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SEMIFLOWS FOR DIFFERENTIAL EQUATIONS

WITH LOCALLY BOUNDED DELAY

ON SOLUTION MANIFOLDS IN THE SPACE C1((−∞, 0],Rn)

Hans-Otto Walther

Abstract. We construct a semiflow of continuously differentiable solution
operators for delay differential equations x′(t) = f(xt) with f defined on an

open subset of the Fréchet space C1 = C1((−∞, 0],Rn). This space has the

advantage that it contains all histories xt = x(t+ · ), t ∈ R, of every possible
entire solution of the delay differential equation, in contrast to a Banach

space of maps (−∞, 0]→ Rn whose norm would impose growth conditions

at −∞. The semiflow lives on the set Xf = {φ ∈ U : φ′(0) = f(φ)} which

is a submanifold of finite codimension in C1. The hypotheses are that the

functional f is continuously differentiable (in the Michal–Bastiani sense)
and that the derivatives have a mild extension property. The result applies

to autonomous differential equations with state-dependent delay which may

be unbounded but which is locally bounded. The case of constant bounded
delay, distributed or not, is included.

1. Introduction

An autonomous delay differential equation has the form

(1.1) x′(t) = f(xt)

with a functional f : U → Rn, where U ⊂ (Rn)I is a set of maps I → Rn defined

on a closed interval I ⊂ R of positive length with max I = 0. A solution on an

interval J ⊂ R is a map x : I+J → Rn so that x|J is differentiable, all segments,
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or histories, xt : I 3 s 7→ x(s + t) ∈ Rn, t ∈ J , belong to U , and equation (1.1)

holds for all t ∈ J , with the right derivative of x at t = minJ in case J has

a minimum (or, with the derivative of x|J on the left-hand side).

In case I = [−r, 0], r > 0, U ⊂ C(I,Rn) open, and f locally Lipschitz

continuous the initial value problem (IVP)

x′(t) = f(xt) for t > 0, x0 = φ ∈ U ⊂ C([−r, 0],Rn)

has a unique maximal solution x = xφ on some interval J = [0, tφ), and the

solution operators φ 7→ xφt , 0 ≤ t < tφ, define a continuous semiflow on U . For f

continuously differentiable the solution operators are continuously differentiable,

see [2] and compare [5]. This by now familiar theory applies to examples like

x′(t) = g(x(t), x(t− r)) or x′(t) =

∫ 0

−r
g(x(t+ s)) dµ(s)

where the delay is invariant, that is, does not depend neither on the argument t

nor on the state φ = xt.

For case I = (−∞, 0] and equations with unbounded invariant delay, results

on well-posed IVPs in suitable Banach spaces of continuous functions (−∞, 0]→
Rn may be found in [8] and in [1].

All of these do not cover equations with a variable, state-dependent delay,

like for example

(1.2) x′(t) = g(x(t− d(xt)))

with a nonconstant delay functional d : C([−r, 0],Rn) ⊃ U → [0, r]. The reason

for this may be seen in the fact that the evaluation map

C([−r, 0],Rn)× [−r, 0] 3 (φ, s) 7→ φ(s) ∈ Rn

is not locally Lipschitz continuous [14]. A theory which applies to equations with

bounded state-dependent delay and yields continuously differentiable solution

operators was developed in [14, 15]. The main result in [14] considers equation

(1.1) for a continuously differentiable functional f : U → Rn, U an open subset

of the Banach space C1([−r, 0],Rn), and establishes a continuous semiflow of

continuously differentiable solution operators for equation (1.1) under a mild

additional smoothness hypothesis, which requires that

[e] every derivative Df(φ), φ ∈ U , extends to a linear map

Def(φ) : C([−r, 0],Rn)→ Rn

and the map

U × C([−r, 0],Rn) 3 (φ, χ) 7→ Def(φ)χ ∈ Rn

is continuous.
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This is a variant of the property of being almost Fréchet differentiable from [9],

designed for the application to differential equations with bounded state-depen-

dent delay. The semiflow from [14] lives on the solution manifold

Xf = {φ ∈ U : φ′(0) = f(φ)}

which is indeed a continuously differentiable submanifold of codimension n in

C1([−r, 0],Rn).

In [16] the result from [14] is used to obtain analogous results for a class

of equations which involve unbounded state-dependent delay, like for example

equation (1.2) with a delay functional d : U → [0,∞) which may be unbounded

but is locally bounded — with respect to a topology on U . In [16] equation (1.1)

is studied for a map f defined on an open subset U of a Banach space B1
a, a > 0,

of continuously differentiable maps (−∞, 0]→ Rn which satisfy

eatφ(t)→ 0 and eatφ′(t)→ 0 as t→ −∞.

The property that such a map f : B1
a ⊃ U → Rn is of locally bounded delay

means that

[lbd ] for every φ ∈ U there are a neighbourhood V ⊂ U and r > 0 such

that for all χ, ψ in V with χ(t) = ψ(t), for all t ∈ [−r, 0], we have

f(χ) = f(ψ).

A further extension in [17] concerns the construction of an evolutionary sys-

tem (or, a process) of continuously differentiable solution operators for a nonau-

tonomous delay differential equation

x′(t) = f(t, xt)

with a continuously differentiable map f : R × B1
a ⊃ V → Rn which satisfies

nonautonomous versions of the properties [e] and [lbd]. Applications include, for

example, Volterra integro-differential equations of the form

x′(t) =

∫ t

0

k(t, s)g(x(s)) ds,

where the time-dependent delay at time t is bounded by t, and equations with

proportional delay like the pantograph equation

x′(t) = ax(λt) + bx(t)

with 0 < λ < 1, where the time-dependent delay is given by d(t) = (1 − λ)t,

because of x(λt) = x(t− d(t)).

