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EXISTENCE AND CONCENTRATE BEHAVIOR

OF SCHRÖDINGER EQUATIONS

WITH CRITICAL EXPONENTIAL GROWTH IN RN

Jian Zhang — Wenming Zou

Abstract. We consider the nonlinear Schrödinger equation

−∆u+ (1 + µg(x))u = f(u) in RN ,

where N ≥ 3, µ ≥ 0; the function g ≥ 0 has a potential well and f has crit-

ical growth. By using variational methods, the existence and concentration
behavior of the ground state solution are obtained.

1. Introduction

In this paper, we are concerned with the following Schrödinger equation:

(1.1) −∆u+ (1 + µg(x))u = f(u) in RN ,

where N ≥ 3, µ ≥ 0, the potential g is nonnegative and the nonlinear term f is

of critical growth. This equation arises in many models of mathematical physics

and has been studied under various assumptions imposed on µ, g and f .

Recall that u is a ground state solution of (1.1) if and only if u solves (1.1)

and minimizes the functional associated to (1.1) among all possible nontrivial
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solutions. When µ = 0 and f is a subcritical function, almost necessary and

sufficient conditions for the existence of ground state solutions to (1.1) are given

by Berestycki and Lions in [9] when N ≥ 3 and Berestycki et al. in [8] for N = 2.

Subsequently, the authors in [1], [40] attempted to complete the study initiated

in [8], [9], by considering the nonlinearities with critical growth. The main

difficulty related to (1.1) is the lack of compactness. Several approaches have

been developed to overcome this difficulty. See for example [11], [23], [24], [27],

[31] for the subcritical cases and [39] for the critical cases. When µ > 0, many

authors have worked on equation (1.1) in various forms and obtained numerous

results on the existence, multiplicity and concentration behavior of solutions. In

particular, in [7], Bartsch and Wang considered the subcritical problem

(1.2) −∆u+ (1 + µg(x))u = up−1 in RN ,

where N ≥ 3, 2 < p < 2∗ := 2N/(N − 2) and the function g satisfies the

following conditions:

(g1) g ∈ C(RN ,R), g ≥ 0.

(g2) Ω := int g−1(0) is non-empty and has smooth boundary and Ω = g−1(0).

(g3) There exists M0 > 0 such that meas{x ∈ RN : g(x) ≤M0} <∞, where

meas denotes the Lebesgue measure on RN .

Under the above assumptions, they showed that for µ large enough, problem (1.2)

admits a positive ground state solution. Moreover, the ground state solution

converges (as µ → ∞) to a positive ground state solution of the following limit

equation:

(1.3) −∆u+ u = up−1, u ∈ H1
0 (Ω).

Multiplicity of solutions for (1.3) were also considered. It is remarkable that the

function 1 + µg represents a potential well whose depth is controlled by µ and,

when µ → ∞, a certain of concentration behavior occurs. When the number

of components contained in Ω is more than one, we refer the reader to [19] for

multiplicity of positive solutions and to [32] for multiplicity of positive and sign-

changing solutions. For other related results, see [5], [6], [26], [34]–[35] and the

references therein.

However, in all papers mentioned above the nonlinearities are assumed to be

subcritical. Naturally, it is interesting to ask what happens when the nonlinearity

is of critical growth? We remark that Clapp and Ding [12] investigated the

following problem:

(1.4) −∆u+ µg(x)u = λu+ u2∗−1 in RN ,

where N ≥ 4, λ > 0 and g satisfies (g1)–(g3) with Ω bounded. For λ small and

µ large, the existence and multiplicity of solutions for (1.4) were obtained and
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a concentration behavior was observed as µ → ∞. See also [13], [14] for other

critical cases.

The main goal of this paper is to study another class of nonlinearities with

critical growth and obtain the existence and concentration behavior of the posi-

tive ground state to (1.1). We introduce the following hypotheses on g and f :

(G1) g ∈ C(RN ,R) and g(x) ≥ 0 for all x ∈ RN ;

(G2) the set Ω0 := {x ∈ RN : g(x) = 0} is bounded and has non-empty

interior;

(G3) there exists g0 > 0 such that the set {x ∈ RN : g(x) ≤ g0} is bounded;

(f1) f ∈ C(R+,R);

(f2) lim
t→0+

f(t)/t = 0;

(f3) lim
t→+∞

f(t)/(t2
∗−1) = K > 0;

(f4) there exists θ ∈ (2, 2∗] such that f(t)t − θF (t) ≥ 0 for t ≥ 0, where

F (t) =
∫ t

0
f(s) ds;

(f5) there exist q ∈ (2, 2∗) and λ > 0 such that f(t) ≥ λtq−1 for t ≥ 0.

Before stating the main results of the current paper, we need some definitions.

Denote the best Sobolev constants by

S := inf
u∈D1,2(RN )\{0}

∫
RN
|∇u|2 dx(∫

RN
|u|2

∗
dx

)2/2∗

and

Sq := inf
u∈H1

0 (Ω0)\{0}

∫
Ω0

(|∇u|2 + u2) dx(∫
Ω0

|u|q dx
)2/q

,

Cq := inf
u∈H1(RN )\{0}

∫
RN

(|∇u|2 + |u|2) dx(∫
RN
|u|q dx

)2/q
.

We distinguish two different situations. Firstly, we consider the case of µ > 0.

Theorem 1.1. Assume that (G1)–(G3) and (f1)–(f5) hold with

λ >

[
2θ(q − 2)

q(θ − 2)

](q−2)/2[
8(N − 1)

N − 2

](q−2)(N−2)/4
S
q/2
q

SN(q−2)/4
.

Then there exists µ0 > 0 such that for µ > µ0, problem (1.1) admits a positive

ground state solution.
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Remark 1.2. Condition (f3) characterizes equation (1.1) to be the critical

growth case. A typical example satisfying (f1)–(f5) is the function

f(t) = λtq−1 +Kt2
∗−1, t ≥ 0.

For this case, we may choose θ = q ∈ (2, 2∗).

Theorem 1.3. For µn > µ0, let uµn be a sequence of positive ground state

solutions from Theorem 1.1 with µn →∞. Then up to a subsequence, uµn → u

in H1(RN ) as µn → +∞, where u(x) = 0 a.e. x ∈ RN \ Ω0. Moreover, if ∂Ω0

is smooth, then u is a positive solution to the following problem:

(1.5) −∆u+ u = f(u), u ∈ H1
0 (Ω0).

Similar conditions to (G1)–(G3) were introduced in [6], [7]. However, the

methods of [6], [7] do not apply to (1.1) due to the critical exponential growth.

In fact, it is known that the embedding is not compact even if the domain is

bounded. In [12], the authors considered a critical case. Unfortunately, it seems

that the device used in [12] does not work for (1.1). In this paper, we shall

apply a penalization approach developed by del Pino and Felmer [15]. Such an

approach has been widely used in dealing with singularly perturbed problems.

On the other hand, lots of papers have been devoted to studying the existence

and concentration phenomenon of solutions to the following singularly perturbed

problem:

(1.6) −ε2∆u+ V (x)u = f(u) in RN

with various hypotheses on V and f . Denoting v(x) = u(εx), equation (1.6) is

reduced to

(1.7) −∆v + V (εx)v = f(v) in RN .

The existence of a single spike solution which concentrates around any given

non-degenerate critical point of the potential V was first constructed in [20]

for N = 1 and f(u) = u3. Later on, Oh [29], [30] extended this result to

higher dimension cases with f(u) = |u|p−1u, 1 < p < (N + 2)/(N − 2). He also

considered multiple spike solutions. The arguments in [20], [29], [30] are based

on the Lyapunov–Schmidt reduction and the uniqueness and non-degeneracy of

the ground state to the limiting equation

(1.8) −∆v + V (0)v = f(v) in RN .

