Topological Methods in Nonlinear Analysis Volume 48, No. 2, 2016, 393–417 DOI: 10.12775/TMNA.2016.066

© 2016 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University

MASS MINIMIZERS AND CONCENTRATION FOR NONLINEAR CHOQUARD EQUATIONS IN \mathbb{R}^N

Hongyu Ye

ABSTRACT. In this paper, we study the existence of minimizers to the following functional related to the nonlinear Choquard equation:

$$E(u) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + \frac{1}{2} \int_{\mathbb{R}^N} V(x) |u|^2 - \frac{1}{2p} \int_{\mathbb{R}^N} (I_\alpha * |u|^p) |u|^p$$

on $\widetilde{S}(c)=\{u\in H^1(\mathbb{R}^N)\mid \int_{\mathbb{R}^N}V(x)|u|^2<+\infty,\ |u|_2=c,\ c>0\},$ where $N\geq 1,\ \alpha\in(0,N),\ (N+\alpha)/N\leq p<(N+\alpha)/(N-2)_+$ and $I_\alpha\colon\mathbb{R}^N\to\mathbb{R}$ is the Riesz potential. We present sharp existence results for E(u) constrained on $\widetilde{S}(c)$ when $V(x)\equiv 0$ for all $(N+\alpha)/N\leq p<(N+\alpha)/(N-2)_+$. For the mass critical case $p=(N+\alpha+2)/N$, we show that if $0\leq V\in L^\infty_{\mathrm{loc}}(\mathbb{R}^N)$ and $\lim_{|x|\to+\infty}V(x)=+\infty$, then mass minimizers

exist only if $0 < c < c_* = |Q|_2$ and concentrate at the flattest minimum of V as c approaches c_* from below, where Q is a groundstate solution of $-\Delta u + u = (I_\alpha * |u|^{(N+\alpha+2)/N})|u|^{(N+\alpha+2)/N-2}u$ in \mathbb{R}^N .

1. Introduction

In this paper, we consider the following semilinear Choquard problem:

(1.1)
$$-\Delta u - \mu u = (I_{\alpha} * |u|^{p})|u|^{p-2}u, \quad x \in \mathbb{R}^{N}, \ \mu \in \mathbb{R},$$
 where $N \geq 1$, $\alpha \in (0, N)$, $(N + \alpha)/N \leq p < (N + \alpha)/(N - 2)_{+}$, here $(N + \alpha)/(N - 2)_{+} = (N + \alpha)/(N - 2)$ if $N \geq 3$ and $(N + \alpha)/(N - 2)_{+} = +\infty$ if $N = 1, 2$.

 $^{2010\} Mathematics\ Subject\ Classification.\ 35 J 60,\ 35 Q 40,\ 46 N 50.$

 $Key\ words\ and\ phrases.$ Choquard equation; mass concentration; normalized solutions; Sharp existence.

Partially supported by NSFC No. 11501428, NSFC No. 11371159.

394 H. YE

The Riesz potential $I_{\alpha} \colon \mathbb{R}^{N} \to \mathbb{R}$ is defined as (see [26])

$$I_{\alpha}(x) = \frac{\Gamma\left(\frac{N-\alpha}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right)\pi^{N/2}2^{\alpha}} \frac{1}{|x|^{N-\alpha}}, \quad \text{for all } x \in \mathbb{R}^{N} \setminus \{0\}.$$

Problem (1.1) is a nonlocal one due to the existence of nonlocal nonlinearity. It arises in various fields of mathematical physics, such as quantum mechanics, physics of laser beams, physics of multiple-particle systems, etc. When N=3, $\mu=-1$ and $\alpha=p=2$, (1.1) turns to be the well-known Choquard–Pekar equation

(1.2)
$$-\Delta u + u = (I_2 * |u|^2)u, \quad x \in \mathbb{R}^3,$$

which was proposed as early as in 1954 by Pekar [25], and by a work of Choquard 1976 in a certain approximation to Hartree–Fock theory for one-component plasma, see [14], [16]. Equation (1.1) is also known as the nonlinear stationary Hartree equation since if u solves (1.1) then $\psi(t,x) = e^{it}u(x)$ is a solitary wave of the following time-dependent Hartree equation:

$$i\psi_t = -\Delta\psi - (I_\alpha * |\psi|^p)|\psi|^{p-2}\psi$$
 in $\mathbb{R}^+ \times \mathbb{R}^N$,

see [7], [21].

In the past few years, there are several approaches to construct nontrivial solutions of (1.1), see e.g. [5], [14], [17], [18], [20], [21], [27] for p=2 and [22], [23]. One of them is to look for a constrained critical point of the functional

(1.3)
$$I_p(u) = \frac{1}{2} \int_{\mathbb{D}^N} |\nabla u|^2 - \frac{1}{2p} \int_{\mathbb{D}^N} (I_\alpha * |u|^p) |u|^p$$

on the constrained L^2 -spheres in $H^1(\mathbb{R}^N)$:

$$S(c) = \{ u \in H^1(\mathbb{R}^N) \mid |u|_2 = c, c > 0 \}.$$

In this way, the parameter $\mu \in \mathbb{R}$ will appear as a Lagrange multiplier and such solution is called a normalized solution. By the following well-known Hardy–Littlewood–Sobolev inequality: For $1 < r, s < +\infty$, if $f \in L^r(\mathbb{R}^N)$, $g \in L^s(\mathbb{R}^N)$, $\lambda \in (0, N)$ and $1/r + 1/s + \lambda/N = 2$, then

(1.4)
$$\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{f(x)g(y)}{|x-y|^{\lambda}} \le C_{r,\lambda,N} |f|_r |g|_s,$$

we see that $I_p(u)$ is well-defined and a C^1 functional. Set

(1.5)
$$I_p(c^2) = \inf_{u \in S(c)} I_p(u),$$

then minimizers of $I_p(c^2)$ are exactly critical points of $I_p(u)$ constrained on S(c).