The solution operators from [17] are defined on open subsets of continuously

differentiable submanifolds of finite codimension in the Banach space B1
a.

Working in a Banach space like B1
a, a > 0, which is defined by a growth condi-

tion at −∞, has a shortcoming, though. Linearization of the semiflows from [16]
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at equilibria yields autonomous linear differential equations with bounded invari-

ant delay. For almost all solutions λ ∈ C of the characteristic equation associated

to such a linear delay differential equation the nontrivial entire solutions (solu-

tions on J = R, in the former terminology)

x : R 3 t 7→ Re eλtc ∈ Rn, c ∈ Cn,

grow too fast at −∞ for having segments xt in the space B1
a. This means, in

particular, that the spectrum of the generator of the linearized semiflow is no

longer given by the characteristic equation, which results from an Ansatz with

exponential solutions.

A state space which contains all segments xt : (−∞, 0] → Rn, t ∈ R, of

all continuously differentiable solutions of an autonomous differential equation

with locally bounded delay together with all segments of all entire solutions of

its linearizations must not be restricted by growth or integrability conditions

at −∞. This suggests to try the vector space C1 = C1((−∞, 0],Rn), which

equipped with the topology of uniform convergence of maps and their derivatives

on compact sets, is a Fréchet space, that is, a complete topological vector space

whose topology is given by a sequence of seminorms | · |j , j ∈ N, which is

separating
(

lim
k→∞

xk = x if and only if lim
k→∞

|xk − x|j = 0 for every j ∈ N, and

x = 0 if and only if |x|j = 0 for all j ∈ N
)

.

Let us recall here that continuous differentiability in Banach spaces does

not generalize in a canonical way to topological vector spaces. In the sequel

continuous differentiability of a map f : V ⊃ U → W , V and W topological

vector spaces and U ⊂ V open, is always understood in the sense of Michal and

Bastiani, which means the following: The tangent vector of a continuous curve

c : I → V , I ⊂ R an interval of positive length, at t ∈ I is defined by

c′(t) = lim
06=h→0

1

h
(c(t+ h)− c(t)) ∈ V

provided this limit exists. The curve is called continuously differentiable if it

has tangent vectors everywhere and if the map I 3 t 7→ c′(t) ∈ V is continuous.

For a continuous map f : V ⊃ U → W as above and for u ∈ U and v ∈ V

with u+ (−ε, ε)v ⊂ U for some ε > 0 the directional derivative Df(u)v ∈ W is

defined by the tangent vector of the curve (−ε, ε) 3 t 7→ f(u+ tv) ∈W at t = 0

provided the latter exists. The map f is called continuously differentiable if all

directional derivatives Df(u)v, u ∈ U and v ∈ V , exist and if the map

U × V 3 (u, v) 7→ Df(u)v ∈W

is continuous.
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This notion, obviously weaker than familiar continuous differentiability of

maps in Banach spaces, avoids the choice of a topology on the vector space of

linear continuous maps V →W . For more on this, consult e.g. [13], [3], [6].

Let C = C((−∞, 0],Rn) denote the Fréchet space of continuous maps (−∞, 0]

→ Rn, with the topology of uniform convergence on compact sets.

The present paper deals with equation (1.1) for continuously differentiable

functionals f on open subsets U ⊂ C1 so that the analogue (e) of the exten-

sion property [e] holds where C1([−r, 0],Rn) and C([−r, 0],Rn) are replaced by

C1 and C, respectively. The main results are that, analogously to the results

in [14], [16], the solution manifold Xf is a continuously differentiable submani-

fold of codimension n in C1 (Proposition 2.3 below) and the maximal solutions

of the IVPs

x′(t) = f(xt) for t > 0, x0 = φ ∈ Xf

define a continuous semiflow Σf of continuously differentiable solution operators

on Xf (Proposition 5.2, Corollary 5.4). Proposition 6.1 shows that the deriva-

tives

D2Σf (t, φ) : TφXf → TΣ(t,φ)Xf

of the solution operators are given by variational equations

v′(t) = Df(Σf (t, φ))vt.

In a forthcoming paper [18] we shall obtain local invariant manifolds at stationary

points of the semiflow Σf .

At the beginning of Section 2 below it is shown how to verify property (e) for

a simple but nevertheless typical example of the form (1.2). When written in the

form (1.1) this example is of locally bounded delay (with the space B1
a in condi-

tion [lbd] replaced by C1). This is not merely a coincidence — being of locally

bounded delay follows from continuous differentiability, see Proposition 1.1 at

the end of this introduction. Equations which involve integration over (−∞, 0],

like for example

x′(t) =

∫ 0

−∞
h(xt, x(t+ s)) ds,

or infinite series as in

x′(t) = −
∞∑
k=1

2−kx(t− k − r(x(t))), r : R→ [0,∞) bounded,

will in general escape the approach presented here. Such examples require state

spaces which are restricted by the condition that the term on the right-hand

side of the differential equation makes sense. The results below do not include

statements about partial derivatives ∂tΣf (t, φ), in contrast to [14], [15] about

equations with bounded delay. It is easy to see that in the present case such
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partial derivatives may exist only at initial data φ ∈ Xf ⊂ C1 which are twice

continuously differentiable.