Reduction methods were also found suitable for finding solutions of (1.7) con-

centrating around possibly degenerate critical points of V . See for example [3],

[28] and the references therein. However, the uniqueness and non-degeneracy of

the ground state solution are usually rather difficult to check. To overcome this
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difficulty, the variational approach by Rabinowitz [31] is proved to be success-

ful. Later on, by introducing a penalization approach, del Pino and Felmer [15]

proved a localized version of results in [31]. Jeanjean and Tanaka [25] extended

the work of [15] to a more general superlinear nonlinearity. The asymptotically

linear case was also considered in [25]. See [4], [10], [16]–[18], [21] for the subcriti-

cal cases and [38] for the critical cases. We note that solutions of (1.7) concentrate

at a solution of the limit equation (1.8). This concentration behaviors are rather

different from that of solutions to (1.1).

Now we consider the case of µ = 0 in (1.1). Our aim is to improve the result

obtained in [1]. Recall that in [1], the authors proved the existence of the ground

state solution to (1.1) under assumptions (f1)–(f5) with µ = 0, θ = 2 and

λ >

[
2(2−N)/2S−N/2N

(
2N

N − 2

)(N−2)/2](q−2)/2[
q − 2

2q

](q−2)/2

Cq/2q .

Comparing with the result of [1], our argument is very simple. In particular, we

can remove condition (f4) by applying an indirect method developed in [22].

Theorem 1.4. Assume µ = 0. Suppose that (f1)–(f3) and (f5) hold with

λ >

(
q − 2

2q

)(q−2)/2

(NS−N/2)(q−2)/2 Cq/2q .

Then problem (1.1) admits a positive ground state solution uλ. Moreover,

lim
λ→∞

∫
RN

(|∇uλ|2 + |uλ|2 − F (uλ)) dx = 0.

Remark 1.5. When replacing (f5) in Theorem 1.4 by the following condition:

(f6) there exist D > 0 and q ∈ (2, 2∗) such that f(t) ≥ Dtq−1 + Kt2
∗−1 for

t ≥ 0,

the authors in [40] proved that problem (1.1) also admits a positive ground state

solution for N = 3 with q > 4, or N ≥ 4. The main idea in obtaining this

result is in trying to solve the constraint minimization problem corresponding

to (1.1). It is remarkable that (f5) is different from (f6). In fact, when fixing

λ > ((q − 2)/2q)(q−2)/2(NS−N/2)(q−2)/2C
q/2
q , we can define a function satisfying

(f1)–(f3) and (f5) by f(t) = max {λtq−1,Kt2
∗−1}, for t ≥ 0. Clearly for this case

the function f does not satisfy (f6).

The outline of this paper is as follows: in Section 2, we establish some impor-

tant lemmas. In Section 3, we prove Theorems 1.1–1.3. In Section 4, we prove

Theorem 1.4.

Notations.

• C denotes a positive (possibly different) constant.
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• Br(x0) denotes the open ball centered at x0 with radius r > 0, |Br(x0)|
denotes the volume of Br(x0).

• For 2 ≤ s ≤ ∞, ‖u‖s denotes the usual norm of Ls(RN ), ‖u‖Ls(Br(x0))

denotes the usual norm of Ls(Br(x0)).

• H1(RN ) denotes the Hilbert space equipped with the norm

‖u‖2H1 :=

∫
RN

(|∇u|2 + |u|2) dx.

2. Preliminary lemmas

In this section, we assume that the hypotheses of Theorem 1.1 hold. Let

E :=

{
u ∈ H1(RN ) :

∫
RN

(1 + µg(x))u2 dx <∞
}

be a subspace of H1(RN ) equipped with the norm

‖u‖2µ :=

∫
RN

(|∇u|2 + (1 + µg(x))u2) dx.

From (G1), we know that the embedding E ↪→ H1(RN ) is continuous.

As we look for positive solutions, without loss of generality, we may assume

f(t) = 0 for t ≤ 0. Then from the maximum principle, any nontrivial solution

of (1.1) will be positive. Define the functional Iµ on E by

(2.1) Iµ(u) =
1

2
‖u‖2µ −

∫
RN

F (u) dx, u ∈ E.

It is easy to check that the functional Iµ : E 7→ R is of class C1. Moreover, the

critical points of Iµ are the weak solutions to (1.1). For the simplicity, we may

assume that K = 1. Set h(t) = f(t)− (t+)2∗−1. Then

Iµ(u) =
1

2
‖u‖2µ −

∫
RN

H(u) dx− 1

2∗

∫
RN
|u+|2

∗
dx,

where u ∈ E, H(u) =
∫ u

0
h(t) dt. Instead of dealing with Iµ(u) directly, we will

consider a truncated problem first. Similarly to [15], we modify the nonlinearity

f . By (G3), we can find R > 0 such that Ω0 ⊂ BR(0) and g(x) ≥ g0 for |x| ≥ R.

For κ > 2, we define f̃(t) = min {f(t), (1 + g0µ)t+/κ}. Note that we can choose

χ ∈ C(RN ,R) such that χ(x) = 1 for |x| ≤ R, χ(x) = 0 for |x| ≥ R + 1 and

0 ≤ χ(x) ≤ 1. Then we define k(x, t) = χ(x)f(t) + (1− χ(x))f̃(t). Consider the

truncated functional Jµ on E defined by

(2.2) Jµ(u) =
1

2
‖u‖2µ −

∫
RN

K(x, u) dx,

where

K(x, u) =

∫ u

0

k(x, s) ds = χ(x)F (u)+(1−χ(x))F̃ (u) and F̃ (u) =

∫ u

0

f̃(s) ds.
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Now we try to find a critical point uµ of Jµ on E via a mountain pass argument

and investigate properties of uµ. We will show that for µ > 0 large, uµ also

solves the original problem (1.1).

Lemma 2.1. For µ > 0, there is a sequence {un} ⊂ E such that {un} is

bounded in E,

Jµ(un)→ cµ ∈
(

0,
θ − 2

4θ

[
N − 2

8(N − 1)

](N−2)/2

SN/2
)

and J ′µ(un)→ 0.

Proof. Conditions (f1)–(f3) imply that for all ε > 0 there exists C(ε)> 0

such that

(2.3) |f(u)| ≤ ε|u|+ C(ε)|u|2
∗−1.

Note that ∫
RN

K(x, u) dx ≤
∫
RN

F (u) dx.

Together with (G1), (2.3) and the Sobolev embedding theorem, we can find

r > 0 such that Jµ(u) ≥ c > 0 for ‖u‖µ = r. Condition (f5) implies that

F (u) ≥ λ|u+|q/q. Choose ϕ ∈ C∞0 (Ω0) such that ϕ ≥ 0 in Ω0 and ϕ 6= 0. Then

we have lim
t→+∞

Jµ(tϕ) = −∞. Define

cµ = inf
γ∈Γ

max
t∈[0,1]

Jµ(γ(t)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, Jµ(γ(1)) < 0}. It follows from the

mountain pass theorem in [2] that there is a sequence {un} ⊂ E such that

Jµ(un)→ cµ ≥ c and J ′µ(un)→ 0.

It is well-known that Sq is attained. Then we can find ψ ∈ H1
0 (Ω0) such that

ψ ≥ 0 in Ω0, ψ 6= 0 and

Sq =

∫
Ω0

(|∇ψ|2 + ψ2) dx(∫
Ω0

|ψ|q dx
)2/q

.

From the definition of cµ, it can be derived that cµ ≤ sup
t≥0

Jµ(tψ) = sup
t≥0

Iµ(tψ).

From (G2) and (f5),

sup
t≥0

Iµ(tψ) ≤ sup
t≥0

[
1

2
t2
∫

Ω0

(|∇ψ|2 + ψ2) dx− λ

q
tq
∫

Ω0

|ψ|q dx
]

=

(
1

2
− 1

q

)
1

λ2/(q−2)
Sq/(q−2)
q <

θ − 2

4θ

[
N − 2

8(N − 1)

](N−2)/2

SN/2.

Then we have

cµ <
θ − 2

4θ

[
N − 2

8(N − 1)

](N−2)/2

SN/2.
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On the other hand, by (f4),

cµ + on(1) + on(1)‖un‖µ = Jµ(un)− 1

θ
(J ′µ(un), un)(2.4)

≥
(

1

2
− 1

θ

)
‖un‖2µ +

∫
|x|≥R

(1− χ(x))

[
1

θ
f̃(un)un − F̃ (un)

]
dx

≥
(

1

2
− 1

θ

)
‖un‖2µ −

(
1

2
− 1

θ

)
1

κ

∫
|x|≥R

(1 + µg0)u2
n dx

≥
(

1

2
− 1

θ

)
‖un‖2µ −

(
1

2
− 1

θ

)
1

κ

∫
RN

(1 + µg(x))u2
n dx

≥ θ − 2

4θ
‖un‖2µ,

which implies that ‖un‖µ is bounded in E. �

Now we investigate properties of the sequence {un} obtained in Lemma 2.1.

