s

0 0 0 1

 .
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It is known that a closed 3-manifold has a Sol-geometry if and only if it
is an infra-solvmanifold modeled on Sol [4]. Moreover, it is also known that
if M is a closed 3-manifold with Sol-geometry, then M is the suspension of
a diffeomorphism of the torus R2/Z2 defined by a hyperbolic linear map, or
M is a sapphire space (see, e.g., [20, Theorem 2.1]). On the other hand, the
fundamental group Π of M = Π \ Sol is a Bieberbach group of Sol or an SB-
group. It can be embedded into Aff(Sol) = Sol o Aut(Sol) so that there is an
exact sequence

1 −→ Γ −→ Π −→ Π/Γ −→ 1,

where Γ = Π ∩ Sol is a lattice of Sol and Φ = Π/Γ is a finite group, called the
holonomy group of Π or M , which sits naturally inside Aut(Sol).

The lattices Γ of Sol are determined by 2× 2-integer matrices

A =

[
`11 `12

`21 `22

]
of determinant 1 and trace > 2, see for example [18, Lemma 2.1]. Namely,

Γ = ΓA = 〈a1, a2, τ : [a1, a2] = 1, τaiτ−1 = a`1i1 a`2i2 〉

= 〈a1, a2, τ : [a1, a2] = 1, τaiτ−1 = aAei〉

= 〈a1, a2, τ : [a1, a2] = 1, τaiτ−1 = A(ai)〉 = Z2 oA Z.

Here we use the notation ax which means ax1a
y
2 for a = (a1, a2) and x = (x, y).

For a 2× 2-matrix M , we also denote aMei by the notation M(ai). The defining
matrix A of the lattice Γ of Sol has two distinct irrational eigenvalues (`11 +
`22±

√
(`11 + `22)2 − 4)/2. With two corresponding eigenvectors, we form a real

invertible matrix

P =

`11 − `22 +
√

(`11 + `22)2 − 4
2`21

c
`11 − `22 −

√
(`11 + `22)2 − 4

2`21
d

c d

−1

=: [x1 x2].

Let t0 = ln ((`11 + `22 +
√

(`11 + `22)2 − 4)/2). Then

PAP−1 =

[
et0 0
0 e−t0

]
=: D.

Now we can embed ΓA into Sol as follows:

ai 7→


1 0 0 xi
0 1 0 yi
0 0 1 0
0 0 0 1

 , τ 7→


et0 0 0 0
0 e−t0 0 0
0 0 1 t0
0 0 0 1

 , where xi =

[
xi
yi

]
.
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The affine group Aff(Sol) = Sol o Aut(Sol) of Sol can be embedded into
Aff(R3) ⊂ GL(4,R). Recalling that Sol is embedded into Aff(R3) already and
using a description of Aut(Sol) given in [4, Section 2], we can embed Aut(Sol)
into Aff(R3) as follows:α 0 µ

0 β ν

0 0 1

 7→

α 0 0 −µ
0 β 0 ν

0 0 1 0
0 0 0 1

 ,
0 1 0

1 0 0
0 0 −1

 7→


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 1

 .
It is known from [4, Corollary 8.3] that every SB-group Π is isomorphic to one
of the following groups, adopting the notation in [5].

(1) Π1 = ΓA = 〈a1, a2, τ : [a1, a2] = 1, τaiτ−1 = A(ai)〉,
(2) Π±2 = 〈a1, a2, σ : [a1, a2] = 1, σaiσ−1 = N±(ai)〉, where N± are square

roots of A:

N± = −


`11 ± 1√

`11 + `22 ± 2
`12√

`11 + `22 ± 2
`21√

`11 + `22 ± 2
`22 ± 1√

`11 + `22 ± 2

 ,

(3) Π3 =

〈
a1, a2, τ, ρ :

[a1, a2] = 1, τaiτ−1 = A(ai),
ρaiρ

−1 = M(ai),
ρ2 = ae2 , ρτρ−1 = ak

′
τ−1

〉
, where

A =

[
`11 `12

`21 `11

]
(`11 odd; `12, `21 even), M =

[
−1 0

0 1

]
,

k′ − e2 6= 0 in
ker (A−M)

im(A−1 +M)
∼= Z2,

(4) Π6 =

〈
a1, a2, σ, ρ :

[a1, a2] = 1, σaiσ−1 = N(ai),
ρaiρ

−1 = M(ai),
ρ2 = ae2 , ρσρ−1 = ak

′
σ−1

〉
, where

A =

[
`11 `12

`21 `11

]
=

[
2s2 − 1 2sp

2sq 2s2 − 1

]
, N = −

[
s p

q s

]
, M =

[
−1 0

0 1

]
,

(s > 1, s2 − pq = 1, s odd, p, q even)

k′ − e2 6= 0 in
ker (N −M)

im(N−1 +M)
∼= Z2.

From the identity N2
± = A, we see that 〈a1, a2, σ

2〉 = ΓA is a subgroup of
both Π±2 and Π6. Recall from [4, Section 9] that Π1\Sol, Π+

2 \Sol and Π−2 \Sol are
torus bundles over S1 so that their fundamental groups are of the form Z2 oφ Z,
where φ = A (so detφ = 1, trφ > 2), φ = N+ (so detφ = 1, trφ < −2) and
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φ = N− (so detφ = −1, trφ < 0), respectively. The case where detφ = −1 and
trφ > 0 is isomorphic to the case where detφ = −1 and trφ < 0.

It is easy to see that every SB-group Π has ΓA as a characteristic subgroup.
In fact, if ϕ is an automorphism of Π, then it can be conjugated by an affine
diffeomorphism (d,D), i.e., ϕ(α) = (d,D) ◦ α ◦ (d,D)−1 for all α ∈ Π. Hence if
α = (α, I) ∈ ΓA, then

ϕ(α) = (d,D)(α, I)(D−1d−1, D−1) = (dD(α)d−1, I) ∈ ΓA.

In the following, we will show that every SB-group Π has ΓA as a fully
invariant subgroup.

Lemma 3.1. The SB-groups Π have ΓA as a fully invariant subgroup.

