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NASH EQUILIBRIUM FOR BINARY CONVEXITIES

Taras Radul

Abstract. This paper is devoted to Nash equilibrium for games in capa-
cities. Such games with payoff expressed by the Choquet integral were

considered by Kozhan and Zarichnyi (2008) and existence of Nash equilib-

rium was proved. We also consider games in capacities but with expected
payoff expressed by the Sugeno integral. We prove existence of Nash equi-

librium in a general context of abstract binary (non-linear) convexity and

then we obtain an existence theorem for games in capacities.

1. Introduction

The classical Nash equilibrium theory is based on fixed point theory and

was developed in the frame of linear convexity with mixed strategies of a player

being probability (additive) measures on a set of pure strategies. In last decades

the interest in Nash equilibria in more general frames is rapidly growing. For

instance, Briec and Horvath proved in [1] existence of a Nash equilibrium point

for B-convexity and MaxPlus convexity which are non-linear. Let us remark

that MaxPlus convexity is related to idempotent (Maslov) measures in the same

sense as linear convexity is related to probability measures.

We can use additive measures only when we know precisely probabilities of

all events considered in a game. However, this is not the case in many modern

economic models. The decision theory under uncertainty considers a model when

probabilities of states are either not known or imprecisely specified. Gilboa [5]
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and Schmeidler [17] axiomatized expectations expressed by Choquet integrals

attached to non-additive measures called capacities, as a formal approach to

decision-making under uncertainty.

An alternative to the so-called Choquet expected utility model is the qual-

itative decision theory. The corresponding expected utility is expressed by the

Sugeno integral. See the papers [3], [4], [2], [16] and others for more details about

the qualitative decision theory and motivation of using the Sugeno integral.

Kozhan and Zarichnyi introduced in [7] a notion of Nash equilibrium of

a game where players are allowed to form non-additive beliefs about opponent’s

decision but also to play their mixed non-additive strategies. Such game was

called by the authors as the game in capacities. The expected payoff func-

tion was defined using the Choquet integral. Kozhan and Zarichnyi proved an

existence theorem using a linear convexity on the space of capacities which is

preserved by the Choquet integral. The problem of existence of Nash equilibrium

for other functors was stated in [7].

In this paper, following [7], we introduce a concept of Nash equilibrium for

a game in capacities. However, motivated by the qualitative approach, we con-

sider an expected payoff function defined by the Sugeno integral. In order to

prove an existence theorem for this particular case, we consider a more gen-

eral framework which could unify all situations mentioned before and give us

a method to prove theorems about existence of Nash equilibrium in different

contexts. We use categorical methods and abstract convexity theory.

The notion of convexity considered in this paper is considerably broader

than the classical one; in particular, it is not restricted to the context of linear

spaces. Such convexities appeared in the process of studying different structures

like partially ordered sets, semilattices, lattices, superextensions etc. We base

our approach on the notion of topological convexity from [20] where the gen-

eral convexity theory is covered from axioms to applications in different areas.

Particularly, this book contains the Kakutani fixed point theorem for abstract

convexity.

The above mentioned constructions of spaces of probability measures, idem-

potent measures and capacities are functorial and can be completed to monads

(see [15], [22] and [11] for more details). A convexity structure on each F-algebra

for any monad F in the category of compact Hausdorff spaces and continuous

maps was introduced in [12].

We prove a counterpart of the Nash theorem for an abstract convexity. Par-

ticularly, we consider binary convexities. These results are used to obtain a Nash

type theorem for algebras of any L-monad with binary convexity. Since a capac-

ity monad is an L-monad with binary convexity [13], we obtain as corollary the

corresponding result for capacities.
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2. Binary convexities

A family C of closed subsets of a compactum X is called a convexity on X

if C is stable for intersection, and contains X and the empty set. The elements

of C are called C-convex (or simply convex). Although we follow the general

concept of abstract convexity from [20], our definition is different. We consider

only closed convex sets. Such structure is called a closure structure in [20]. Our

definition is the same as in [21]. The whole family of convex sets in the sense

of [20] could be obtained by the operation of union of up-directed families. In

what follows, we assume that each convexity contains all singletons.