Lemma 2.2. There is a sequence {zn} ⊂ RN and β > 0 such that∫
B1(zn)

u2
n dx ≥ β.

Moreover, the sequence {zn} is bounded in RN .

Proof. We may assume that un ≥ 0 in E. Now we prove the first result.

Assume to the contrary that

lim
n→∞

sup
z∈RN

∫
B1(z)

u2
n dx = 0.

By the Lions lemma in [37], we obtain

(2.5) un → 0 in Lt(RN ), for all t ∈ (2, 2∗).

Note that ∫
RN

k(x, un)un dx ≤
∫
RN

f(un)un dx,

hence

on(1) = (J ′µ(un), un) ≥ ‖un‖2µ −
∫
RN

h(un)un dx−
∫
RN
|un|2

∗
dx.

By (f1)–(f3), there exists s ∈ (2, 2∗) such that for all ε > 0, there exists C(ε) > 0

satisfying |h(un)un| ≤ ε|un|2 + ε|un|2
∗

+ C(ε)|un|s. Together with (2.5), we

obtain

(2.6)

∫
RN

h(un)un dx = on(1).

Thus,

(2.7) on(1) ≥ ‖un‖2µ −
∫
RN
|un|2

∗
dx.
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On the other hand,

cµ + on(1) = Jµ(un)− 1

2∗
(J ′µ(un), un)

=
1

N
‖un‖2µ +

∫
RN

[
1

2∗
k(x, un)un −K(x, un)

]
dx.

Observe that∫
RN

[
1

2∗
k(x, un)un −K(x, un)

]
dx

=

∫
|x|≤R

[
1

2∗
f(un)un − F (un)

]
dx+

∫
|x|>R

χ(x)

[
1

2∗
f(un)un − F (un)

]
dx

+

∫
|x|>R

(1− χ(x))

[
1

2∗
f̃(un)un − F̃ (un)

]
dx

=

∫
|x|≤R

[
1

2∗
h(un)un −H(un)

]
dx+

∫
|x|>R

χ(x)

[
1

2∗
h(un)un −H(un)

]
dx

+

∫
|x|>R

(1− χ(x))

[
1

2∗
f̃(un)un − F̃ (un)

]
dx.

Similarly to (2.6), we also have
∫
RN H(un) dx = on(1). Then∫

RN

[
1

2∗
k(x, un)un −K(x, un)

]
dx

=

∫
|x|>R

(1− χ(x))

[
1

2∗
f̃(un)un − F̃ (un)

]
dx+ on(1).

Therefore,

cµ + on(1) =
1

N
‖un‖2µ +

∫
|x|>R

(1− χ(x))

[
1

2∗
f̃(un)un − F̃ (un)

]
dx(2.8)

≥ 1

N
‖un‖2µ −

1

κN

∫
RN

(1 + µg(x))u2
n dx

≥ 1

N

∫
RN
|∇un|2 dx+

1

2N

∫
RN

(1 + µg(x))u2
n dx.

Assume that

lim
n→∞

[ ∫
RN
|∇un|2 dx+

1

2

∫
RN

(1 + µg(x))u2
n dx

]
= l.

Then by (2.7), we have

lim
n→∞

∫
RN
|un|2

∗
dx ≥ l.

Moreover, it follows from cµ > 0 that l > 0. Thus, by

S ≤

∫
RN
|∇un|2 dx(∫

RN
|un|2

∗
dx

)2/2∗
,
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we get l ≥ SN/2. Together with (2.8), there holds cµ ≥ SN/2/N . On the other

hand, for N ≥ 3, we have

cµ <
θ − 2

4θ

[
N − 2

8(N − 1)

](N−2)/2

SN/2 <
2

8N/2
SN/2 <

1

N
SN/2,

a contradiction. Therefore, there is a sequence {zn} ⊂ RN and β > 0 such that∫
B1(zn)

u2
n dx ≥ β.

Now we prove that {zn} is bounded in RN . For L > R+1, define ΨL ∈ C∞0 (RN )

such that ΨL(x) = 0 for |x| ≤ L, ΨL(x) = 1 for |x| ≥ 2L and 0 ≤ ΨL(x) ≤ 1.

Moreover, |∇ΨL| ≤ C/L. Note that

on(1) =

∫
RN

[
∇un∇(ΨLun) + (1 + µg(x))u2

nΨL

]
dx−

∫
RN

k(x, un)unΨL dx,

hence we have∫
RN

[
|∇un|2ΨL + (1 + µg(x))u2

nΨL +∇un∇ΨLun
]
dx

= on(1) +

∫
RN

f̃(un)unΨL dx

≤ on(1) +
1

κ

∫
RN

(1 + µg(x))u2
nΨL dx ≤ on(1) +

1

2

∫
RN

(1 + µg(x))u2
nΨL dx.

Then we derive that

1

2

∫
RN

u2
nΨL dx ≤ on(1)−

∫
RN
∇un∇ΨLun dx

≤ on(1) +
C

L

(∫
RN
|∇un|2 dx

)1/2(∫
RN

u2
n dx

)1/2

.

Choosing L > 0 sufficiently large, we obtain that
∫
|x|≥2L

u2
n dx ≤ β/2. Together

with
∫
B1(zn)

u2
n dx ≥ β, we know that the sequence {zn} is bounded in RN . �

Now we can prove the existence of critical points of the functional Jµ on E.

Lemma 2.3. For µ > 0, there is a positive critical point uµ of Jµ satisfying

‖uµ‖22∗ <
[

(N − 2)S

8(N − 1)

](N−2)/2

.

Moreover,

Jµ(uµ) <
θ − 2

4θ

[
N − 2

8(N − 1)

](N−2)/2

SN/2.

Proof. By Lemmas 2.1 and 2.2, there is a sequence {un} ⊂ E such that

un ⇀ uµ 6= 0 weakly in E,

Jµ(un)→ cµ <
θ − 2

4θ

[
N − 2

8(N − 1)

](N−2)/2

SN/2 and J ′µ(un)→ 0.
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Now we prove that J ′µ(uµ) = 0. In fact, we only need to prove that (J ′µ(uµ), ϕ) =

0 for all ϕ ∈ C∞c (RN ).

From Theorem A.4 in [37], we know if 1 ≤ p, q, r, s <∞, k ∈ C(Ω× R) and

|k(x, u)| ≤ C(|u|p/r + |u|q/s), then the operator

A : Lp(Ω) ∩ Lq(Ω)→ Lr(Ω) + Ls(Ω), u 7→ k(x, u)

is continuous. Here the norm of Lp(Ω) ∩ Lq(Ω) is defined by

|u|p∧q := ‖u‖Lp(Ω) + ‖u‖Lq(Ω)

and the norm of Lr(Ω) + Ls(Ω) is defined by

|u|r∨s := inf
{
‖v‖Lr(Ω) + ‖w‖Ls(Ω); v ∈ Lr(Ω), w ∈ Ls(Ω), u = v + w

}
.

We may assume that un ≥ 0 in H. From (2.3), we know that

|k(x, un)| ≤ |f(un)| ≤ C(|un|2/2 + |un|t/s)

with 2∗ − 1 < t < 2∗ and s = t/2∗ − 1. Note that the function ϕ ∈ C∞c (RN )

has a compact support Ωϕ. Due to un ⇀ uµ weakly in E, we have un → uµ in

L2(Ωϕ)∩Lt(Ωϕ). Then by Theorem A.4 in [37], we have k(x, un)→ k(x, uµ) in

L2(Ωϕ) + Ls(Ωϕ). Thus, for all ϕ ∈ C∞c (RN ),∫
RN
|k(x, un)− k(x, uµ)||ϕ| dx =

∫
Ωϕ

|k(x, un)− k(x, uµ)||ϕ| dx

≤ |k(x, un)− k(x, uµ)|2∨s |ϕ|2∧s′ ,

where 1/s+ 1/s′ = 1. Let n→∞, there holds

lim
n→∞

∫
RN
|k(x, un)− k(x, uµ)||ϕ| dx = 0.