Proof. We note that Π±2 ⊃ ΓN2± = ΓA, Π3 ⊃ ΓA and Π6 ⊃ Π+
2 as index 2

subgroups. First we show that Π±2 has ΓA as a fully invariant subgroup. Let
ϕ : Π−2 → Π−2 be a homomorphism. Then

ϕ(ai) = amiσzi , ϕ(σ) = axσz

for some mi,x ∈ Z2 and zi, z ∈ Z. Write N− = [nij ] = [n1 n2]. Since σaiσ−1 =
N−(ai) = ani , we have

ϕ(σaiσ−1) = ϕ(ani) ⇒ a∗σzi = a∗σn1iz1+n2iz2 ⇒ n1iz1 + n2iz2 = zi.

Because I −N t
− is invertible, z1 = z2 = 0. Hence

ϕ(ai) = ami ∈ ΓA = 〈a1, a2, σ
2〉, ϕ(σ2) = (axσz)2 = a∗(σ2)z ∈ ΓA.

Therefore ΓA is a fully invariant subgroup of Π−2 . In a similar way, we can show
that ΓA is a fully invariant subgroup of Π+

2 .
It is shown in [4, Section 9] that Π3 and Π6 are isomorphic to the fundamental

group of the sapphires, i.e., the spaces which are the union of two twisted I-
bundles over the Klein bottle and in [3, Lemma 3.3] that such fundamental
group has Π1 or Π+

2 as a fully invariant subgroup. Hence we conclude that the
SB-groups Π have ΓA as a fully invariant subgroup. �

3.1. Holonomy groups. We will explain how we can embed the abstract
Bieberbach groups Π±2 ,Π3 and Π6 of Sol into Aff(Sol) = Sol o Aut(Sol) ⊂
Aff(R3). As a result, we find the corresponding holonomy groups Φ as a subgroup
of Aut(Sol) ∼= Aut(sol). We will express Φ as a subgroup of Aut(sol) with respect
to the basis {b1,b2,b3}, see (3.1). An embedding procedure especially for Π3

and Π6 is described below in details.
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(1) For Π+
2 we embed Π+

2 into Aff(R3) as

ai 7→


1 0 0 xi
0 1 0 yi
0 0 1 0
0 0 0 1

 , σ 7→


et0/2 0 0 0

0 e−t0/2 0 0
0 0 1 t0/2
0 0 0 1



−1 0 0 0

0 −1 0 0
0 0 1 0
0 0 0 1

 .
Thus the holonomy group of Π+

2 is

Φ+
2 =

〈−1 0 0
0 −1 0
0 0 1

〉

and, in particular, Π+
2 is orientable, i.e., the quotient space Π+

2 \Sol is orientable.
(2) For Π−2 we embed Π−2 into Aff(R3) as

ai 7→


1 0 0 xi
0 1 0 yi
0 0 1 0
0 0 0 1

 , σ 7→


et0/2 0 0 0

0 e−t0/2 0 0
0 0 1 t0/2
0 0 0 1



−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 .
Hence the holonomy group of Π−2 is

Φ−2 =

〈−1 0 0
0 1 0
0 0 1

〉

and, noting that det Φ−2 = −1, we see that Π−2 is non-orientable.

(3) For Π3, since `211− `12`21 = 1 and `11 > 1, it follows that a diagonalizing
matrix P of A is of the form

P =


√
`211 − 1
`21

c −
√
`211 − 1
`21

d

c d


−1

=


√
`211 − 1
2c`12

1
2c

−
√
`211 − 1
2d`12

1
2d

 .
Then

PAP−1 =

[
`11 +

√
`12`21 0

0 `11 −
√
`12`21

]
.

Thus we take an embedding ΓA = 〈a1, a2, τ〉 into GL(4,R) as:

a1 7→



1 0 0

√
`211 − 1
2c`12

0 1 0 −
√
`211 − 1
2d`12

0 0 1 0
0 0 0 1


, a2 7→


1 0 0

1
2c

0 1 0
1
2d

0 0 1 0
0 0 0 1

 ,
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τ 7→


`11 +

√
`12`21 0 0 0

0 `11 −
√
`12`21 0 0

0 0 1 ln(`11 +
√
`12`21)

0 0 0 1

 .
Assume that ρ is assigned to an element (g, S) ∈ Aff(Sol) so that as an element
of Aff(R3) we have

ρ 7→ (g, S) =


et 0 0 x

0 e−t 0 y

0 0 1 t

0 0 0 1




0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 1

 ∈ Aff(R3).

From the relation ρ2 = a2, we have c = 1/(2(x+ ety)) and d = cet. Then we can
see that the relation ρaiρ

−1 = M(ai) holds.
Using [4, Lemmas 7.1 and 7.2], we can find an integer vector which generates

the cyclic group ker (A−M)/im(A−1 +M) of order 2 as follows: Noting that

A−M =

[
`11 + 1 `12

`21 `11 − 1

]
with all nonzero entries, let h = gcd(`11 + 1, `21) and choose u, v ∈ Z such that
(`11 + 1)u/h+ `21v/h = 1. Then the integer vector (−(`12u+ (`11− 1)v)/2, h/2)
is a generator, so is k′−e2. Thus k′ = (−(`12u+ (`11−1)v)/2, h/2) + (0, 1). The
relation ατα−1τ = ak

′
induces that[

(1− `11 +
√
`12`21)x

(1− `11 −
√
`12`21)y

]
= Pk′

⇒

[
x

y

]
=

1
2(1− `11)

(I − PAP−1)Pk′

=
1

2(1− `11)
(I − PAP−1)P

[
−(`12u+ (`11 − 1)v)/2

h/2 + 1

]
.

This will result in an embedding Π3 into Aff(R3). Hence the holonomy group of
Π3 is

Φ3 =

〈0 1 0
1 0 0
0 0 −1

〉
and, in particular, Π3 is orientable.

(4) For Π6, since `11 = `22 = 2s2−1, `12 = 2ps and `21 = 2qs, it follows that
a diagonalizing matrix P of A is of the form

P =


√
s2 − 1
q

c −
√
s2 − 1
q

d

c d


−1

.
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Observe that the relation ρσρ−1 = ak
′
σ−1 induces that

ρσ2ρ−1 = ak
′
σ−1ak

′
σ−1 = ak

′
aN
−1(k′)σ−2.