Local solutions of IVPs are obtained by means of a result due to Glöckner [4],

on uniform contractions whose fixed points are continuously differentiable with

respect to a parameter in a topological vector space. The special case needed

here, with parameters in a Fréchet space, is stated in the appendix, Section 7,

as Theorem 7.2. This theorem also yields a simple Implicit Function Theorem

for maps F × B ⊃ U → B, F a Fréchet space and B a Banach space, which is

stated as Theorem 7.3. The case of Theorem 7.3 with dimB < ∞, which helps

to show that the set Xf is a submanifold, is part of a much more general result

of Glöckner [3]. The proofs of Theorems 7.2 and 7.3 are included for convenience

and simplicity.

The approach in Sections 2–6 is similar to the Banach space case studied

in [14], with modifications most of which are required by the lack of norms and by

the different notions of continuous differentiability. The hypothesis (e) is used in

the proof that Xf is a continuously differentiable submanifold (Proposition 2.3)

and in the proof of the estimate in Proposition 3.4 with a norm on the right-hand

side which does not involve derivatives. This is crucial in order to obtain the

Lipschitz estimate of Proposition 4.1, which in turn yields a contraction. The

construction of the semiflow in Section 5 from the local results in Section 4 is

standard and included for convenience.

For earlier work on differential equations with unbounded delay and solution

segments in topological vector spaces, see [11], [12].

Preliminaries. For basic facts about topological vector spaces see [10]. The

facts from calculus in Fréchet spaces, including the Riemann integral for contin-

uous maps [a, b] → F into a Fréchet space and up to Fréchet manifolds, which

are freely used in Sections 2–7 below, are taken from Sections I.1–I.4 in [6].

Products of topological vector spaces are always equipped with the product

topology. The product F ×G of Fréchet spaces is a Fréchet space.

For maps f : U → Z, V,W,Z topological vector spaces and U ⊂ V ×W open,

partial derivatives are defined in the usual way. For example, D1f(v, w) : V → Z

is given by

D1f(v, w)v̂ = lim
06=h→0

1

h
(f(v + hv̂, w)− f(v)).

The tangent cone of a set M ⊂ F , F a Fréchet space, at x ∈M is the set TxM

of all tangent vectors v = c′(0) of continuously differentiable curves c : I → F

with I open, 0 ∈ I, c(0) = x, c(I) ⊂M .

The following Fréchet spaces are used in the sequel: For n ∈ N and T ∈ R,

CT = C((−∞, T ],Rn) denotes the Fréchet space of continuous maps (−∞, T ]→
Rn with the seminorms given by |φ|T,j = max

T−j≤t≤T
|φ(t)|, φ ∈ CT and j ∈ N,
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which define the topology of uniform convergence on compact sets, and C1
T =

C1((−∞, T ],Rn) is the Fréchet space of continuously differentiable maps (−∞, T ]

→ Rn with |φ|1,T,j = |φ|T,j + |φ′|T,j .
Analogously, C∞ = C(R,Rn) denotes the Fréchet space of continuous maps

R → Rn with |φ|∞,j = max
−j≤t≤j

|φ(t)|, and C1
∞ = C1(R,Rn) denotes the Fréchet

space of continuously differentiable maps R→ Rn with |φ|1,∞,j = |φ|∞,j+|φ′|∞,j .
The differentiation map ∂T : C1

T 3 φ 7→ φ′ ∈ CT is linear and continuous.

It will be convenient to use C = C0 and C1 = C1
0 and to abbreviate | · |j =

| · |0,j , | · |1,j = | · |1,0,j , ∂ = ∂0. The convex sets{
φ ∈ C : |φ|j <

1

j

}
, j ∈ N,

form a neighbourhood base at 0 ∈ C, and the convex sets{
φ ∈ C1 : |φ|1,j <

1

j

}
, j ∈ N,

form a neighbourhood base at 0 ∈ C1.

Every Banach space B over R, with norm | · |, is a Fréchet space with | · |j= | · |
for j ∈ N. For Banach spaces B,E the Banach space of linear continuous maps

B → E is denoted by Lc(B,E).

The following Banach spaces occur in the sequel: For n ∈ N and real numbers

S < T , the space CST = C([S, T ],Rn) of continuous maps [S, T ]→ Rn with the

norm given by |φ|ST = max
S≤t≤T

|φ(t)|, and the space C1
ST = C1([S, T ],Rn) of

continuously differentiable maps [S, T ] → Rn with the norm given by |φ|1,ST =

|φ|ST + |φ′|ST .

In case S = 0 < T , C0T,0 denotes the closed subspace {φ ∈ C0T : φ(0) = 0},
and C1

0T,0 denotes the closed subspace {φ ∈ C1
0T : φ(0) = 0 = φ′(0)}.

Proposition 1.1. Each continuously differentiable map f : C1 ⊃ U → Rn

is of locally bounded delay in the sense that for every φ ∈ U there are a neigh-

bourhood V ⊂ U and r > 0 such that for all χ, ψ in V with

χ(t) = ψ(t) for all t ∈ [−r, 0]

we have f(χ) = f(ψ).