A convexity C on X is called T2 if for any distinct x1, x2 ∈ X there exist

S1, S2 ∈ C such that S1 ∪ S2 = X, x1 /∈ S2 and x2 /∈ S1. Let us remark that if

a convexity C on a compactum X is T2, then C is a subbase for closed sets. A

convexity C on X is called T4 (normal) if for any disjoint C1, C2 ∈ C there exist

S1, S2 ∈ C such that S1 ∪ S2 = X, C1 ∩ S2 = ∅ and C2 ∩ S1 = ∅.
Let (X, C), (Y,D) be two compacta with convexity structures. A continuous

map f : X → Y is called a CP map (convexity preserving map) if f−1(D) ∈ C
for each D ∈ D; f is called a CC map (convex-to-convex map) if f(C) ∈ D for

each C ∈ C.
By a multimap (set-valued map) of a set X into a set Y we mean a map

F : X → 2Y and we use the notation F : X ( Y . If X and Y are topological

spaces, then a multimap F : X ( Y is called upper semi-continuous (USC)

provided for each open set O ⊂ Y the set {x ∈ X | F (x) ⊂ O} is open in X. It

is well-known that a multimap with compact values is USC iff its graph is closed

in X × Y .

Let F : X ( X be a multimap. We say that a point x ∈ X is a fixed point

of F if x ∈ F (x). The following counterpart of the Kakutani theorem for an

abstract convexity is a partial case of Theorem 3 from [21] (it also could be

obtained combining Theorem 6.15, Chapter IV and Theorem 4.10, Chapter III

from [20]).

Theorem 2.1. Let C be a normal convexity on a compactum X such that all

convex sets are connected and F : X ( X is a USC multimap with values in C.

Then F has a fixed point.

Let C be a family of subsets of a compactum X. We say that C is linked if

the intersection of any two its elements is non-empty. A convexity C is called

binary if the intersection of every its linked subsystem of C is non-empty.

Lemma 2.2. Let C be a T2 binary convexity on a continuum X. Then C is

normal and all convex sets are connected.

Proof. The first assertion of the lemma is proved in [15, Lemma 3.1]. Let

us prove the second one. Consider any A ∈ C. A retraction hA : X → A is
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defined in [9] by the formula hA(x) = ∩{C ∈ C | x ∈ C and C ∩ A 6= ∅}. Hence

A is connected. �

Now we can reformulate Theorem 2.1 for binary convexities.

Theorem 2.3. Let C be a T2 binary convexity on a continuum X and let

F : X ( X be a USC multimap with values in C. Then F has a fixed point.

Let us recall the definition of Nash equilibrium. We consider an n-players

game f : X =
n∏
i=1

Xi → Rn with compact Hausdorff spaces of strategies Xi. The

coordinate function fi : X → R is called the payoff function of i-th player. For

x ∈ X and ti ∈ Xi we use the notation (x; ti) = (x1, . . . , xi−1, ti, xi+1, . . . , xn).

A point x ∈ X is called a Nash equilibrium point if for each i ∈ {1, . . . , n} and

for each ti ∈ Xi we have fi(x; ti) ≤ fi(x).

Now, let Ci be a convexity on Xi. We say that a function fi : X → R is

quasiconcave with respect to the i-th variable if we have (fxi )−1([t; +∞)) ∈ Ci
for all t ∈ R and x ∈ X where fxi : Xi → R is the function defined as follows:

fxi (ti) = fi(x; ti) for ti ∈ Xi.

Theorem 2.4. Let f : X =
n∏
i=1

Xi → Rn be a game with a normal convexity

Ci defined on each compactum Xi such that all convex sets are connected, the

function f is continuous and the function fi : X → R is quasiconcave with respect

to the i-th variable for each i ∈ {1, . . . , n}. Then there exists a Nash equilibrium

point.

Proof. Fix any x ∈ X. For each i ∈ {1, . . . , n} let

Mx
i =

{
t ∈ Xi

∣∣∣ fxi (t) = max
s∈Xi

fxi (s)
}
.