It is showed in [4, Section 7.6] that if

(k,k′ − k) ∈ ker (I −M)
im(I +M)

⊕ ker (N −M)
im(N−1 +M)

,

then

(k, (I +N−1)k′ − k) ∈ ker (I −M)
im(I +M)

⊕ ker (A−M)
im(A−1 +M)

.

Here we fix k = (0, 1) and k′ − k a generator of ker(N −M)/im(N−1 +M), so
(I+N−1)k′−k is a generator of ker(A−M)/im(A−1 +M). Now, we notice that
Π6 has the subgroup 〈a1, a2, σ〉 ∼= Π+

2 and the subgroup 〈a1, a2, τ := σ2, ρ〉 ∼= Π3.
As we did in the case of Π+

2 before, we embed ai and σ into elements of Aff(R3).
Next we embed τ and ρ as above in the case of Π3 using the chosen k and
(I +N−1)k′. These will result in a required embedding Π6 into Aff(R3). Hence
the holonomy group of Π6 is

Φ6 =

〈−1 0 0
0 −1 0
0 0 1

 ,
0 1 0

1 0 0
0 0 −1

〉

and, in particular, Π6 is orientable.

3.2. Lefschetz and Nielsen numbers. We will compute the Lefschetz,
Nielsen and Reidemeister numbers of continuous maps on infra-solvmanifolds
modeled on Sol using the averaging formula in Theorem 2.5. In what follows, all
maps considered are assumed to be continuous maps.

Let f : M → M be a selfmap on a closed 3-manifold M = Π \ Sol with Sol-
geometry. Then f induces a homomorphism ϕ : Π → Π and, since ΓA is a fully
invariant subgroup of Π, ϕ restricts to a homomorphism ϕ′ : ΓA → ΓA, which
extends uniquely to a Lie group homomorphism F : Sol → Sol. Its differential
is a linearization F∗ of f . On the other hand, by [18, Theorem 2.4], the homo-
morphism ϕ′ : ΓA → ΓA is determined by ϕ(ai) = ami and ϕ(τ) = anτ r for
some mi,n ∈ Z2 and r ∈ Z. We say that ϕ, ϕ′ or F∗ is of type (I) if r = 1; of
type (II) if r = −1; of type (III) if r 6= ±1. When ϕ is of type (III), we have
ϕ(ai) = 1. We will denote by [ϕ] the matrix [m1 m2]. Then we may assume that
F∗ is expressed as

F∗ =

[
mi n
0 r

]
=

[
[ϕ] n
0 r

]
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with respect to the basis {a1, a2, τ} of ΓA. Consequently, by Theorem 2.5,

L(f) =
1
|Φ|

∑
A∈Φ

det(I −A∗F∗),

N(f) =
1
|Φ|

∑
A∈Φ

|det(I −A∗F∗)|,

R(f) =
1
|Φ|

∑
A∈Φ

σ(det(I −A∗F∗)).

In order to use these formulas, we need to express A∗ and F∗ with respect to
a fixed basis. For this purpose, we will use the basis {b1,b2,b3}, see (3.1). For
each Π, we also need to describe all possible [ϕ] for homomorphisms ϕ : Π→ Π.
This in fact gives a homotopy classification of maps on Π \ Sol.

3.2.1. Case Π = Π1 or Π±2 . Let f : Π±2 \ Sol→ Π±2 \ Sol be any map and let
ϕ : Π±2 → Π±2 be a homomorphism induced by f . Since ΓA = 〈a1, a2, σ

2〉 is a fully
invariant subgroup of Π±2 , it follows that ϕ(ΓA) ⊂ ΓA. Note that the subgroup
〈a1, a2〉 is fully invariant in ΓA. Thus

ϕ(a1) = am1 , ϕ(a2) = am2 , ϕ(σ) = anσr

for some integer vectors mi,n and integer r. Put N = N+ or N−. Note also that
ϕ(σ2) = a∗(σ2)r. Thus we have

ϕ(σaiσ−1) = ϕ(σ)ϕ(ai)ϕ(σ)−1 = (anσr)(ami)(anσr)−1 = σr(ami)σ−r = aN
rmi .

Since σaiσ
−1 = N(ai), we have aN

rmi = ϕ(N(ai)), which is equivalent to
Nr[ϕ] = [ϕ]N . Now recall from [4, Remark 5.5] that

PN+P
−1 = −

√
D, PN−P

−1 = −
√
D

[
1 0
0 −1

]
.

Let Q = P [ϕ]P−1. Then it follows that
√
DrQ = (−1)r+1Q

√
D or diag{(−1)r, 1}

√
DrQ = Qdiag{−1, 1}

√
D.

This yields three possibilities (cf. [4, Remark 3.7]):

(I) r = 1, Q =

[
α 0
0 β

]
and [ϕ] =

 u v
`21

`12
v u− `11 − `22

`12
v

;

(II) r = −1, Q =

[
0 γ

δ 0

]
and [ϕ] =

−u `11 − `22

`21
u− `12

`21
v

v u


(note that when N = N−, the equality

diag{−1, 1}
√
D
−1
Q = Qdiag{−1, 1}

√
D

forces Q = 0, i.e. γ = δ = 0);
(III) r 6= ±1 and Q = 0;
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where

α = u−
`11 − `22 +

√
(`11 + `22)2 − 4

2`12
v,

β = u−
`11 − `22 −

√
(`11 + `22)2 − 4

2`12
v,

γ =
d

c

(
u+

`11 − `22 −
√

(`11 + `22)2 − 4
2`21

v

)
,

δ =
c

d

(
u+

`11 − `22 +
√

(`11 + `22)2 − 4
2`21

v

)
.

