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MASS MINIMIZERS AND CONCENTRATION
FOR NONLINEAR CHOQUARD EQUATIONS IN RY

HoNGYU YE

ABSTRACT. In this paper, we study the existence of minimizers to the fol-
lowing functional related to the nonlinear Choquard equation:
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on S(¢) = {u € H'RY) | fon V(@)ul? < +oo, ful2 = ¢, ¢ > 0},
where N > 1, a € (0O,N), (N+a)/N < p < (N+a)/(N—2)+ and
Io: RN — R is the Riesgv potential. We present sharp existence results
for E(u) constrained on S(c¢) when V(z) = 0 for all (N+a«a)/N < p <
(N 4+ «)/(N — 2)4. For the mass critical case p = (N + a + 2)/N, we show

that if 0 <V € Lﬁfc(RN) and lim V(z) = +o0, then mass minimizers
. |@|—+o00

exist only if 0 < ¢ < ¢x = |Q|2 and concentrate at the flattest minimum

of V' as c approaches ci from below, where @ is a groundstate solution of
—Au+u = (I * |u|(NHat2)/Nyjg | (N+at2)/N=2y jn RN,

1. Introduction
In this paper, we consider the following semilinear Choquard problem:
(1.1) —Au — piu = (I * [uP)[ulP~%u, zeRY, peR,

where N > 1, a € (0,N), (N +a)/N <p < (N+a)/(N —2)4, here (N +a)/
(N=-2)y =(N+a)/(N—-2)if N >3and (N +a)/(N —2); =4+o0if N=1,2.
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The Riesz potential I,,: RY — R is defined as (see [26])

F(Noz)
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In(z) = —~ P for all z € R\ {0}.
F(g)ﬂ,N/QQ(X

Problem (1.1) is a nonlocal one due to the existence of nonlocal nonlinearity.

It arises in various fields of mathematical physics, such as quantum mechanics,
physics of laser beams, physics of multiple-particle systems, etc. When N = 3,
uw = —1and @« = p = 2, (1.1) turns to be the well-known Choquard-Pekar
equation

(1.2) “Autu= (I * [u®)u, zcR3,

which was proposed as early as in 1954 by Pekar [25], and by a work of Choquard
1976 in a certain approximation to Hartree-Fock theory for one-component
plasma, sce [14], [16]. Equation (1.1) is also known as the nonlinecar station-
ary Hartree equation since if u solves (1.1) then 9 (t,z) = e*u(x) is a solitary
wave of the following time-dependent Hartree equation:

Wy = —AY — (Lo * WP mR* xRY,

see [7], [21].

In the past few years, there are several approaches to construct nontrivial
solutions of (1.1), see e.g. [5], [14], [17], [18], [20], [21], [27] for p = 2 and [22], [23].
One of them is to look for a constrained critical point of the functional
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on the constrained L2-spheres in H(RY):

S(c) ={uec H'RM) | lul2 = ¢,c > 0}.

In this way, the parameter u € R will appear as a Lagrange multiplier and such
solution is called a normalized solution. By the following well-known Hardy—
Littlewood—Sobolev inequality: For 1 < r,s < 400, if f € L"(RY), g € L¥(RY),
A€ (0,N)and 1/r +1/s+ A/N = 2, then

x
(1.4) / Lg(y/\) < Cr,A,N|f|r|g|37
ry Jry 2=yl
we see that I,(u) is well-defined and a C' functional. Set
1.5 I,(?) = inf I,
(1.5) p(c7) ué%(c) p(u),

then minimizers of I,,(c?) are exactly critical points of I,(u) constrained on S(c).