Proof. For j ∈ N set Vj = {η ∈ C1 : |η|1,j < 1/j}. Assume the assertion

is false. Then there exists φ ∈ U such that for every j ∈ N there are χj , ψj in

(φ + Vj) ∩ U with χj(t) = ψj(t) for −j ≤ t ≤ 0 and 0 6= f(χj) − f(ψj). There

exists jφ ∈ N so that φ+ Vj ⊂ U for all integers j ≥ jφ. For these integers j,

0 6= f(χj)− f(ψj) =

∫ 1

0

Df(ψj + s(χj − ψj))[χj − ψj ] ds,
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and it follows that for some sj ∈ [0, 1],

0 6= Df(ψj + sj(χj − ψj))[χj − ψj ].

For integers j ≥ jφ define cj > 0 by

cj |Df(ψj + sj(χj − ψj))[χj − ψj ]| = 1.

Observe that φ + Vj 3 ψj + sj(χj − ψj) → φ as j → ∞. Also, cj [χj − ψj ] → 0

as j → ∞ because given k ∈ N and j ≥ max{jφ, k}, cj [χj − ψj ](t) = 0 on

[−j, 0] ⊃ [−k, 0], hence |cj [χj − ψj ]|1,k = 0. By continuity, |Df(φ)0| = 1,

contradicting linearity. �

2. The extension property and the solution manifold

In order to rewrite examples like equation (1.2) in the general form of equa-

tion (1.1) evaluation maps are convenient. With the numerical evaluation map

ev : (Rn)(−∞,0] × (−∞, 0] 3 (φ, t) 7→ φ(t) ∈ Rn

in case n = 1 the right-hand side of (1.2) is given by (1.1) for U = R(−∞,0] and

f(φ) = g(ev(φ,−d(φ))) = g ◦ ev ◦ (id× (−d))(φ).

Proposition 2.1. ev0 = ev|C×(−∞,0] is continuous, and ev1 = ev|C1×(−∞,0)

is continuously differentiable with

Dev1(φ, t)(φ̂, t̂) = φ̂(t) + t̂φ′(t).

Proof. 1. (On ev0) Suppose φk → φ in C and tk → t in (−∞, 0] as

N 3 k →∞. There exists an integer j ∈ N with −j < tk for all k ∈ N. Use

|ev(φk, tk)− ev(φ, t)| = |φk(tk)− φ(t)|

≤ |φk(tk)− φ(tk)|+ |φ(tk)− φ(t)|

≤ |φk − φ|0,j + |φ(tk)− φ(t)|

and |φk − φ|0,j → 0 for k →∞ and the continuity of φ at t.

2. (On ev1) Each map ev( · , t), t ≤ 0, is linear. This implies that for every

φ ∈ C1, t ≤ 0 and φ̂ ∈ C1 the directional derivative Dev1(φ, t)φ̂ ∈ Rn of the map

ev1( · , t) : C1 3 ψ 7→ ev1(ψ, t) ∈ Rn at φ exists and is given by Dev1( · , t)(φ)φ̂ =

φ̂(t) = ev(φ̂, t). This means that the partial derivative D1ev1(φ, t) : C1 → Rn

exists and is given by D1ev1(φ, t)φ̂ = ev(φ̂, t). Using this in combination with

the continuity of ev0 and of the inclusion map C1 → C, one finds that the map

C1 × (−∞, 0]× C1 3 (φ, t, φ̂) 7→ D1ev1(φ, t)φ̂ ∈ Rn

is continuous. Next, for φ ∈ C1, t < 0, s ∈ R with s 6= 0, and for all h 6= 0 with

t+ hs < 0,

1

h
(ev(φ, t+ hs)− ev(φ, t)) = s

φ(t+ sh)− φ(t)

sh
→ sφ′(t)
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as h → 0. It follows that the directional derivative Dev1(φ, · )(t)s exists and is

given by Dev1(φ, · )(t)s = sφ′(t) = sev(φ′, t). The same holds for s = 0. So

the partial derivative D2ev1(φ, t) : R→ Rn exists and is given by D2ev1(φ, t)s =

sev(φ′, t). Using this in combination with the continuity of ∂, ev0, and of the

multiplication on R one finds that the map

C1 × (−∞, 0)× R 3 (φ, t, s) 7→ D2ev1(φ, t)s ∈ Rn

is continuous. Now the assertion follows (see [6]). �

Consider the special case x′(t) = ax(t−δ(x(t))) (∈ R) of equation (1.2), with

0 6= a ∈ R and a continuously differentiable function δ : R → [0,∞), which is

equation (1.1) with f : R(−∞,0] → R, f = aev ◦ (id× (−δ ◦ ev( · , 0))). The chain

rule in combination with Proposition 2.1 shows that the restriction f1 = f |C1 is

continuously differentiable with

Df1(φ)φ̂ = aDev1(φ,−δ(φ(0)))(φ̂,−δ′(φ(0))φ̂(0))

= a[φ̂(−δ(φ(0)))− δ′(φ(0))φ̂(0)φ′(−δ(φ(0)))].

Moreover, f1 has property (e) since the last term does not involve φ̂′: For φ ∈ C1

and χ ∈ C define

Def1(φ)χ = a[χ(−δ(φ(0)))− δ′(φ(0))χ(0)φ′(−δ(φ(0)))].

Then the continuity of ev0 and of the inclusion and differentiation maps C1 → C

shows that the map C1 × C 3 (φ, χ) 7→ Def1(φ)χ ∈ R is continuous.