Then Mx
i is a closed subset Xi. Since the function fi : X → R is quasiconcave

with respect to the i-th variable, Mx
i ∈ Ci. Define a multimap F : X ( X by

the formula F (x) =
n∏
i=1

Mx
i for x ∈ X.

Let us show that F is USC. Consider any point (x, y) ∈ X × X such that

y /∈ F (x). Then there exists i ∈ {1, . . . , n} such that fxi (yi) < max
s∈Xi

{fxi (s)}.
Hence we can choose ti ∈ Xi such that fi(x; yi) < fi(x; ti). Since fi is continuous,

there exist a neighbourhood Ox of x in X and a neighbourhood Oyi of yi in Yi
such that for any x′ ∈ Ox and y′i ∈ Oyi we have fi(x; y′i) < fi(x; ti). Put

Oy = (pri)
−1(Oyi). Then for each (x′, y′) ∈ Ox × Oy we have y′ /∈ F (x′). Thus

the graph of F is closed in X × Y , hence F is upper semicontinuous.

We consider on X the family C =

{
n∏
i=1

Ci

∣∣∣∣ Ci ∈ Ci}. It is easy to see

that C forms a normal convexity on the compactum X such that all convex sets

are connected. Then, by Theorem 2.1, F has a fixed point which is a Nash

equilibrium point. �
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Now, the previous theorem and Lemma 2.2 imply the following corollary.

Corollary 2.5. Let f : X =
n∏
i=1

Xi → Rn be a game such that a T2 binary

convexity Ci is defined on each continuum Xi, the function f is continuous and

the function fi : X → R is quasiconcave with respect to the i-th variable for each

i ∈ {1, . . . , n}. Then there exists a Nash equilibrium point.

3. L-monads and its algebras

By Comp we denote the category of compact Hausdorff spaces (compacta)

and continuous maps. For each compactum X we denote by C(X) the Banach

space of all continuous functions on X with the usual sup-norm. In what follows,

all spaces and maps are assumed to be in Comp except for R and maps in sets

C(X) with X compact Hausdorff.

We apply Corollary 2.5 to study games defined on the algebras of binary

L-monads. We recall some categorical notions (see [8] and [19] for more details).

We define them only for the category Comp. Let F : Comp → Comp be a co-

variant functor. A functor F is called continuous if it preserves the limits of

inverse systems. In what follows, all functors are assumed to preserve monomor-

phisms, epimorphisms, weight of infinite compacta. We also assume that our

functors are continuous. For a functor F which preserves monomorphisms and

for an embedding i : A → X we shall identify the space FA and the subspace

F (i)(FA) ⊂ FX.

A monad T = (T, η, µ) in the category Comp consists of an endofunctor

T : Comp→ Comp and natural transformations η : IdComp → T (unity), µ : T 2 →
T (multiplication) satisfying the relations µ◦Tη = µ◦ηT =1T and µ◦µT = µ◦Tµ.

(By IdComp we denote the identity functor on the category Comp and T 2 is the

superposition T ◦ T .)

Let T = (T, η, µ) be a monad in the category Comp. A pair (X, ξ), where

ξ : TX → X is a map, is called a T-algebra if ξ ◦ ηX = idX and ξ ◦ µX = ξ ◦ Tξ.
Let (X, ξ), (Y, ξ′) be two T-algebras. A map f : X → Y is called a morphism of

T-algebras if ξ′ ◦ Tf = f ◦ ξ.
Let (X, ξ) be an F-algebra for a monad F = (F, η, µ) and let A be a closed

subset of X. Denote by fA the quotient map fA : X → X/A (the equivalence

classes are one-point sets {x} for x ∈ X \ A and the set A) and put a = fA(A).