Together with

lim
n→∞

∫
RN

[∇un∇ϕ+ (1 + µg(x))unϕ] dx =

∫
RN

[∇uµ∇ϕ+ (1 + µg(x))uµϕ] dx,

we have J ′µ(uµ) = 0. A standard argument shows that uµ is positive.

Since ‖un‖µ is bounded, by (2.4), we have

‖uµ‖2µ ≤
4θ

θ − 2
cµ <

[
N − 2

8(N − 1)

](N−2)/2

SN/2.

The Sobolev embedding theorem implies that

‖uµ‖22∗ <
[

(N − 2)S

8(N − 1)
)

](N−2)/2

.

On the other hand,

cµ + on(1) = Jµ(un)− 1

2
(J ′µ(un), un) =

∫
RN

[
1

2
k(x, un)un −K(x, un)

]
dx.
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Observe that k(x, un)un/2 − K(x, un) ≥ 0. Then by the Fatou lemma, there

holds

Jµ(uµ) ≤ cµ <
θ − 2

4θ

[
N − 2

8(N − 1)

](N−2)/2

SN/2. �

The following lemma is focused on a property of the sequence {uµ}.

Lemma 2.4. For p0 ∈ (2, 2∗),

‖uµ‖∞ ≤ C̃(N,S, p0)
(
1 + ‖uµ‖(2

∗−2)/2
2∗ + ‖uµ‖(p0−2)/2

2∗

)δ20/(1−δ0)‖uµ‖2∗ ,

where C̃(N,S, p0) is a positive constant and δ0 := 22∗/((2∗)2 − 22∗ + 4).

Proof. For simplicity, we denote uµ = u. The basic idea is the Moser

iterations. By Lemma 2.3,

(2.9)

∫
RN

(∇u∇ϕ+ (1 + µg(x))uϕ) dx =

∫
RN

k(x, u)ϕdx, for all ϕ ∈ E.

Define ul = min{u, l}. Let zl = u
2(β−1)
l u with β > 1. Note that zl ∈ E if u ∈ E.

For 0 < r2 < r1 and y ∈ RN , define η ∈ C∞0 (Br1(y)) such that η(x) = 1 for

x ∈ Br2(y), 0 ≤ η(x) ≤ 1 and |∇η| ≤ 2/(r1 − r2). Set ϕ = η2zl in (2.9). Then∫
RN

[
∇u∇

(
u

2(β−1)
l u

)
η2 +∇u∇η2ηu

2(β−1)
l u+ (1 + µg(x))u2u

2(β−1)
l η2

]
dx

=

∫
RN

k(x, u)uu
2(β−1)
l η2 dx.

Conditions (f1)–(f3) imply that for all ε > 0, there exists C(ε) > 0 such that

k(x, u)u ≤ f(u)u ≤ ε|u|2 + (1 + ε)|u|2∗ + C(ε)|u|p0 . Choose ε0 ∈ (0, 1/2). Then

(2.10)∫
RN

[
|∇u|2u2(β−1)

l η2 + 2(β − 1)|∇ul|2u2(β−1)
l η2 +∇u∇η2ηu

2(β−1)
l u

]
dx

≤ (1 + ε0)

∫
RN
|u|2

∗
u

2(β−1)
l η2 dx+ C(ε0)

∫
RN
|u|p0u2(β−1)

l η2 dx.

By the Young inequality,∣∣∣∣ ∫
RN
∇u∇ηηu2(β−1)

l u dx

∣∣∣∣ ≤ 1

4

∫
RN
|∇u|2u2(β−1)

l η2 dx+4

∫
RN
|∇η|2|u|2u2(β−1)

l dx.

Together with (2.10), there holds∫
RN

[
|∇u|2u2(β−1)

l η2 + 2(β − 1)|∇ul|2u2(β−1)
l η2

]
dx

≤ 16

∫
RN
|∇η|2|u|2u2(β−1)

l dx+ 2(1 + ε0)

∫
RN
|u|2

∗
u

2(β−1)
l η2 dx

+ 2C(ε0)

∫
RN
|u|p0u2(β−1)

l η2 dx.
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By the Sobolev embedding theorem,

S‖ηuuβ−1
l ‖22∗ ≤

∫
RN

∣∣∇(ηuuβ−1
l

)∣∣2 dx(2.11)

≤ 2

∫
RN
|∇η|2|u|2u2(β−1)

l dx+ 2

∫
RN

η2t|∇(uuβ−1
l )|2 dx

≤ (β + 1)

∫
RN

[
|∇u|2u2(β−1)

l η2 + 2(β − 1)|∇ul|2u2(β−1)
l η2

]
dx

+ 2

∫
RN
|∇η|2|u|2u2(β−1)

l dx

≤ 17(β + 1)

∫
RN
|∇η|2|u|2u2(β−1)

l dx

+ 2(β + 1)C(ε0)

∫
RN
|u|p0u2(β−1)

l η2 dx

+ 2(β + 1)(1 + ε0)

∫
RN
|u|2

∗
u

2(β−1)
l η2 dx.

Lemma 2.3 implies that (2∗ + 2)‖u‖2
∗−2

2∗ < S/2. Since ε0 ∈ (0, 1/2), we have

(2∗ + 2)(1 + ε0)‖u‖2
∗−2

2∗ < 3S/4. We also have∫
RN
|u|2

∗
u

2(β−1)
l η2 dx ≤ ‖u‖2

∗−2
2∗ ‖uuβ−1

l η‖22∗ .

Set β = β0 = 2∗/2 in (2.11). Then

S
∥∥ηuuβ0−1

l

∥∥2

2∗
≤ 68(β0 + 1)

∫
RN
|∇η|2|u|2u2(β0−1)

l dx(2.12)

+ 8(β0 + 1)C(ε0)

∫
RN
|u|p0u2(β0−1)

l η2 dx

≤ 136β0

∫
RN
|∇η|2|u|2u2(β0−1)

l dx

+ 16β0C(ε0)
∥∥ηuuβ0−1

l

∥∥2

2∗
‖u‖p0−2

2∗ |Br1(y)|(2
∗−p0)/2∗ .

Note that we can find r1 ∈ (0, 1) such that

|Br1(y)|

≤ min

{
1, S2∗/(2∗−p0)(32β0C(ε0))−2∗/(2∗−p0)

[
S

2(2∗+2)

]−N(p0−2)/(2(2∗−p0))}
.

Recall that (2∗ + 2)‖u‖2
∗−2

2∗ < S/2, so we have

|Br1(y)| ≤ S2∗/(2∗−p0)(32β0C(ε0))−2∗/(2∗−p0)‖u‖−2∗(p0−2)/(2∗−p0)
2∗ .
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Together with (2.12), there holds∥∥uuβ0−1
l

∥∥2

L2∗ (Br2 (y))
≤
∥∥uuβ0−1

l η
∥∥2

2∗

≤ 272

S
β0

∫
RN
|∇η|2|u|2u2(β0−1)

l dx ≤ 272

S
β0

(
2

r1 − r2

)2∥∥uuβ0−1
l

∥∥2

L2(Br1 (y))
.

Let l→∞. We have

(2.13) ‖u‖Lβ02∗ (Br2 (y)) ≤
(

C0

r1 − r2

)1/β0

‖u‖L2∗ (Br1 (y)),

where C0 = 2
√

272β0/S. For i ≥ 2, let ri = (2 + 2−i)r1/4. Define ηi ∈
C∞0 (Bri(y)) such that ηi(x) = 1 for x ∈ Bri+1

(y), 0 ≤ ηi(x) ≤ 1 and |∇ηi| ≤
2/(ri − ri+1). Let βi = δ−i0 , where δ0 = 22∗/((2∗)2 − 22∗ + 4). Then βi > 1.