From now on let a continuously differentiable functional f : C1 ⊃ U → Rn

with property (e) be given. Its solution manifold X = Xf = {φ ∈ U : φ′(0) =

f(φ)} is the zeroset of the continuously differentiable map

g : U 3 φ 7→ ev0(∂φ, 0)− f(φ) ∈ Rn.

The nullspaces Y = Yφ = Yf,φ = {χ ∈ C1 : χ′(0) = Df(φ)χ} = Dg(φ)−1(0),

for φ ∈ U , are closed, and for φ ∈ X, TφX ⊂ Yφ because every χ ∈ TφX equals

χ = c′(0) for a continuously differentiable curve c : I → C1 with I open and

0 ∈ I, c(0) = φ, c(I) ⊂ X, c′(0) = χ, hence g ◦ c = 0, and the chain rule yields

Dg(φ)χ=Dg(c(0))Dc(0)1=D(g ◦ c)1=0, or equivalently, χ ∈ Dg(φ)−1(0)=Yφ.

Proposition 2.2. For every φ ∈ U the derivative Dg(φ) : C1 → Rn is

surjective, and there is a subspace Qφ ⊂ C1 with dimQφ = n and C1 = Yφ⊕Qφ.

Proof. 1. Let φ ∈ U be given. For surjectivity of the linear map Dg(φ) it

is sufficient to show that the range is dense. In order to prove this let y ∈ Rn

and ε > 0 be given. As Def(φ) : C → Rn is continuous (at 0 ∈ C) there is
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a neighbourhood N of 0 in C with |Def(φ)χ| < ε for all χ ∈ N . N contains

a neighbourhood of the form{
ψ ∈ C : max

−j≤t≤0
|ψ(t)| < 1

j

}
,

with some j ∈ N, which in turn contains elements ψ ∈ C1 with ψ′(0) = y, hence

|Dg(φ)ψ − y| = |ψ′(0)−Df(φ)ψ − y| = |Def(φ)ψ| < ε.

2. Choose a basis of Rn, take preimages φ1, . . . , φn under Dg(φ), and consider

the span Qφ of these preimages. Then dimQφ = n and

C1 = (Dg(φ))−1(0)⊕Qφ = Yφ ⊕Qφ. �

Recall that finite-dimensional subspaces of a topological vectorspace are

closed. The next result implies that Xf is a continuously differentiable sub-

manifold of codimension n in the space C1.

Proposition 2.3. For every φ ∈ Xf there are open neighbourhoods NY of 0

in Yφ, NQ of 0 in Qφ, and a continuously differentiable map ξ : NY → Qφ with

ξ(NY ) ⊂ NQ and ξ(0) = 0 and

Xf ∩ (NY +NQ) = {φ+ ψ + ξ(ψ) ∈ C1 : ψ ∈ NY }.

Proof. Let φ ∈ X = Xf = g−1(0) be given, write Y = Yφ, Q = Qφ.

The restriction Dg(φ)|Q is an isomorphism, due to Proposition 2.2. The map

j : Y ×Q→ C1 given by j(ψ, χ) = φ+ψ+χ is affine linear and continuous and

thereby continuously differentiable. The set V = j−1(U) is open with (0, 0) ∈ V ,

the map h = g ◦ j|V is continuously differentiable with h(0, 0) = 0 and

D2h(ψ, χ)η = Dh(ψ, χ)(0, η) = Dg(j(ψ, χ))Dj(ψ, χ)(0, η) = Dg(j(ψ, χ))η

for all (ψ, χ) ∈ V and all η ∈ Q. The equations D2h(0, 0)η = Dg(φ)η for η ∈ Q
show that D2h(0, 0) : Q → Rn is an isomorphism. The Implicit Function Theo-

rem 7.3 in combination with the remark preceding it yields open neighbourhoods

NY of 0 in Y , NQ of 0 in Q, and a continuously differentiable map ξ : NY → Q

with NY ×NQ ⊂ V , ξ(NY ) ⊂ NQ, ξ(0) = 0 and

h−1(0) ∩ (NY ×NQ) = {(ψ, ξ(ψ)) ∈ Y ×Q : ψ ∈ NY }.

Applying j, we obtain the assertion. �

The idea how to solve the IVP

x′(t) = f(xt) for t ≥ 0, x0 = φ ∈ Xf

is as in [14]. Suppose x : (−∞, T ] → Rn, T > 0, is a solution of equation (1.1)

on [0, T ] with x0 = φ. Continue φ by φ(t) = φ(0) + tφ′(0) to a continuously
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differentiable function φ̂ : (−∞, T ] → Rn. Then y = x − φ̂ satisfies y(t) = 0 for

t ≤ 0, and for 0 ≤ t ≤ T the equation

y(t) = x(t)− φ̂(t) = x(0) +

∫ t

0

f(xs) ds− φ(0)− tφ′(0)

=

∫ t

0

f(ys + φ̂s) ds− tf(φ) =

∫ t

0

(f(ys + φ̂s)− f(φ)) ds

holds, with the parameter φ ∈ Xf ⊂ U ⊂ C1. Obviously, y(0) = 0 = y′(0). So

η = y|[0,T ] ∈ C1
0T,0 satisfies the fixed point equation

(2.1) η(t) =

∫ t

0

(f(η̂s + φ̂s)− f(φ)) ds, 0 ≤ t ≤ T,

where η̂ ∈ C1
T is the prolongation of η given by η̂(t) = 0 for all t < 0. In order

to find a solution of the IVP one solves the fixed point equation (2.1) by means

of a parametrized contraction on a subset of the Banach space C1
0T,0 with the

parameter φ ∈ U ⊂ C1. For φ ∈ Xf the associated fixed point η = ηφ yields

a solution x = η̂ + φ̂ of the IVP.