Denote A+ = (FfA)−1(η(X/A)(a)). Define the F-convex hull convF(A) of A

as follows convF(A) = ξ(A+). Put additionally convF(∅) = ∅. We define the

family CF(X, ξ) = {A ⊂ X | A is closed and convF(A) = A}. The elements of

the family CF(X, ξ) will be called F-convex. It was shown in [12] that the family

CF(X, ξ) forms a convexity on X, moreover, each morphism of F-algebras is a CP

map. Let us remark that the one-point sets are always F-convex.
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We do not know if the introduced convexities are T2. In this section we con-

sider a class of monads generating convexities which have this property. The class

of L-monads was introduced in [12] and it contains many well-known monads

in Comp like superextension, hyperspace, probability measure, capacity, idem-

potent measure, etc. For φ ∈ C(X) by maxφ (respectively, minφ) we denote

max
x∈X

φ(x)
(

respectively, min
x∈X

φ(x)
)

and πφ or π(φ) denote the corresponding pro-

jection πφ :
∏

ψ∈C(X)

[minψ,maxψ]→ [minφ,maxφ]. It was shown in [14] that for

each L-monad F = (F, η, µ) the space FX can be considered as a subset of the

product
∏

φ∈C(X)

[minφ,maxφ], moreover, we have πφ ◦ ηX = φ, πφ ◦µX = π(πφ)

for all φ ∈ C(X) and πψ ◦ Ff = πψ◦f for all ψ ∈ C(Y ), f : X → Y . We can

consider these properties of L-monads as a definition [14].

We say that an L-monad F = (F, η, µ) weakly preserves preimages if for each

map f : X → Y and each closed subset A ⊂ Y we have

πφ(ν) ∈
[
minφ(f−1(A)),maxφ(f−1(A))

]
for each ν ∈ (Ff)−1(A) and φ ∈ C(X) [12]. It was shown in [12] that for each

L-monad F which weakly preserves preimages the convexity CF(FX,µX) is T2.

Lemma 3.1. Let (X, ξ) be an F-algebra for an L-monad F = (F, η, µ) which

weakly preserves preimages. Then the map ξ : FX → X is a CC map for con-

vexities CF(FX,µ) and CF(X, ξ), respectively.

Proof. Consider any B ∈ CF(FX,µ). We should show that ξ(B) ∈ CF(X, ξ).

Denote by χ : X → X/ξ(B) the quotient map and put b = χ(ξ(B)). Consider any

A ∈ FX such that Fχ(A) = η(X/ξ(B))(b). We should show that ξ(A) ∈ ξ(B).

Consider the quotient map χ1 : FX → FX/B and put b1 = χ1(B). There

exists a (unique) continuous map ξ′ : FX/B → X/ξ(B) such that ξ′(b1) = b and

ξ′ ◦χ1 = χ◦ξ. Put D = F (ηX)(A). We have Fξ(D) = A, hence Fξ′ ◦Fχ1(D) =

Fχ ◦ Fξ(D) = Fχ(A) = η(X/ξ(B))(b). Since F weakly preserves preimages,

we have Fχ1(D) = η(FX/B)(b1). Since B ∈ CF(FX,µ), we have µX(D) ∈ B.

Hence, ξ(A) = ξ ◦ Fξ(D) = ξ ◦ µ(D) ∈ ξ(B). �

We call a monad F binary if CF(X, ξ) is binary for each F-algebra (X, ξ).

Lemma 3.2. Let F = (F, η, µ) be a binary L-monad which weakly preserves

preimages. Then for each F-algebra (X, ξ) the convexity CF(X, ξ) is T2.

Proof. Consider any two distinct points x, y ∈ X. Being a morphism of F-

algebras (FX,µX) and (X, ξ) the map ξ is a CP map and we have ξ−1(x), ξ−1(y)

∈ CF(FX,µ). Since CF(FX,µ) is T2 and binary, it is normal, by Lemma 2.2.

Hence we can choose L1, L2 ∈ CF(FX,µ) such that L1 ∪ L2 = FX and L1 ∩
ξ−1(x) = ∅, L2 ∩ ξ−1(y) = ∅. Then we have ξ(L1), ξ(L2) ∈ CF(X, ξ), by

Lemma 3.1, ξ(L1) ∪ ξ(L2) = X, x /∈ L1 and y /∈ L2. �
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Consider any L-monad F = (F, η, µ). It is easy to check that for each segment

[a, b] ⊂ R the pair ([a, b], ξ[a,b]) is an F-algebra where ξ[a,b] = πid[a,b]
. Consider

a game f : X =
n∏
i=1

Xi → Rn where for each compactum Xi there exists a map

ξi : FXi → Xi such that the pair (Xi, ξi) is an F-algebra. We say that the

function fi : X → R is a morphism of F-algebras with respect to the i-th variable

if for each x ∈ X the function fxi : Xi → R is a morphism of F-algebras (Xi, ξi)

and ([min fxi ,max fxi ], ξ[min fx
i ,max fx

i ]).