By the choice of P satisfying Q = P [ϕ]P−1, a linearization of f , with respect
to the standard ordered (linear) basis {b1,b2,b3} of sol, is one of the following
forms:

(I)

α 0 ∗
0 β ∗
0 0 1

;

(II)

0 γ ∗
δ 0 ∗
0 0 −1

 (if N = N− then γ = δ = 0);

(III)

0 0 ∗
0 0 ∗
0 0 r

 (r 6= ±1),

where α+β, αβ, γδ, r ∈ Z. Moreover, α = 0 if and only if β = 0, and γ = 0 if and
only if δ = 0 (see also [18, Corollary 3.4]). Observe also that for the nontrivial
element S± of the holonomy group Φ±2 ,

S±∗ =

−1 0 0
0 ∓1 0
0 0 1

 .
Hence the Lefschetz and Nielsen numbers of f : Π±2 \ Sol→ Π±2 \ Sol are

L(f) =
1
2

(
det(I − F∗) + det(I − S±∗ F∗)

)

=


0 when F∗ is of type (I),

2(1− detF∗) when F∗ is of type (II),

1− r when F∗ is of type (III),

N(f) =


0 when F∗ is of type (I),

2|1− detF∗| when F∗ is of type (II),

|1− r| when F∗ is of type (III).
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Let f : Π1\Sol→ Π1\Sol be any map. By the same reason as above (by simply
replacing N by A, we have PAP−1 = D), a linearization of f , with respect to
the standard ordered (linear) basis {b1,b2,b3} of sol, is one of the above forms
(I)–(III). Hence the Lefschetz and Nielsen numbers of f : Π1 \Sol→ Π1 \Sol are

L(f) = det(I − F∗) =


0 when F∗ is of type (I),

2(1− detF∗) when F∗ is of type (II),

1− r when F∗ is of type (III),

N(f) = |det(I − F∗)| =


0 when F∗ is of type (I),

2|1− detF∗| when F∗ is of type (II),

|1− r| when F∗ is of type (III).

In conclusion, we have

Theorem 3.2. Let f be a selfmap on Π1 \ Sol or Π±2 \ Sol. Then

L(f) =


0 when F∗ is of type (I),

2(1− detF∗) when F∗ is of type (II),

1− r when F∗ is of type (III),

N(f) =


0 when F∗ is of type (I),

2|1− detF∗| when F∗ is of type (II),

|1− r| when F∗ is of type (III).

Noting that Π1\Sol and Π+
2 \Sol are orientable and Π−2 \Sol is nonorientable,

we have

Corollary 3.3. Let f be a homeomorphism of Π1 \ Sol or Π+
2 \ Sol. Then

L(f) = N(f) = 0 or 4. Furthermore, f is orientation preserving if and only if
L(f) = 0 if and only if N(f) = 0.

Proof. Since f is a homeomorphism, F∗ is of type (I) or (II) with detF∗ =
±1. Theorem 3.2 immediately proves the first assertion. Note that f is orien-
tation preserving if and only if deg f = 1. Letting Π = Π1 or Π+

2 , we have
f∗3 : H3(Π;Q) → H3(Π;Q), which is deg f . We will show that H1(Π;Q) ∼= Q.
Consider Π = Π1 first. Then

[Π,Π] =
〈
[τ, a1] = a`11−1

1 a`212 , [τ, a2] = a`121 a`22−1
2

〉 ∼= im(A− I)

is a subgroup of the group 〈a1, a2〉 ∼= Z2. The index is [Z2 : im(A− I)], which is
finite because A− I is invertible as A has no eigenvalue 1. Thus 〈a1, a2〉/[Π,Π]
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is a finite group. Furthermore, we have the following commutative diagram:

1 1x x
1 −−−−→ 〈a1, a2〉/[Π,Π] −−−−→ Π/[Π,Π] −−−−→ Z −−−−→ 1x x x=

1 −−−−→ 〈a1, a2〉 −−−−→ Π −−−−→ Z −−−−→ 1x x
[Π,Π] =−−−−→ [Π,Π]x x

1 1.

This implies that the finitely generated abelian group H1(Π;Z) = Π/[Π,Π] has
free rank 1. Consequently, we have H1(Π;Q) ∼= Q. When Π = Π+

2 , we can prove
the same result simply by repeating the above argument with τ = ρ and A = N+.
Since Π is orientable, it follows that H2(Π;Q) ∼= H1(Π;Q) and H1(Π;Q) ∼=
hom(H1(Π;Q),Q). This shows that f∗1 = f∗2 (= ±1) and L(f) = 1−deg f . Hence
the second assertion follows immediately from Theorem 3.2. �

Corollary 3.4. Let f be a selfmap on Π−2 \ Sol. Then we have:

(a) If f : Π−2 \ Sol→ Π−2 \ Sol is of type (II), then L(f) = N(f) = 2.
(b) If f is a homeomorphism of Π−2 \ Sol, then L(f) = N(f) = 0.

Proof. If f is of type (II), then γ = δ = 0 and so detF∗ = 0, thus L(f) =
N(f) = 2 by Theorem 3.2. If f is a homeomorphism, then degF∗ = ±1 and so
F∗ must be of type (I), hence L(f) = N(f) = 0 by Theorem 3.2. �

Remark 3.5. Our result is exactly the same as Theorems 2.2, 2.3 and 2.4 and
Corollary 2.5 of [3]. See also [11, Proposition 7.5]. We need to remark further the
case that Π = Π−2 and a linearization of f is of type (II). This case corresponds
to the case when k = −1 and detA = −1 in Theorem 2.4 of [3]. In our notation,
k = r = −1 and A = N−. We observed that this case reduces to Q = 0 and so
B = 0 in Theorem 2.4 of [3]. Therefore, detF∗ = 0 and so L(f) = N(f) = 2.

In [3, Remark 2.1], the authors questioned what the set n(M) := {N(f) :
f : M → M} would be for any given Sol 3-manifold M that is a torus bundle
over S1. The following is the answer to this question.

Corollary 3.6. Let M be a closed 3-manifold with Sol-geometry that is
a torus bundle over S1. Then n(M) = {0} ∪ N.
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Proof. When M = Π1 \ Sol, we consider the endomorphism ϕ : Π1 → Π1

defined as: ϕ(a1) = ϕ(a2) = 1 and ϕ(τ) = τ r for some r ∈ Z. Then the Nielsen
number N(ϕ) is |1− r|. This shows that n(Π1 \ Sol) = {0} ∪ N.