The next section begins with a framework for studying equation (2.1).

3. Evaluations, substition operator, and prolongations

The segment evaluation maps

ET : CT × (−∞, T ] 3 (φ, t) 7→ φt ∈ C,

E1
T : C1

T × (−∞, T ] 3 (φ, t) 7→ φt ∈ C1,

E10
T : C1

T × (−∞, T ] 3 (φ, t) 7→ φt ∈ C

for T ∈ R and their analogues E∞, E
1
∞ for T = ∞ are all linear in the first

argument.

Proposition 3.1. Let T ≤ ∞.

(a) The maps ET and E1
T are continuous.

(b) For every φ ∈ C1
T the curve Φ: (−∞, T ) 3 t 7→ φt ∈ C is continuously

differentiable, with Φ′(t) = ET (∂Tφ, t).

(c) The map E10
T |C1

T×(−∞,T ) is continuously differentiable, with

D1E
10
T (φ, t)φ̂ = E10

T (φ̂, t) = φ̂t and

D2E
10
T (φ, t)s = sE10

T (∂Tφ, t) = s(∂Tφ)t = s(φ′)t.

Proof. 1. Let T ∈ R.

1.1. Continuity of ET . Let φk → φ in CT as N 3 k → ∞, and tk → t in

(−∞, T ]. Let j ∈ N be given. In order to show |φk,tk − φt|j → 0 as k → ∞,
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choose m > T in N with T − m < t. There exists km ∈ N such that for all

integers k ≥ km, T −m ≤ tk ≤ T . For such k,

|φk,tk − φt|j = max
−j≤s≤0

|φk(tk + s)− φ(t+ s)|

≤ max
−j≤s≤0

|φk(tk + s)− φ(tk + s)|+ max
−j≤s≤0

|φ(tk + s)− φ(t+ s)|

≤ max
T−m−j≤u≤T

|φk(u)− φ(u)|+ max
−j≤s≤0

|φ(tk + s)− φ(t+ s)|

= |φk − φ|T,m+j + max
−j≤s≤0

|φ(tk + s)− φ(t+ s)|.

Use |φk−φ|T,m+j → 0 as k →∞ and the uniform continuity of φ on the compact

interval [T −m− j, T ] in order to complete the proof.

1.2. Continuity of E1
T . For j ∈ N and φ, ψ in C1

T and t, s ∈ (−∞, T ],

|φt − ψs|1,j = |φt − ψs|j + |(φt)′ − (ψs)
′|j

= |ET (φ, t)− ET (ψ, s)|j + |(φ′)t − (ψ′)s|j
= |ET (φ, t)− ET (ψ, s)|j + |ET (∂Tφ, t)− ET (∂Tψ, s)|j .

Use the continuity of ET and ∂T in order to complete the proof.

1.3. As the inclusion C1 → C is continuous, it follows that E10
T is continuous.

1.4. On the map Φ, for φ ∈ C1
T . Let t < T , j ∈ N, 0 6= h ∈ R, t + h < T .

Then ∣∣∣∣ 1h (Φ(t + h)− Φ(t))− ET (∂Tφ, t)

∣∣∣∣
j

= max
−j≤s≤0

∣∣∣∣ 1h (φ(t+ h+ s)− φ(t+ s))− φ′(t+ s)

∣∣∣∣
= max
−j≤s≤0

∣∣∣∣ ∫ 1

0

(φ′(t+ s+ θ[t+ h+ s− (t+ s)])− φ′(t+ s)) dθ

∣∣∣∣
≤ max
−j≤s≤0

∫ 1

0

|φ′(t+ s+ θh)− φ′(t+ s)| dθ,

and the uniform continuity of φ′ on [t−1− j, T ] implies that the last term tends

to 0 as 0 6= h→ 0. This shows that Φ is differentiable with Φ′(t) = ET (∂Tφ, t).

Using (a), one finds that Φ′ is continuous.

1.5. On E10
T |C1

T×(−∞,T ). Let φ ∈ C1
T and t < T . The existence of D1E

10
T (φ, t)

and the formula D1E
10
T (φ, t)φ̂ = E10

T (φ̂, t) = φ̂t follow from linearity in the first

argument. Using part 1.3 of the proof, one concludes that the map

C1
T × (−∞, T )× C1

T 3 (φ, t, φ̂) 7→ D1E
10
T (φ, t)φ̂ ∈ C

is continuous.

The existence ofD2E
10
T (φ, t)s for s ∈ R follows from E10

T (φ, t+hs) = Φ(t+hs)

for t+hs < T in combination with (b) and the chain rule. Also, D2E
10
T (φ, t)s =
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sΦ′(t) = sE10
T (∂Tφ, t), which in combination with part 1.3 shows that the map

C1
T × (−∞, T )× R 3 (φ, t, s) 7→ D2E

10
T (φ, t)s ∈ C

is continuous. Now it follows that E10
T is continuously differentiable (see [6]).