Theorem 3.3. Let F = (F, η, µ) be a binary L-monad which weakly preserves

preimages. Let f : X =
n∏
i=1

Xi → Rn be a game such that an F-algebra map

ξi : FXi → Xi is defined on each continuum Xi, the function f is continuous

and the function fi : X → R is a morphism of F-algebras with respect to the i-th

variable for each i ∈ {1, . . . , n}. Then there exists a Nash equilibrium point.

Proof. Since for each x ∈ X the function fxi : Xi → R is a morphism of

F-algebras, it is a CP map, hence quasiconcave. Now, our theorem follows from

Lemma 3.2 and Corollary 2.5. �

4. Pure and mixed strategies

Let F = (F, η, µ) be a binary L-monad which weakly preserves preimages.

In this section we consider Nash equilibrium for free algebras (FX,µX). The

points of a compactum X are called pure strategies and the points of FX are

called mixed strategies. Such approach is a natural generalization of the model

from [7] where spaces of capacities were considered.

We consider a game u : X =
n∏
i=1

Xi → Rn with compact Hausdorff spaces of

pure strategies X1, . . . , Xn and continuous payoff functions ui :
n∏
i=1

Xi → R.

It is well-known how to construct the tensor product of two (or finite number)

probability measures. This operation was generalized in [19] over any monad in

the category Comp. More precisely, for any compacta X1, . . . , Xn a continuous

map ⊗ :
n∏
i=1

FXi → F

(
n∏
i=1

Xi

)
was constructed such that ⊗ is natural by each

argument and for each i we have F (pi) ◦ ⊗ = pri where pi :
n∏
j=1

Xj → Xi and

pri :
n∏
j=1

FXj → FXi are natural projections.

We define the payoff functions eui : FX1 × . . . × FXn → R by the formula

eui = πui ◦ ⊗. Evidently, eui is continuous. Consider any t ∈ R and ν ∈
FX1 × . . . × FXn. Then we have (euνi )−1[t; +∞) = {µi ∈ FXi | eui(ν;µi) ≥

ti} = l−1(π−1ui
[t; +∞)∩{νi}× . . .×FXi× . . .×{νn}), where l : FXi →

n∏
j=1

FXj
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is an embedding defined by l(µi) = (ν;µi) for µi ∈ FXi. A structure of F-

algebra on the product
n∏
j=1

FXj of F-algebras (FXi, µXi) is given by a map

ξ : F

(
n∏
i=1

FXi

)
→

n∏
i=1

FXi defined by the formula ξ = (µXi ◦ F (pi))
n
i=1. It is

easy to check that the product of convex in FXi sets is convex in
n∏
i=1

FXi. Since

F weakly preserves preimages, π−1ui
[t; +∞) is convex in

n∏
i=1

FXi. It is easy to see

that l is a CP map, hence the map eui is quasiconcave with respect to the i-th

variable. Hence, using Corollary 2.5, we obtain the following theorem.

Theorem 4.1. The game with payoff functions eui has a Nash equilibrium

point provided each FXi is connected.

5. Games in capacities

We need a definition of capacity on a compactum X. We follow the termi-

nology of [11]. A function c which assigns to each closed subset A of X a real

number c(A) ∈ [0, 1] is called an upper-semicontinuous capacity on X if the

following three properties hold for any closed subsets F and G of X:

1. c(X) = 1, c(∅) = 0,

2. if F ⊂ G, then c(F ) ≤ c(G),

3. if c(F ) < a, then there exists an open set O ⊃ F such that c(B) < a for

each compactum B ⊂ O.