When M = Π±2 \ Sol, we consider the endomorphism ϕ : Π±2 → Π±2 defined
as: ϕ(a1) = ϕ(a2) = 1 and ϕ(σ) = σr for some r ∈ Z. Then ϕ(τ) = ϕ(σ2) =
σ2r = τ r. Thus the Nielsen number N(ϕ) is 0 when r = 1, is 2 when r = −1 and
is |1− r| when r 6= ±1. This shows that n(Π±2 \ Sol) = {0} ∪ N. �

3.2.2. Case Π = Π3. Consider a selfmap f on the closed 3-manifold Π3 \Sol
and let ϕ : Π3 → Π3 be the homomorphism induced by f . Since ΓA = 〈a1, a2, τ〉 =
Π1 is a fully invariant subgroup of Π3, we have, as before,

ϕ(a1) = am1 , ϕ(a2) = am2 , ϕ(τ) = anτ r, ϕ(ρ) = axτzρw

for some integer vectors mi,n,x and integers r, z and w ∈ {0, 1}. The restriction
of ϕ to Π1 is a homomorphism ϕ′ : Π1 → Π1. Hence we can choose a matrix P so
that PAP−1 = D, and Q = P [ϕ]P−1 is one of the three types given in the case
of Π1 before. Consequently, a linearization of f , with respect to the standard
ordered (linear) basis {b1,b2,b3} of sol, has one of the above forms (I)–(III).
Note that a diagonalizing matrix P of A used above is

P =


√
`211 − 1
`21

c −
√
`211 − 1
`21

d

c d


−1

and so

M ′ := PMP−1 =

[
0 d/c

c/d 0

]
.

Next, we will find further necessary conditions on ϕ. Since ϕ preserves the
relation ρaiρ

−1 = M(ai), we have AzMw[ϕ] = [ϕ]M and so DzM ′
w
Q = QM ′.

Consider first the case when w = 0. Then, since DzQ = QM ′, we can see easi-
ly that α = β = 0 (when Q is of type (I)) and γ = δ = 0 (when Q is of type (II)).
Thus [ϕ] = 0 = Q. Since ρ2 = ae2 = a2, it follows that ϕ(ρ)2 = ϕ(a2) = 1
and so ϕ(ρ) = 1 because ϕ(ρ) cannot be a torsion element. Furthermore, since
ρτρ−1 = ak

′
τ−1, we see that ϕ(τ) = ϕ(τ)−1 and hence ϕ(τ) = 1 and so in

particular r = 0. (This proves the first part of [3, Theorem 3.5].) Thus we see
that ϕ is a trivial homomorphism. Hence we conclude that

w = 0 ⇔ Q(= 0) is of type (III) and r = 0 ⇔ ϕ is trivial.

Notice that there is no homomorphism of type (III) with r 6= 0, and if F∗ is
of type (III) then ϕ is a trivial homomorphism and hence f is homotopic to
a constant map.

Suppose now that w = 1. Then Q 6= 0 by the above observation. Recall that
if Q 6= 0, then αβ 6= 0 and γδ 6= 0. Thus r = ±1 and so Q is of type (I) or (II).
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The relation τaiτ
−1 = A(ai) yields that Ar[ϕ] = [ϕ]A and DrQ = QD. This

implies that r = 1 when Q is of type (I) and r = −1 if Q is of type (II). Hence
we conclude that

w = 1 ⇔ Q 6= 0 is of type (I) or (II) ⇔ ϕ is nontrivial.

The relation ρaiρ
−1 = M(ai) together with Mw = M implies DzM ′Q =

QM ′, so we have α = et0zβ or γ = (d/c)2et0zδ according as Q is of type (I)
or (II), respectively. Therefore detF∗ = αβ = et0zβ2 > 0 (when Q is of type
(I)) or detF∗ = γδ = (d/c)2et0zδ2 > 0 (when Q is of type (II)). Since `11 = `22

in Π3, we see that

α = u−
√
`211 − 1
`12

v, β = u+

√
`211 − 1
`12

v,

γ =
d

c

(
u−

√
`211 − 1
`21

v

)
, δ =

c

d

(
u+

√
`211 − 1
`12

v

)
,

and so detF∗ = u2 − `21v
2/`12 (when Q is of type (I)) or u2 − `12v

2/`21 (when
Q is of type (II)). Furthermore, if ϕ is an isomorphism, then detQ = ±1 and
detF∗ = ±1. As detF∗ > 0, we have detF∗ = 1. Recall that for the nontrivial
element T of the holonomy group Φ3,

T∗ =

0 1 0
1 0 0
0 0 −1

 .
Consequently, we have:

Theorem 3.7. The Lefschetz and Nielsen numbers of f : Π3 \Sol→ Π3 \Sol
are

L(f) =

1− detF∗ when F∗ is of type (I) or (II),

1 when F∗ is of type (III),

N(f) =

detF∗ − 1 when F∗ is of type (I) or (II),

1 when F∗ is of type (III).

Corollary 3.8. Let f be a homeomorphism of Π3 \ Sol. Then L(f) =
N(f) = 0 and f is orientation preserving.

Proof. Since f is a homeomorphism, we have detF∗ = 1 and so L(f) =
N(f) = 0 (see also [11, Proposition 7.5] and [3, Theorem 3.4]). Observe that

[Π3,Π3]=
〈
[τ, a1] = a`11−1

1 a`212 , [τ, a2] = a`121 a`22−1
2 , [ρ, a1] = a−2

1 , [ρ, τ ] = ak
′
τ−2〉.

Then [Π3,Π3] is a subgroup of 〈a1, a2, τ〉 ∼= Π1 and contains the group

〈a`11−1
1 a`212 , a`121 a`22−1

2 〉 ∼= im(A− I).
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This implies that Π1/[Π3,Π3] is a finite group. Finally because of the following
commutative diagram:

1 1x x
1 −−−−→ Π1/[Π3,Π3] −−−−→ Π3/[Π3,Π3] −−−−→ Z2 −−−−→ 1x x x=

1 −−−−→ Π1 −−−−→ Π3 −−−−→ Z2 −−−−→ 1x x
[Π3,Π3] =−−−−→ [Π3,Π3]x x

1 1

we can see that H1(Π3;Z) = Π3/[Π3,Π3] is a finite group. Thus H1(Π3;Q) = 0
and so H2(Π3;Q) = 0 = H1(Π3;Q). Since L(f) = 1− deg f = 0, it follows that
deg f = 1, and hence f is orientation preserving. �

Remark 3.9. Let f be a selfmap on the closed 3-manifold M = Π3 \Sol and
let ϕ : Π3 → Π3 be the homomorphism induced by f . Consider the set n(M). If
ϕ is trivial then N(f) = 1 ∈ n(M) and we may assume that F∗ is of type (I).
Then N(f) = detF∗ − 1 = u2 − `21v

2/`12 − 1. Let ` = gcd(`12, `21), and write
`12 = p` and `21 = q`. Since `21v/`12 = qv/p ∈ Z, we must have v = pv′ and so
detF∗ is reduced to u2−pq(v′)2 with gcd(p, q) = 1. Hence the question of finding
the set n(M) is reduced to a problem of solving the Diophantine equations of
the form u2 − pqv2 = k for all positive integers k. These equations are known as
Pell-type equations (cf. [1]).