2. The proofs for T =∞ are analogous. �

Next, consider the substitution operator FT : domT → C0T which, for 0 <

T <∞, is given by

domT = {φ ∈ C1
T : φs ∈ U for 0 ≤ s ≤ T}

and

FT (φ)(t) = f(φt) = f(E1
T (φ, t)) ∈ Rn.

Notice that in order to obtain continuous differentiability of FT the chain rule

cannot be applied, due to lack of smoothness of the map E1
T .

Proposition 3.2. Let 0 < T <∞. The set domT is open and FT is contin-

uously differentiable with

(DFT (φ)φ̂)(s) = Def(E1
T (φ, s))E10

T (φ̂, s).

Proof. 1. (Openness) Let φ ∈ domT . Due to the continuity of E1
T for each

t ∈ [0, T ] there are open neighbourhoods Nt of φ in C1
T and Vt of t in R with

ψs = E1
T (ψ, s) ∈ U for all ψ ∈ Nt, s ∈ Vt∩[0, T ]. Due to compactness there exists

a finite subset τ ⊂ [0, T ] with [0, T ] ⊂
⋃
t∈τ

Vt. Then
⋂
t∈τ

Nt is a neighbourhood of

φ in domT .

2. For every φ ∈ domT and every φ̂ ∈ C1
T the map

[0, T ] 3 t 7→ Def(E1
T (φ, t))E10

T (φ̂, t) ∈ Rn

is continuous. Therefore, the equation

BT (φ, φ̂)(t) = Def(E1
T (φ, t))E10

T (φ̂, t)

defines a map BT : domT ×C1
T → C0T . In order to show that BT is continuous,

assume φk → φ in domT and φ̂k → φ̂ in C1
T as N 3 k →∞. For all k ∈ N,

|BT (φk, φ̂k)−BT (φ, φ̂)|0T

= max
0≤t≤T

|Def(E1
T (φk, t))E

10
T (φ̂k, t)−Def(E1

T (φ, t))E10
T (φ̂, t)|.

The map domT × C1
T × [0, T ] 3 (χ, χ̂, t) 7→ Def(E1

T (χ, t))E10
T (χ̂, t) ∈ Rn is

uniformly continuous on the compact set {(φ, φ̂)} × [0, T ].

Let ε > 0. Then there is a neighbourhood N of (φ, φ̂) in domT × C1
T such

that for all (ψ, ψ̂) ∈ N and for all t ∈ [0, T ],

|BT (ψ, ψ̂)(t)−BT (φ, φ̂)(t)|

= |Def(E1
T (ψ, t))E10

T (ψ̂, t)−Def(E1
T (φ, t))E10

T (φ̂, t)| < ε.
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There exists an integer kN with (φk, φ̂k) ∈ N for all integers k ≥ kN . For such k,

|BT (φk, φ̂k)−BT (φ, φ̂)|0T < ε.

3. (Directional derivatives) Let φ ∈ domT , φ̂ ∈ C1
T be given. There is a con-

vex neighbourhood N of φ in domT , and there exists η > 0 with φ+ hφ̂ ∈ N for

all h ∈ (−η, η). Hence φ+ [0, 1]hφ̂ ⊂ N for |h| < η, and thereby

φt + θhφ̂t = (φ+ θhφ̂)t ∈ U for |h| < η, 0 ≤ θ ≤ 1, 0 ≤ t ≤ T.

For 0 < |h| < η it follows that∣∣∣∣ 1h (FT (φ+ hφ̂)− FT (φ))−BT (φ, φ̂)

∣∣∣∣
0T

= max
0≤t≤T

∣∣∣∣ 1h (f((φ+ hφ̂)t)− f(φt))−Def(E1
T (φ, t))E10

T (φ̂, t)

∣∣∣∣
= max

0≤t≤T

∣∣∣∣ 1h
∫ 1

0

(Df(φt + θhφ̂t)hφ̂t −Def(E1
T (φ, t))E10

T (φ̂, t)) dθ

∣∣∣∣
= max

0≤t≤T

∣∣∣∣ ∫ 1

0

(Def(E1
T (φ+ θhφ̂, t))E10

T (φ̂, t)−Def(E1
T (φ, t))E10

T (φ̂, t)) dθ

∣∣∣∣.
The map

[0, T ]× (−η, η)× [0, 1] 3 (t, h, θ) 7→ Def(E1
T (φ+ θhφ̂, t))E10

T (φ̂, t) ∈ Rn

is continuous, hence uniformly continuous on the compact set [0, T ]×{0}× [0, 1].

Let ε > 0. Then there exists δε ∈ (0, η) such that for all t ∈ [0, T ], h ∈ (−δε, δε),
θ ∈ [0, 1],

|Def(E1
T (φ+ θhφ̂, t))E10

T (φ̂, t)−Def(E1
T (φ, t))E10

T (φ̂, t)|

= |Def(E1
T (φ+ θhφ̂, t))E10

T (φ̂, t)−Def(E1
T (φ+ θ · 0 · φ̂, t))E10

T (φ̂, t)| < ε.

It follows that for 0 < |h| < δε,∣∣∣∣ 1h (FT (φ+ hφ̂)− FT (φ))−BT (φ, φ̂)

∣∣∣∣
0T

< ε.