Similarly to (2.11), we have

S
∥∥ηiuuβi−1

l

∥∥2

2∗
≤ C1(βi + 1)

∫
RN
|∇ηi|2|u|2u2(βi−1)

l dx

+ C1(βi + 1)

∫
RN
|u|p0u2(βi−1)

l η2
i dx+ C1(βi + 1)

∫
RN
|u|2

∗
u

2(βi−1)
l η2

i dx,

where C1 = max{17, 2C(ε0)}. Then, due to |Bri(y)| < 1 and (2.13),

S
∥∥uuβi−1

l

∥∥2

L2∗ (Bri+1
(y))
≤ C1(βi + 1)

(
2

ri − ri+1

)2∥∥uuβi−1
l

∥∥2

L2∗δ0 (Bri (y))

+ C1(βi + 1)
[
‖u‖2

∗−2
L2∗β0 (Bri (y))

+ ‖u‖p0−2

L2∗β0 (Bri (y))

]∥∥uuβi−1
l

∥∥2

L2∗δ0 (Bri (y))

≤ 2C1β
2
i

(
2

ri − ri+1

)2∥∥uuβi−1
l

∥∥2

L2∗δ0 (Bri (y))

+ 2C1β
2
i

∥∥uuβi−1
l

∥∥2

L2∗δ0 (Bri (y))

(
C0

r1 − r2

)(2∗−2)/β0

‖u‖2
∗−2
L2∗ (Br1 (y))

+ 2C1β
2
i

∥∥uuβi−1
l

∥∥2

L2∗δ0 (Bri (y))

(
C0

r1 − r2

)(p0−2)/β0

‖u‖p0−2

L2∗ (Br1 (y))
.

Due to 1/(ri − ri+1) = 4 · 2i+1/r1 and (2∗ − 2)/β0, (p0 − 2)/β0 < 2, we

can find C2 > 0 such that (C0/(r1 − r2))(2∗−2)/β0 , (C0/(r1 − r2))(p0−2)/β0 ≤
(C2/(ri − ri+1))2. Thus,

S
∥∥uuβi−1

l

∥∥2

L2∗ (Bri+1
(y))
≤ 8C1β

2
i

(ri − ri+1)2

∥∥uuβi−1
l

∥∥2

L2∗δ0 (Bri (y))

+
2C1C

2
2β

2
i

(ri − ri+1)2

(
‖u‖2

∗−2
L2∗ (Br1 (y))

+ ‖u‖p0−2

L2∗ (Br1 (y))

)∥∥uuβi−1
l

∥∥2

L2∗δ0 (Bri (y))

≤
[C3βi

(
1 + ‖u‖(2

∗−2)/2

L2∗ (Br1 (y))
+ ‖u‖(p0−2)/2

L2∗ (Br1 (y))

)
ri − ri+1

]2∥∥uuβi−1
l

∥∥2

L2∗δ0 (Bri (y))
,
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where C3 = C3(N,S, p0) in view of the definition of C0, C1 and C2. Let l→∞,

we have

(2.14) ‖u‖L2∗βi (Bri+1
(y))

≤
[
Cβi

(
1 + ‖u‖(2

∗−2)/2
2∗ + ‖u‖(p0−2)/2

2∗

)
ri − ri+1

]1/βi

‖u‖
L2∗βi−1 (Bri (y))

,

where C = C3/
√
S. Then, by (2.14),

‖u‖L2∗βi (Bri+1
(y))

≤
i∏

j=2

[
Cβj

(
1 + ‖u‖(2

∗−2)/2
2∗ + ‖u‖(p0−2)/2

2∗

)
rj − rj+1

]1/βj

‖u‖L2∗β1 (Br2 (y))

=

i∏
j=2

[
8C
(
1 + ‖u‖(2

∗−2)/2
2∗ + ‖u‖(p0−2)/2

2∗

)
r1

(
2

δ0

)j]δj0
‖u‖L2∗β1 (Br2 (y))

=

(
2

δ0

)[2δ20/(1−δ0)+δ30(1−δi−2
0 )/(1−δ0)2−iδi+1

0 /(1−δ0)]

‖u‖L2∗β0−2∗+2(Br2 (y))

×
[

8C
(
1 + ‖u‖(2

∗−2)/2
2∗ + ‖u‖(p0−2)/2

2∗

)
r1

]δ20(1−δi−1
0 )/(1−δ0)

.

Let i→∞. We have

‖u‖L∞(Br1/2(y)) ≤
(

2

δ0

)δ20(2−δ0)/(1−δ0)2

×
[

8C
(
1 + ‖u‖(2

∗−2)/2
2∗ + ‖u‖(p0−2)/2

2∗

)
r1

]δ20/(1−δ0)

‖u‖L2∗β0 (Br2 (y))

≤
(

2

δ0

)δ20(2−δ0)/(1−δ0)2(
16C0

7r1

)1/β0

×
[

8C
(
1 + ‖u‖(2

∗−2)/2
2∗ + ‖u‖(p0−2)/2

2∗

)
r1

]δ20/(1−δ0)

‖u‖2∗

=C(N,S, p0)
(
1 + ‖u‖(2

∗−2)/2
2∗ + ‖u‖(p0−2)/2

2∗

)δ20/(1−δ0)‖u‖2∗ ,

in view of 2∗β0−2∗+2 < 2∗β0, |Br2(y)| ≤ 1 and (2.13). Now Lemma 2.4 follows

easily. �

3. Proofs of Theorems 1.1–1.3

Now we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemma 2.3, there exists uµ ∈ E, uµ > 0, such

that

J ′µ(uµ) = 0 and Jµ(uµ) <
θ − 2

4θ

[
N − 2

8(N − 1)

](N−2)/2

SN/2.
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Moreover,

‖uµ‖2∗ <
[

(N − 2)S

8(N − 1)

](N−2)/4

.

Then, by Lemma 2.4,

(3.1) ‖uµ‖∞ ≤ C̃(N,S, p0)
(
1 + ‖uµ‖(2

∗−2)/2
2∗ + ‖uµ‖(p0−2)/2

2∗

)δ20/(1−δ0)‖uµ‖2∗

≤ C̃0(N,S, p0) := C̃0.

From (2.3) and (3.1), we can find µ0 > 0 such that for µ > µ0, f(uµ)/uµ ≤
(1 + µg(x))/κ for all |x| ≥ R, from which we have k(x, uµ) = f(uµ). Then

I ′µ(uµ) = 0 and Iµ(uµ) = Jµ(uµ) <
θ − 2

4θ

[
N − 2

8(N − 1)

](N−2)/2

SN/2.

Let mµ := inf {Iµ(v) : v ∈ E, v > 0, I ′µ(v) = 0}. Since I ′µ(uµ) = 0, we have

mµ ≤ Iµ(uµ) <
θ − 2

4θ

[
N − 2

8(N − 1)

](N−2)/2

SN/2.

By the definition of mµ, there exists {vn} ⊂ E such that vn > 0, Iµ(vn) → mµ

and I ′µ(vn) = 0. Note that for n large enough,

Iµ(vn) <
θ − 2

4θ

[
N − 2

8(N − 1)

](N−2)/2

SN/2.

Without loss of generality, we assume that

Iµ(vn) <
θ − 2

4θ

[
N − 2

8(N − 1)

](N−2)/2

SN/2

for all n. Then by (f4),

θ − 2

4θ

[
N − 2

8(N − 1)

](N−2)/2

SN/2 > Iµ(vn)− 1

θ
(I ′µ(vn), vn) ≥

(
1

2
− 1

θ

)
‖vn‖2µ,

which implies that

‖vn‖2µ ≤
1

2

[
N − 2

8(N − 1)

](N−2)/2

SN/2.

Applying the Sobolev embedding theorem, we have

‖vn‖22∗ <
[

(N − 2)S

8(N − 1)

](N−2)/2

.

Due to I ′µ(vn) = 0, there holds∫
RN

(∇vn∇ϕ+ (1 + µg(x))vnϕ) dx =

∫
RN

f(vn)ϕdx, for all ϕ ∈ E.