3.2.3. Case Π = Π6. Consider a closed 3-manifold Π6 \ Sol and a self-
map f , and let ϕ : Π6 → Π6 be the homomorphism induced by f . Since ΓA =
〈a1, a2, σ

2〉 = Π1 and 〈a1, a2, σ〉 = Π+
2 are fully invariant subgroups of Π6, we

have, as before,

ϕ(a1) = am1 , ϕ(a2) = am2 , ϕ(σ) = anσr, ϕ(ρ) = axσzρw

for some integer vectors mi,n,x and integers r, z and w ∈ {0, 1}.
The relations of Π6 will provide further restrictions on these integers. For

example, if w = 0 then z = 0. Indeed, if w = 0 then ϕ(ρ) = axσz. The relation
ρ2 = ae2 after taking ϕ reduces to (axσz)2 = am2 , hence a∗σ2z = a∗. This yields
z = 0. However z is not necessarily 0.
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Consider the subgroup 〈a1, a2, σ
2, ρ〉 = Π3 of Π6. It is easy to see that Π3 is

a normal subgroup of Π6. Since

ϕ(σ2) = (anσr)2 = an+Nrn(σ2)r,

it follows that Π3 is ϕ-invariant if and only if ϕ(ρ) ∈ Π3 if and only if z is even.
The following is an example showing that Π3 is not a characteristic subgroup
and so not a fully invariant subgroup of Π6.

Example 3.10. Consider Π6 with defining matrices N , A and k = e2,
k′ = e1:

N = −

[
3 2
4 3

]
, A =

[
17 12
24 17

]
.

We will show that there is an automorphism ϕ determined by the following
identities:

ϕ(a1) = au1a
2v
2 , ϕ(a2) = au1a

v
2, ϕ(σ) = an11 an22 σ, ϕ(ρ) = ax1a

y
2σρ.

Because the relations of Π6 must be preserved by ϕ, we then have

σaiσ
−1 = N(ai) ⇒ N [ϕ] = [ϕ]N,

ρaiρ
−1 = M(ai) ⇒ NM [ϕ] = [ϕ]M ⇒ u = v,

ρ2 = a2 ⇒

[
x

y

]
+N

[
−x
y

]
+N

[
1
0

]
+

[
0
1

]
=

[
v

u

]
⇒ 4x− 2y − 3 = u,

ρσρ−1σ = a1 ⇒

[
x

y

]
+N

[
−n1 + 1
n2

]
+N−1

[
−x+ n1

−y + n2

]
=

[
u

2v

]
⇒ 4n1 − 3n2 − 2x+ 2y − 2 = v.

A choice of u = v = 1, x = 1, y = 0 and n1 = 2, n2 = 1 gives rise to an
automorphism ϕ with z = 1. Hence Π3 is not a characteristic subgroup of Π6.

Consider the restriction of ϕ to ΓA which is a homomorphism ϕ : Π1 → Π1.
Then we can choose a matrix P so that PAP−1 = D, and Q = P [ϕ]P−1 is one
of the three types given in the case of Π1 before. Consequently, a linearization
of f , with respect to the standard ordered (linear) basis {b1,b2,b3} of sol, has
one of the above forms (I), (II) and (III). Note that a diagonalizing matrix P of
A used above is

P =


√
s2 − 1
q

c −
√
s2 − 1
q

d

c d


−1

and

PAP−1 = D, PNP−1 = −
√
D, M ′ := PMP−1 =

[
0 d/c

c/d 0

]
.
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We can find further necessary conditions on ϕ. Since ϕ preserves the rela-
tion ρaiρ

−1 = M(ai), we have NzMw[ϕ] = [ϕ]M and so (−1)z
√
DzM ′

w
Q =

QM ′. Similarly, the relation σaiσ
−1 = N(ai) yields that Nr[ϕ] = [ϕ]N and so

(−1)r
√
DrQ = −Q

√
D.

If w = 0 (so that z = 0 and Q = QM ′), then we can see easily that α = β = 0
(when Q is of type (I)) and γ = δ = 0 (when Q is of type (II)); hence [ϕ] = 0 = Q.
In the case when Q = 0, ρ2 = ak = a2 ⇒ ϕ(ρ)2 = ϕ(a2) = 1 and so ϕ(ρ) = 1
because ϕ(ρ) cannot be a torsion element. Furthermore, if ρσρ−1 = ak

′
σ−1 then

ϕ(σ) = ϕ(σ)−1 and hence ϕ(σ) = 1. Consequently, if w = 0 then ϕ is trivial, in
particular r = 0. In conclusion,

(i) w = 0 ⇔ Q(= 0) is of type (III) and r = 0 ⇔ ϕ is trivial.
(ii) w = 1 ⇔ Q 6= 0 is of type (I) or (II) ⇔ ϕ is nontrivial.

We have observed that w = 0 or 1 and in each case r = 0 or ±1, respectively.
(This proves the first part of [3, Theorem 3.5], namely, deg f1 ∈ {0,±1}.) Sup-
pose now that r = ±1. Recalling that if r = 1 then Q is of type (I) and if r = −1
then Q is of type (II), the identity (−1)r

√
DrQ = −Q

√
D gives no further re-

striction on r. However, since w = 1, we have that (−1)z
√
DzM ′Q = QM ′. This

identity implies that

Q =



α 0

0 β

 =

(−1)zet0z/2β 0

0 β

 when F∗ is of type (I),

0 γ

δ 0

 =

0 (−1)z(d/c)2et0z/2δ

δ 0

 when F∗ is of type (II).