We extend a capacity c to all open subsets U ⊂ X by the formula c(U) =

sup{c(K) | K is a closed subset of X such that K ⊂ U}.
It was proved in [11] that the space MX of all upper-semicontinuous ca-

pacities on a compactum X is a compactum as well, if the topology on MX

is defined by the subbase that consists of all sets of the form O−(F, a) =

{c ∈ MX | c(F ) < a}, where F is a closed subset of X, a ∈ [0, 1], and

O+(U, a) = {c ∈ MX | c(U) > a}, where U is an open subset of X, a ∈ [0, 1].

Since all capacities here are upper-semicontinuous, in the sequel we call elements

of MX simply capacities.

The assignment M extends to the capacity functor M in the category of

compacta, if the map Mf : MX → MY for a continuous map of compacta

f : X → Y is defined by the formula Mf(c)(F ) = c(f−1(F )), where c ∈ MX

and F is a closed subset of X. This functor was completed to the monad M =

(M,η, µ) (see [11]), where the components of the natural transformations are

defined as follows: ηX(x)(F ) = 1 if x ∈ F and ηX(x)(F ) = 0 if x /∈ F ;

µX(C)(F ) = sup {t ∈ [0, 1] | C({c ∈ MX | c(F ) ≥ t}) ≥ t}, where x ∈ X, F is

a closed subset of X and C ∈M2(X).
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The tensor product for capacities was considered in [7]. It is a continuous

map ⊗ : MX1 × . . .×MXn →M(X1 × . . .×Xn). Note that, despite the space

of capacities contains the space of probability measures, the tensor product of

capacities in general does not extend the tensor product of probability measures.

Due to Zhou [23] we can identify the set MX with some set of functionals

defined on the space C(X) using the Choquet integral. We consider for each

µ ∈MX its value on a function f ∈ C(X) defined by the formula

µ(f) =

∫
f dµ =

∫ ∞
0

µ{x ∈ X | f(X) ≥ t} dt+
∫ 0

−∞
(µ{x ∈ X | f(X) ≥ t}−1) dt.

Kozhan and Zarichnyi proved in [7] the existence of Nash equilibrium for a game

in capacities ef :
n∏
i=1

MXi → Rn with expected payoff functions defined by

efi(µ1, . . . , µn) =

∫
X1×...×Xn

fi d(µ1 ⊗ . . .⊗ µn).

Let us remark that the Choquet functional representation of capacities preserves

the natural linear convexity structure on MX which was used in the proof of ex-

istence of Nash equilibrium in [7]. However, this representation does not preserve

the capacity monad structure.

Another functional representation of capacities was introduced in [13] (see

also [10] for similar result). It uses the Sugeno integral. This representation

preserves the capacity monad structure. Let us describe such a representation.

Fix any increasing homeomorphism ψ : (0, 1)→ R. We put additionally ψ(0) =

−∞, ψ(1) = +∞ and assume that −∞ < t < +∞ for each t ∈ R. We consider

for each µ ∈MX its value on a function f ∈ C(X) defined by the formula

µ(f) =

∫ Sug

X

f dµ = max {t ∈ R | µ(f−1([t,+∞))) ≥ ψ−1(t)}.

Let us remark that we use certain modification of the Sugeno integral. The

original Sugeno integral [18] “ignores” the values of a function outside the interval

[0, 1] and we introduce a “correction” homeomorphism ψ to avoid this problem.

Now, following [7], we consider a game in capacities sf :
n∏
i=1

MXi → Rn, but

motivated by [3], we consider Sugeno expected payoff functions defined by

sfi(µ1, . . . , µn) =

∫ Sug

X1×...×Xn

fi d(µ1 ⊗ . . .⊗ µn).

The question of existence of Nash equilibrium arises naturally. Since the Sugeno

integral does not preserve linear convexity on MX, we cannot use methods

from [7].

It is easy to see that MX is connected for each compactum X. Since the

capacity monad M is a binary L-monad which weakly preserves preimages with
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πϕ(ν) =
∫ Sug

X
f dν for any ν ∈MX and ϕ ∈ C(X) [13], we obtain the following

theorem as a consequence of Theorem 4.1.

Theorem 5.1. A game in capacities sf :
n∏
i=1

MXi → Rn with Sugeno payoff

functions has a Nash equilibrium point.
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