Following the same lines as in the proof of Lemma 2.4, we get

‖vn‖∞ ≤ C̃(N,S, p0)
(
1 + ‖vn‖(2

∗−2)/2
2∗ + ‖vn‖(p0−2)/2

2∗

)δ20/(1−δ0)‖vn‖2∗ ≤ C̃0,
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where C̃(N,S, p0) is as in Lemma 2.4. Then for µ > µ0, we obtain f(vn)/vn ≤
(1 + µg(x))/κ for all |x| ≥ R, from which we have f(vn) = k(x, vn). Thus,

Iµ(vn) = Jµ(vn) and I ′µ(vn) = J ′µ(vn). From (2.3) and (I ′µ(vn), vn) = 0, we have

‖vn‖2µ ≤ ε
∫
RN
|vn|2 dx+ C(ε)

∫
RN
|vn|2

∗
dx.

Set ε = 1/2. The Sobolev embedding theorem implies that

1

2
‖vn‖2µ ≤ C

(
1

2

)∫
RN
|vn|2

∗
dx ≤ C‖vn‖2

∗

µ ,

from which we have

(3.2) ‖vn‖µ ≥
1

(2C)1/(2∗−2)
:= ρ > 0.

Now we claim that there is a bounded sequence {zn} ⊂ RN and β > 0 such

that
∫
B1(zn)

v2
n dx ≥ β. In fact, if lim

n→∞
sup
z∈RN

∫
B1(z)

v2
n dx = 0, then similar to

(2.7)–(2.8), we can prove that

(3.3) on(1) ≥ ‖vn‖2µ −
∫
RN
‖vn‖2

∗
dx

and

(3.4) mµ + on(1) ≥ 1

N

∫
RN
|∇un|2 dx+

1

2N

∫
RN

(1 + µg(x))u2
n dx.

By (3.3), we may assume that

lim
n→∞

[ ∫
RN
|∇vn|2 dx+

1

2

∫
RN

(1+µg(x))v2
n dx

]
= l and lim

n→∞

∫
RN
|vn|2

∗
dx ≥ l.

From (3.2), we know l > 0. The Sobolev embedding theorem implies that

S ≤
‖vn‖2µ(∫

RN
|vn|2

∗
dx

)2/2∗
,

from which we get l ≥ SN/2. Together with (3.4), there holds mµ ≥ SN/2/N ,

a contradiction with

mµ <
θ − 2

4θ

[
N − 2

8(N − 1)

](N−2)/2

SN/2 <
2

8N/2
SN/2 <

1

N
SN/2

for N ≥ 3. Therefore, there is a sequence {zn} ⊂ RN and β > 0 such that∫
B1(zn)

v2
n dx ≥ β. The prove of the sequence {zn} is bounded is just the same

as in the proof of Lemma 2.2, we omit it here. Thus, we have vn ⇀ vµ 6= 0

weakly in E,

Iµ(vn) = Jµ(vn)→ mµ <
θ − 2

4θ

[
N − 2

8(N − 1)

](N−2)/2

SN/2
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and I ′µ(vn) = J ′µ(vn) = 0. Following the same lines as in the proof of Lemma 2.3,

we can derive that vn ⇀ vµ > 0 weakly in E, I ′µ(vµ) = 0 and mµ ≥ Iµ(vµ). Since

I ′µ(vµ) = 0, by the definition of mµ, we have Iµ(vµ) ≥ mµ. Then Iµ(vµ) = mµ.

Together with vµ > 0 and I ′µ(vµ) = 0, we know Theorem 1.1 holds. �

In Theorem 1.3, we study the behavior of uµ as µ→∞.

Proof of Theorem 1.3. From the proof of Theorem 1.1, we know that

uµn satisfies I ′µn(uµn) = 0,

I(uµn) <
θ − 2

4θ

[
N − 2

8(N − 1)

](N−2)/2

SN/2,

‖uµn‖2µn ≤
1

2

[
N − 2

8(N − 1)

](N−2)/2

SN/2

and ‖uµn‖∞≤ C̃0, where C̃0 is as in Theorem 1.1. For simplicity, denote uµn =uµ.

Hence uµ ⇀ u weakly in H1(RN ) as µ→ +∞. We also have

µ

∫
RN

g(x)u2
µ dx ≤ ‖uµ‖2µ ≤

1

2

[
N − 2

8(N − 1)

](N−2)/2

SN/2.

By the Fatou lemma, we get
∫
RN g(x)u2 dx = 0. Then it follows from (G1)–(G2)

that u(x) = 0 for almost every x ∈ RN \ Ω0. We claim that

(3.5) lim
µ→+∞

∫
RN

f(uµ)uµ dx =

∫
RN

f(u)u dx.

Note that g(x) ≥ g0 for |x| ≥ R. For L > R, define ΦL ∈ C∞0 (RN ) such that

ΦL(x) = 0 for |x| ≤ L, ΦL(x) = 1 for |x| ≥ 2L and 0 ≤ ΦL(x) ≤ 1. Moreover,

|∇ΦL| ≤ C/L. Due to I ′µ(uµ) = 0, we have

(3.6)

∫
RN

[
∇uµ∇(ΦLuµ) + (1 + µg(x))ΦLu

2
µ

]
dx =

∫
RN

ΦLf(uµ)uµ dx.

Observe that∫
RN

[
(1 + µg(x))ΦLu

2
µ − ΦLf(uµ)uµ

]
dx

≥
∫
RN

[
(1 + µg0)ΦLu

2
µ − ΦLf(uµ)uµ

]
dx.

Then, due to ‖uµ‖∞ ≤ C̃0 and (2.3), we can find µ > 0 such that for µ > µ,

(3.7)

∫
RN

[
(1 + µg(x))ΦLu

2
µ − ΦLf(uµ)uµ

]
dx ≥

∫
RN

ΦLu
2
µ dx.

From (3.6)–(3.7),

(3.8)

∫
|x|≥2L

(|∇uµ|2 + u2
µ) dx ≤

∫
RN
|∇ΦL||∇uµ||uµ| dx ≤

C

L
.
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On the other hand, in view of ‖uµ‖∞ ≤ C̃0, by the Lebesgue Dominated Con-

vergence Theorem, we have

lim
µ→+∞

∫
|x|≤2L

|f(uµ)uµ − f(u)u| dx = 0.

Then

(3.9) lim
µ→+∞

∫
RN
|f(uµ)uµ − f(u)u| dx = lim

µ→+∞

∫
|x|≥2L

|f(uµ)uµ − f(u)u| dx

≤
∫
|x|≥2L

|f(u)u| dx+ lim
µ→+∞

∫
|x|≥2L

|f(uµ)uµ| dx.

By (2.3) and (3.8), we get
∫
|x|≥2L

|f(uµ)uµ| dx ≤ C/L. Together with (3.9), we

can derive that (3.5) holds. Now we claim that uµ → u in H1(RN ) as µ→ +∞.

In fact, due to I ′µ(uµ) = 0, we have

(3.10)

∫
RN

(∇uµ∇u+ uµu) dx =

∫
RN

f(uµ)u dx.

Let µ→ +∞, we get

(3.11)

∫
RN

(|∇u|2 + u2) dx =

∫
RN

f(u)u dx.

Due to I ′µ(uµ) = 0, we also have∫
RN

(|∇uµ|2 + u2
µ) dx ≤

∫
RN

[
|∇uµ|2 + (1 + µg(x))u2

µ

]
dx =

∫
RN

f(uµ)uµ dx.

Then, by the Fatou lemma, (3.5) and (3.11), we get∫
RN

(|∇u|2 + u2) dx ≤ lim
µ→+∞

∫
RN

(|∇uµ|2 + u2
µ) dx

≤
∫
RN

f(u)u dx =

∫
RN

(|∇u|2 + u2) dx.

The Brezis–Lieb lemma in [37] implies that uµ → u in H1(RN ) as µ → +∞.

Moreover, if ∂Ω0 is smooth, then due to u(x) = 0 for almost every x ∈ RN \Ω0,

we have u ∈ H1
0 (Ω0). We claim that there exists c0 > 0 independent of µ such

that
∫
RN (|∇uµ|2 + u2

µ) dx ≥ c0. Indeed, by I ′µ(uµ) = 0, we have that

0 =

∫
RN

[
|∇uµ|2 + (1 + µg(x))u2

µ

]
dx−

∫
RN

f(uµ)uµ dx.

Then, by (2.3), there is M > 0 independent of µ > 0 such that

0 ≥ 1

2

∫
RN

(|∇uµ|2 + u2
µ) dx−M

[
1

S

∫
RN

(|∇uµ|2 + u2
µ) dx

]2∗/2

.