Hence

detF∗ =

detQ = (−1)zet0z/2β2 when F∗ is of type (I),

− detQ = (−1)z(d/c)2et0z/2δ2 when F∗ is of type (II).

If f is a homeomorphism, then detF∗ = ±1 = (−1)z. Example 3.10 shows that
there is a homeomorphism f of Π6 \ Sol with detF∗ = −1. Let S and T be
generators of the holonomy group Φ6. Then

S∗ =

−1 0 0
0 −1 0
0 0 1

 , T∗ =

0 1 0
1 0 0
0 0 −1

 .
Now we have:
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Theorem 3.11. The Lefschetz and Nielsen numbers of f : Π6\Sol→ Π6\Sol
are

L(f) =

1− detF∗ when F∗ is of type (I) or (II),

1 when F∗ is of type (III),

N(f) =

|1− detF∗| when F∗ is of type (I) or (II),

1 when F∗ is of type (III).

Proof. Indeed, if F∗ is of type (III) then ϕ is a trivial homomorphism and
hence F∗ = 0; thus

L(f) =
1
4

(
det(I − F∗) + det(I − T∗F∗) + det(I − S∗F∗) + det(I − T∗S∗F∗)

)
=

1
4

(1 + 1 + 1 + 1) = 1.

If F∗ is of type (I) then

L(f) =
1
4

(
det(I − F∗) + det(I − T∗F∗) + det(I − S∗F∗) + det(I − T∗S∗F∗)

)
=

1
4

(
0 + 2(1− αβ) + 0 + 2(1− αβ)

)
= 1− αβ = 1− detF∗.

A similar computation for N(f) and for F∗ of type (II) yields the above identi-
ties. �

Remark 3.12. We should notice that our result is different from the corre-
sponding result, Theorem 3.5 in [3]. In the proof of [3, Theorem 3.5], the authors
stated that [3, Corollary 2.5] implies N(f1) = N(τ∗f1) if deg f1 = ±1. But this
identity is not true in general from [3, Corollary 2.5] since deg τ∗f1 = −deg f1.

Remark 3.13. Recall from for example [4, Section 9] that Π6 is isomorphic
to the fundamental group of a torus semi-bundle Nφ for some φ ∈ SL(2,Z).
When

φ =

[
a b

c d

]
with abc 6= 0 and ad− bc = 1, we can choose an isomorphism so that

N = −

[
s p

q s

]
=

[
ad+ bc −2ac
−2bd ad+ bc

]
(see for example (3.1) in [3]). Then ad + bc = −s, hence ad = (1 − s)/2 < 0
because s > 1.

More explicitly, we consider Nφ with φ =

[
−1 2
−1 1

]
, then

[
ad+ bc −2ac
−2bd ad+ bc

]
= −

[
3 2
4 3

]
.
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Hence the group Π6 in Example 3.10 is isomorphic to π1(Nφ). By [21, The-
orem 1.7], δ(a, d) := ad/gcd(a, d)2 = −1 and odd, so the degrees of all selfmaps
of Nφ are

{±(2`+ 1)2 : ` ∈ Z}.

Corollary 3.14. Let f be a homeomorphism of Π6 \ Sol. Then L(f) =
N(f) = 0 or 2. Furthermore, f is orientation preserving if and only if L(f) = 0
if and only if N(f) = 0.

Proof. If f is a homeomorphism then we have shown that detF∗ = ±1.
By Theorem 3.11, L(f) = 1 − detF∗ = 0 or 2, and N(f) = |L(f)|. The first
assertion is proved. The second assertion follows from the same argument as
in the proof of Corollary 3.8. Indeed, we can show that H1(Π6;Q) = 0 and
so H2(Π6;Q) = 0 = H1(Π6;Q). It now follows that L(f) = 1 − deg f . For
a homeomorphism f , we have that f is orientation preserving if and only if
deg f = 1 if and only if L(f) = 0. By Theorem 3.11, we haveN(f) = |L(f)| = 0.�

In the following example, we show that there is a selfmap f on Π6 \ Sol with
deg f < 0. This example provides a counterexample to [3, Theorem 3.4], see
the proof of [3, Theorem 3.4] and [3, Remark 3.2] where it is stated that every
homeomorphism of Nφ has degree +1.

Example 3.15. Consider Π6 given in Example 3.10. Let ϕ be the automor-
phism given in Example 3.10:

ϕ(a1) = a1a
2
2, ϕ(a2) = a1a2, ϕ(σ) = a2

1a2σ, ϕ(ρ) = a1σρ.

Let f be a selfmap of Π6 \ Sol inducing ϕ. Since ϕ is an automorphism and the
Borel conjecture in dimension 3 is true (cf. [19, Remark 4.5]), it follows that f
is a homeomorphism. Then

F∗ =

1 1 2
2 1 1
0 0 1


and so L(f) = 1− detF∗ = 2 = N(f). Thus Corollary 3.14 implies that deg f =
−1.

Corollary 3.16. Let ϕ be an endomorphism of Π6 given by

ϕ(a1) = am1 , ϕ(a2) = am2 , ϕ(σ) = anσr, ϕ(ρ) = axσzρw

for some integer vectors mi,n,x and integers r, z and w ∈ {0, 1}. When ϕ is an
automorphism, we have that N(ϕ) = 0 if and only if z is even.

Proof. If ϕ is an automorphism, then we have seen that detF∗ = (−1)z =
±1 and so N(ϕ) = |1− (−1)z|. �
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Remark 3.17. Just like for the set n(Π3 \ Sol), the question of finding the
set n(Π6 \ Sol) is reduced to a problem of solving certain Diophantine equations
u2 − pqv2 = k for all integers k.

3.3. Jiang-type property and Reidemeister numbers. In this section,
we study the Jiang-type property for infra-solvmanifolds modeled on Sol and
show that infra-solvmanifolds of type (R) are not necessarily Jiang-type. We
also compute the Reidemeister numbers R(ϕ) for all endomorphisms ϕ of Π.

Theorem 3.18. The infra-solvmanifolds Π1 \Sol and Π±2 \Sol are Jiang-type
spaces.

Proof. For any selfmap f , suppose L(f) = 0. By Theorem 3.2, F∗ is of type
(I) or F∗ is of type (II) with detF∗ = 1. In each case, by Theorem 3.2 again, we
have N(f) = 0.