Note that if [ ∫
RN

(|∇uµ|2 + u2
µ) dx

](2∗−2)/2

<
S2∗/2

4M
,
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then

0 ≥ 1

4

∫
RN

(|∇uµ|2 + u2
µ) dx,

which implies that uµ = 0, a contradiction. Thus, we obtain that[ ∫
RN

(|∇uµ|2 + u2
µ) dx

](2∗−2)/2

≥ S2∗/2

4M

and the claim is proved. Define the functional L on H1
0 (Ω0) by

L(u) =
1

2

∫
Ω0

(|∇u|2 + u2) dx−
∫

Ω0

F (u) dx,

where u ∈ H1
0 (Ω0). Recall that uµ → u in H1(RN ) as µ → +∞. Then by∫

RN (|∇uµ|2 +u2
µ) dx ≥ c0, we have u 6= 0. On the other hand, due to I ′µ(uµ) = 0,

we have L′(u) = 0. A standard argument shows that u is positive. �

4. Proof of Theorem 1.4

In order to prove Theorem 1.4, we need the following abstract result estab-

lished in [22].

Theorem 4.1. Let X be a Banach space equipped with a norm ‖ · ‖X and let

J ⊂ R+ be an interval. We consider a family (Hζ)ζ∈J of C1-functionals on X

having the form

Hζ(u) = A(u)− ζB(u), for all ζ ∈ J,

where B(u) ≥ 0, for all u ∈ X, and either A(u) → +∞ or B(u) → +∞ as

‖u‖X →∞. We assume there are two points v1, v2 in X such that

cζ = inf
γ∈Γ

max
t∈[0,1]

Hζ(γ(t)) > max{Hζ(v1), Hζ(v2)}, for all ζ ∈ J,

where Γ := {γ ∈ C([0, 1], X) : γ(0) = v1, γ(1) = v2}. Then, for almost every

ζ ∈ J , there is a sequence {vn} ⊂ X such that

(a) {vn} is bounded,

(b) Hζ(vn)→ cζ ,

(c) H ′ζ(vn)→ 0 in X−1.

Moreover, the map ζ → cζ is continuous from the left.

Let X := {u ∈ H1(RN ) : u is radial}. For the simplicity, denote ‖·‖H1 = ‖·‖.
For λ > ((q − 2)/(2q))(q−2)/2(NS−N/2)(q−2)/2C

q/2
q and ζ ∈ [1/2, 1], define a

family of functionals Hλ
ζ on X by

Hλ
ζ (u) =

1

2
‖u‖2 − ζ

∫
RN

F (u) dx.

The principle of symmetric criticality implies that a critical point of Hλ
ζ on X is

a critical point of Hλ
ζ on H1(RN ). Denote Hλ

1 (u) = Hλ(u).
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Lemma 4.2. For λ > ((q − 2)/(2q))(q−2)/2(NS−N/2)(q−2)/2C
q/2
q , there is

γ0 ∈ (0, 1) such that for almost every ζ ∈ [1 − γ0, 1], there is a sequence

{uλn} ⊂ X satisfying {uλn} is bounded, Hλ
ζ (uλn)→ cλζ and (Hλ

ζ )′(uλn)→ 0. More-

over, cλζ ∈ (0, SN/2/(Nζ(N−2)/2)) and the map ζ → cλζ is continuous from the

left.

Proof. For λ > ((q − 2)/2q)(q−2)/2(NS−N/2)(q−2)/2C
q/2
q , choose γ0 ∈ (0, 1)

such that

(4.1) max
ζ∈[1−γ0,1]

ζ((N−2)/2−2/(q−2)) <
2q

q − 2

SN/2

N
C−q/(q−2)
q λ2/(q−2).

Set J = [1−γ0, 1], A(u) = ‖u‖2/2 and B(u) =
∫
RN F (x) dx in Theorem 4.1. It is

easy to see that B(u) ≥ 0 for all u ∈ X and A(u)→ +∞ as ‖u‖ → ∞. Similarly

to the proof of Lemma 2.1, we can prove that for almost every ζ ∈ [1−γ0, 1], there

is a bounded sequence {uλn} ⊂ X satisfying Hλ
ζ (uλn) → cλζ and (Hλ

ζ )′(uλn) → 0.

Moreover, the map ζ 7→ cλζ is continuous from the left. The definition of cλζ
implies that cλζ ≤ sup

t≥0
Hλ
ζ (tφ) with φ ∈ X satisfying

Cq =

∫
RN

(|∇φ|2 + |φ|2) dx(∫
RN
|φ|q dx

)2/q
.

Then by (f5), we have

(4.2) sup
t≥0

Hλ
ζ (tφ) ≤ sup

t≥0

[
1

2
t2
∫
RN

(|∇φ|2 + |φ|2) dx− ζ λ
q
tq
∫
RN
|φ|q dx

]
=

1

ζ2/(q−2)

(
1

2
− 1

q

)
1

λ2/(q−2)
Cq/(q−2)
q .

Together with (4.1), we get cλζ < SN/2(Nζ(N−2)/2). �

Lemma 4.3. For λ > ((q − 2)/(2q))(q−2)/2(NS−N/2)(q−2)/2C
q/2
q and ζ ∈

[1 − γ0, 1], let {uλn} ⊂ X be a sequence obtained in Lemma 4.2. Then uλn → uλζ
in X.

Proof. Without loss of generality, we may assume that uλn ≥ 0 in X. Since

‖uλn‖ is bounded, we have uλn ⇀ uλζ weakly in X. Then (Hλ
ζ )′(uλζ ) = 0. By

(f1)–(f3), we have

lim
|t|→∞

h(t)t

|t|2 + |t|2∗
= 0 and lim

t→0

h(t)t

|t|2 + |t|2∗
= 0.

We also have that
∫
RN (|uλn|2 + |uλn|2

∗
) dx is bounded. Then the compactness

lemma of Strass [9], [33] implies that

(4.3) lim
n→∞

∫
RN
|h(uλn)uλn − h(uλζ )uλζ | dx = 0.
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Similarly to (4.3), there holds

(4.4) lim
n→∞

∫
RN

H(uλn) dx =

∫
RN

H(uλζ ) dx.

Set vλn = uλn − uλζ . Then by (4.4) and the Brezis–Lieb lemma in [37],

cλζ −Hλ
ζ (uλζ ) =

1

2
‖vλn‖2 −

ζ

2∗

∫
RN
|vλn|2

∗
dx+ on(1).(4.5)

On the other hand, by (4.3) and the Brezis–Lieb lemma,

(4.6) on(1) = ((Hλ
ζ )′(uλn), uλn)− ((Hλ

ζ )′(uλζ ), uλζ ) = ‖vλn‖2 − ζ
∫
RN
|vλn|2

∗
dx.

Note that (Hλ
ζ )′(uλζ ) = 0. Similarly to Proposition 1 in [9], we have the Pohožaev

type identity:

(4.7)
N − 2

2N

∫
RN
|∇uλζ |2 dx =

∫
RN

[
ζF (uλζ )− 1

2
|uλζ |2

]
dx.

Then, by (4.7), there holds

Hλ
ζ (uλζ ) =

1

N

∫
RN
|∇uλζ |2 dx ≥ 0,

from which we have cλζ − Hλ
ζ (uλζ ) ≤ cλζ < SN/2/(Nζ(N−2)/2). Assume that

‖vλn‖2 → l ≥ 0. By (4.6), we get that ζ
∫
RN |v

λ
n|2
∗
dx → l. We claim that l = 0.

Otherwise, we have l > 0. The Sobolev embedding theorem implies that

S ≤ ‖vλn‖2(∫
RN
|vλn|2

∗
dx

)2/2∗
,

hence we have l ≥ SN/2/ζ(N−2)/2. Thus, by (4.5), there holds cλζ − Hλ
ζ (uλζ ) =

l/N≥SN/2/(Nζ(N−2)/2), a contradiction with cλζ−Hλ
ζ (uλζ )<SN/2/(Nζ(N−2)/2).