Next suppose L(f) 6= 0. By Theorem 3.2, F∗ is of type (II) with detF∗ 6= 1
or F∗ is of type (III). In each case, by Theorem 3.2 again, we have N(f) 6= 0.
It remains to show that N(f) = R(f). When M = Π1 \ Sol, by Theorem 2.5
we have that R(f) = σ(det(I − F∗)) = |det(I − F∗)| = N(f) since N(f) =
|det(I − F∗)| 6= 0. When M = Π+

2 \ Sol, by Theorem 2.5 we have

R(f) =
1
2

(
σ(det(I − F∗)) + σ(det(I − S+

∗ F∗))
)

=
1
2

(
|det(I − F∗)|+ |det(I − S+

∗ F∗)|
)

= N(f)

because if F∗ is of type (II) with detF∗ 6= 1 then S+
∗ F∗ is of type (II) with

detS+
∗ F∗ = detF∗ 6= 1 and hence two terms are (equal and) nonzero; if F∗ is of

type (III) then S+
∗ F∗ = F∗ is of type (III) and hence two terms are (equal and)

nonzero. Finally we consider the case M = Π−2 \ Sol. By Theorem 2.5, we have

R(f) =
1
2

(
σ(det(I − F∗)) + σ(det(I − S−∗ F∗))

)
=

1
2

(
|det(I − F∗)|+ |det(I − S−∗ F∗)|

)
= N(f)

because if F∗ is of type (II) then Q = 0 and so detF∗ = 0 and S−∗ F∗ = F∗ is
of type (II) and detS−∗ F∗ = detF∗ = 0 and hence each term is equal to 2; if F∗
is of type (III) then S−∗ F∗ = F∗ is of type (III) and hence each term is equal to
|1− r| 6= 0. �

When ϕ : Π→ Π is an automorphism of the SB-groups Π, we computed the
Reidemeister number R(ϕ) in [5]. In the following, we will compute R(ϕ) for all
endomorphisms ϕ.

Proposition 3.19. For any endomorphism ϕ : Π1 → Π1, the following hold:

(a) If ϕ is of type (I) or of type (II) with detF∗ = 1, then R(ϕ) =∞.
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(b) If ϕ is of type (II) with detF∗ 6= 1, then R(ϕ) = 2|1− detF∗|.
(c) If ϕ is of type (III), then R(ϕ) = |1− r|.

Proof. By Theorem 2.5, we have R(ϕ) = σ(det(I − F∗)). It is immediate
that det(I−F∗) = 0 if and only if ϕ is of type (I) or of type (II) with detF∗ = 1.
When ϕ is of type (II), we can see that det(I −F∗) = 2(1− γδ) = 2(1− detF∗).
It is clear that if ϕ is of type (III), then R(ϕ) = |1− r|. �

Proposition 3.20. For any endomorphism ϕ : Π±2 → Π±2 , the following hold:

(a) If ϕ is of type (I) or of type (II) with detF∗ = 1, then R(ϕ) =∞.
(b) If ϕ : Π+

2 → Π+
2 is of type (II), then R(ϕ) = 2|1− detF∗|.

(c) If ϕ : Π−2 → Π−2 is of type (II), then R(ϕ) = 2.
(d) If ϕ is of type (III), then R(ϕ) = |1− r|.

Proof. By Theorem 2.5, we have

R(ϕ) =
1
2

(
σ(det(I − F∗)) + σ(det(I − S±∗ F∗))

)
.

Hence R(ϕ) =∞ if and only if det(I − F∗) = 0 or det(I − S±∗ F∗) = 0.
If F∗ is of type (I), then det(I − F∗) = 0 and so R(ϕ) = ∞. If F∗ is of

type (III), then F∗ = S±∗ F∗ and det(I − F∗) = det(I − S±∗ F∗) = 1 − r, hence
R(ϕ) = |1− r| <∞.

Assume F∗ is of type (II). Then we can show that det(I − F∗) = det(I −
S±∗ F∗) = 2(1− γδ) = 2(1− detF∗). Recall that when S−∗ is involved, γ = δ = 0
and so det(I − F∗) = det(I − S−∗ F∗) = 2, hence R(ϕ) = 2 and detF∗ = 0. It is
clear that if ϕ is of type (III), then R(ϕ) = |1− r|. �

In [5, Theorem 3.3], we have shown that R(ϕ) =∞ for all automorphisms ϕ
of Π3 or Π6. We now show that R(ϕ) =∞ for all non-trivial endomorphisms.

Proposition 3.21. For any endomorphism ϕ of Π3 or Π6, we have

R(ϕ) =

1 when ϕ is trivial,

∞ when ϕ is non-trivial.

Proof. By Theorem 2.5, we have

R(ϕ) =


1
2

(
σ(det(I − F∗)) + σ(det(I − T∗F∗))

)
when Π = Π3,

1
4

(
σ(det(I − F∗)) + σ(det(I − T∗F∗))

+σ(det(I − S∗F∗)) + σ(det(I − S∗T∗F∗))
)

when Π = Π6.

If F∗ is of type (III), then, by the results of Sections 3.2.2 and 3.2.3, ϕ is trivial
and vice versa, hence det(I − F∗) = det(I − T∗F∗) = det(I − S∗F∗) = det(I −
S∗T∗F∗) = 1 and so R(ϕ) = 1. If F∗ is of type (I), then det(I − F∗) = 0 and so
R(ϕ) =∞. Assume F∗ is of type (II), then T∗F∗ is of type (I) and so R(ϕ) =∞.�
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Theorem 3.22. The infra-solvmanifolds Π3 \Sol and Π6 \Sol are not Jiang-
type spaces.

Proof. Consider any endomorphism ϕ of Π3 or Π6 of type (I) with detF∗ 6=1.
From the results of Sections 3.2.2 and 3.2.3, we have

L(f) = 1− detF∗ 6= 0, N(f) = |detF∗ − 1|,

where f is the selfmap on Π \ Sol determined by ϕ. But by Proposition 3.21,
R(ϕ) =∞. Thus the infra-solvmanifolds Π3 \Sol and Π6 \Sol are not Jiang-type
spaces.
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