Then we have l = 0, which implies that uλn → uλζ in X. �

Proof of Theorem 1.4. By Lemmas 4.2 and 4.3, for almost every ζ ∈ [1−
γ0, 1], we have Hλ

ζ (uλζ ) = cλζ ∈ (0, SN/2/(Nζ(N−2)/2)) and (Hλ
ζ )′(uλζ ) = 0. The

maximum principle implies that uλζ is positive. Choose ζn ∈ [1− γ0, 1] such that

ζn → 1, (Hλ
ζn

)′(uλζn) = 0 and Hλ
ζn

(uλζn) = cλζn ∈ (0, SN/2/(Nζ
(N−2)/2
n )). Then,

by (4.7), we obtain that cλζn = (1/N)
∫
RN |∇u

λ
ζn
|2 dx is bounded. The Sobolev

embedding theorem implies that
∫
RN |u

λ
ζn
|2∗dx is bounded. From (2.3) and

((Hλ
ζn

)′(uλζn), uλζn) = 0, we can derive that ‖uλζn‖ is bounded. On the other hand,

due to boundedness of ‖uλζn‖, H
λ(uλζn) = Hλ

ζn
(uλζn) + (ζn− 1)

∫
RN F (uλζn) dx and

lim
n→∞

cλζn = cλ1 ∈ (0, SN/2/N), we obtain that lim
n→∞

Hλ(uλζn) = cλ1 ∈ (0, SN/2/N)

and lim
n→∞

(Hλ)′(uλζn) = 0.
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Assume that uλζn ⇀ uλ0 weakly in X. Then (Hλ)′(uλ0 ) = 0. We claim that

uλ0 6= 0. Otherwise, we have uζn ⇀ 0 weakly in X, from which we get uλζn → 0

in Lt(RN ), for all t ∈ (2, 2∗). Then, by (f1)–(f3), we derive that∫
RN

H(uλζn) dx = on(1) and

∫
RN

h(uλζn)uλζn dx = on(1).

Note that lim
n→∞

Hλ(uλζn) = cλ1 and lim
n→∞

(Hλ)′(uλζn) = 0. We have

1

2
‖uλζn‖

2− 1

2∗

∫
RN
|uλζn |

2∗dx = cλ1 +on(1) and ‖uλζn‖
2−
∫
RN
|uλζn |

2∗dx = on(1).

Similarly to the proof of Lemma 4.3, we can derive that uλζn → 0, a contradiction

with cλ1 > 0. Thus, we have uλ0 6= 0. The maximum principle implies that uλ0 is

positive.

Now we claim that cλ1 ≥ Hλ(uλ0 ). In fact, from equations (Hλ
ζn

)′(uλζn) = 0,

(Hλ)′(uλ0 ) = 0 and (4.7), we have

cλζn = Hλ
ζn(uλζn) =

1

N

∫
RN
|∇uλζn |

2 dx and Hλ(uλ0 ) =
1

N

∫
RN
|∇uλ0 |2 dx.

Then by the Fatou lemma, we derive that

cλ1 = lim
n→∞

cλζn ≥
1

N

∫
RN
|∇uλ0 |2 dx = Hλ(uλ0 ).

Let mλ := inf{Hλ(u) : u ∈ H1(RN ), u > 0, (Hλ)′(u) = 0 in H−1(RN )}.
The principle of symmetric criticality implies that (Hλ)′(uλ0 ) = 0 in H−1(RN ).

Then we have mλ ≤ Hλ(uλ0 ) ≤ cλ1 < SN/2/N . By the definition of mλ, there

exists {uλn} ⊂ H1(RN ) such that uλn > 0, Hλ(uλn) → mλ and (Hλ)′(uλn) = 0.

Similarly to the proof that ‖uλζn‖ is bounded, we can derive that ‖uλn‖ is bounded.

On the other hand, due to (2.3) and ((Hλ)′(uλn), uλn) = 0, we have for all ε > 0

that there exists C(ε) > 0 such that

‖uλn‖2 ≤ ε
∫
RN
|uλn|2 dx+ C(ε)

∫
RN
|uλn|2

∗
dx.

Choose ε > 0 small enough. From the Sobolev embedding theorem, there holds∫
RN
|∇uλn|2 dx ≤ C

(∫
RN
|∇uλn|2 dx

)2∗/2

.

Thus, there exists % > 0 independent of n such that∫
RN
|∇uλn|2 dx ≥ %.

Together with (Hλ)′(uλn) = 0 and (4.7), we have

mλ + on(1) =
1

N

∫
RN
|∇uλn|2 dx ≥

1

N
%,

which implies that mλ > 0.
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Now we claim that there exists {yλn} ⊂ RN such that uλn( · + yλn) ⇀ uλ 6= 0

weakly in H1(RN ). If uλn ⇀ uλ 6= 0 weakly in H1(RN ), it is obvious that the

claim is true, so we may assume that uλn ⇀ 0 weakly in H1(RN ). Then either

(4.8) lim
n→∞

sup
y∈RN

∫
B1(y)

|uλn|2 dx = 0

or there exists ν > 0 such that

(4.9) lim
n→∞

sup
y∈RN

∫
B1(y)

|uλn|2 dx ≥ ν > 0.

If (4.8) holds, by the Lions lemma in [37], we get uλn → 0 in Lt(RN ) for all

t ∈ (2, 2∗). Together with Hλ(uλn)→ mλ and ((Hλ)′(uλn), uλn) = 0, there holds

1

2
‖uλn‖2 −

1

2∗

∫
RN
|uλn|2

∗
dx = mλ + on(1) and ‖uλn‖2 −

∫
RN
|uλn|2

∗
dx = on(1).

Similarly to the proof of Lemma 4.2, we can derive that uλn → 0 in H1(RN ),

a contradiction with mλ > 0. Then we have (4.9). Thus, there exists {yλn} ⊂ RN

such that uλn( · +yλn) ⇀ uλ 6= 0 weakly in H1(RN ). Together with Hλ(uλn)→ mλ

and (Hλ)′(uλn) = 0, we know uλ is positive, (Hλ)′(uλ) = 0 and mλ ≥ Hλ(uλ).

Since (Hλ)′(uλ) = 0, we also have mλ ≤ Hλ(uλ) from the definition of mλ. Then

Hλ(uλ) = mλ. Thus, problem (1.1) admits a positive ground state solution uλ

for µ = 0.

On the other hand, we know mλ ≤ cλ1 . The definition of cλ1 implies that

cλ1 ≤ sup
t≥0

Hλ(tφ) with φ ∈ H1(RN ) satisfying

Cq =

∫
RN

(|∇φ|2 + |φ|2) dx(∫
RN
|φ|q dx

)2/q
.

Then, by (4.2), we have lim
λ→∞

mλ ≤ lim
λ→∞

cλ1 ≤ lim
λ→∞

sup
t≥0

Hλ(tφ) = 0. �
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non linéaire dans le plan, C.R. Acad. Sci. Paris Paris Ser. I Math. 297 (1983), 307–310.

[9] H. Berestycki and P.L. Lions, Nonlinear scalar field equations I. Existence of a ground

state, Arch. Ration. Mech. Anal. 82 (1983), 313–346.

[10] J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with

a general nonlinearity, Arch. Ration. Mech. Anal. 185 (2007), 185–200.

[11] G. Cerami, Some nonlinear elliptic problems in unbounded domains, Milan J. Math. 74

(2006), 47–77.

[12] M. Clapp and Y.H. Ding, Positive solutions of a Schrödinger equation with critical

nonlinearity, Z. Angew. Math. Phys. 55 (2004), 592–605.

[13] S. Cingolani and A. Pistoia, Nonexistence of single blow-up solutions for a nonlinear

Schrödinger equation involving critical Sobolev exponent, Z. Angew. Math. Phys. 55

(2004), 201–215.

[14] D.G. de Figueiredo and Y.H. Ding, Solutions of a nonlinear Schrödinger equation,

Discrete Contin. Dynam. Sys. 8 (2002), 563–584.

[15] M. del Pino and P. Felmer, Local mountain pass for semilinear elliptic problems in

unbounded domains, Calc. Var. Partial Differential Equations 4 (1996), 121–137.

[16] , Multi-peak bound states for nonlinear Schrodinger equations, Ann. Inst.
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