Therefore DFT (φ)φ̂ exists and is equal to BT (φ, φ̂). Using part 2, one finds that

FT is continuously differentiable. �

The prolongation maps PT : C1 → C1
T , 0 < T ≤ ∞, given by

PTφ(t) = φ(t) for t ≤ 0, PTφ(t) = φ(0) + tφ′(0) for 0 < t ≤ T,

PST : C1
0S → C1

0T , 0 < S < T <∞, given by

PSTφ(t) = φ(t) for 0 ≤ t ≤ S,

PSTφ(t) = φ(S) + (t− S)φ′(S) for S < t ≤ T,
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ZT : C0T,0 → CT , 0 < T <∞, given by

ZTφ(t) = φ(t) for 0 ≤ t ≤ T, ZT (φ)(t) = 0 for t < 0,

and the integration operators IT : C0T,0 → C1
0T,0, 0 < T <∞, given by

ITφ(t) =

∫ t

0

φ(s) ds

are all linear and continuous. Obviously, ZTC
1
0T,0 ⊂ C1

T . For PST , 0 < S < T ,

PSTC
1
0S,0 ⊂ C1

0T,0, and

(3.1) |PSTφ|1,0T ≤ (2 + T )|φ|1,0S for all φ ∈ C1
0S

because of the estimate

|PSTφ|1,0T = max
0≤t≤T

|PSTφ(t)|+ max
0≤t≤T

|(PSTφ)′(t)|

≤ max
0≤t≤S

|φ(t)|+ |φ(S)|+ |φ′(S)|T + max
0≤t≤S

|φ′(t)|.

It follows that, for every T > 0, the set

DT = {(φ, η) ∈ U × C1
0T,0 : PTφ+ ZT η ∈ domT }

is open, and the map

GT : DT → C0T,0, GT (φ, η)(t) = FT (PTφ+ ZT η)(t)− f(φ) ∈ Rn,

(with GT (φ, η)(0) = f((PTφ+ZT η)0)− f(φ) = f(φ+ 0)− f(φ) = 0) is continu-

ously differentiable, because of the chain rule, continuity of the linear maps PT
and ZT , Proposition 3.2, the continuous differentiability of f , the continuity of

the linear mapping τ : Rn → C0T given by τ(ξ)(t) = ξ, and the fact that the

vectorspace operations of C0T and C1
T are continuous.

Corollary 3.3. Let 0 < T <∞. For (φ, η) ∈ DT and φ̂ ∈ C1, η̂ ∈ C1
0T,0,

DGT (φ, η)(φ̂, η̂) = DFT (PTφ+ ZT η)(PT φ̂+ ZT η̂)− τ(Df(φ)φ̂),

and, for 0 ≤ t ≤ T ,

DGT (φ, η)(φ̂, η̂)(t)

= Def(E1
T (PTφ+ ZT η, t))E

10
T (PT φ̂+ ZT η̂, t)− τ(Df(φ)φ̂)(t)

= Def((PTφ)t + (ZT η)t)((PT φ̂)t + (ZT η̂)t)−Df(φ)φ̂.

The map AT = IT ◦GT is continuously differentiable.

The next result prepares the proof that AT with T > 0 sufficiently small

defines a uniform contraction on a small ball in C1
0T,0.
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Proposition 3.4. Let φ ∈ U be given. There exist T = Tφ > 0, a neigh-

bourhood V = Vφ of φ in U , ε = εφ > 0, and j = jφ ∈ N such that for all

S ∈ (0, T ), χ ∈ V , η and η̃ in C1
0S,0 with |η|1,0S < ε and |η̃|1,0S < ε, w ∈ [0, S],

and θ ∈ [0, 1],

(3.2) (PSχ)w + (ZSη)w + θ[(ZS η̃)w − (ZSη)w] ∈ U

and

|Def((PSχ)w + (ZSη)w + θ[(ZS η̃)w − (ZSη)w])[(ZS η̃)w − (ZSη)w]|

≤ 2j |η̃ − η|0S .

Proof. 1. Let φ ∈ U be given. As the map U×C 3 (χ, η) 7→ Def(χ)η ∈ Rn

is continuous at (φ, 0), there are neighbourhoods V ′ of φ in U and N of 0 in C

with

|Def(χ)η| = |Def(χ)η −Def(φ)0| < 1 for all χ ∈ V ′, η ∈ N.

There exists j = jN ∈ N with {ζ ∈ C : |ζ|j < 1/j} ⊂ N .

2. By the continuity of the map R 3 t 7→ E1
∞(P∞φ, t) ∈ C1 at t = 0, with

E1
∞(P∞φ, 0) = φ, there exists T > 0 with E1

∞(P∞φ, t) ∈ V ′ for all t ∈ [0, T ].

The continuous map

α : C1 × C1
0T,0 × [0, T ] 3 (χ, η, t) 7→ E1

∞(P∞χ, t) + E1
T (ZT η, t) ∈ C1

satisfies α(φ, 0, t) = E1
∞(P∞φ, t) ∈ V ′ for all t ∈ [0, T ] and is uniformly con-

tinuous on the compact set {φ} × {0} × [0, T ]. It follows that there exist a

neighbourhood V of φ in V ′ and ε′ > 0 such that

E1
∞(P∞χ, t) + E1

T (ZT η, t) = α(χ, η, t) ∈ V ′

for all χ ∈ V , η ∈ C1
0T,0 with |η|1,0T < ε′, and t ∈ [0, T ]. Observe that

E1
∞(P∞χ, t) = E1

T (PTχ, t) for these χ and t.

3. Set ε = ε′/(2 + T ). Let 0 < S < T and let χ ∈ V , η 6= η̃ in C1
0S,0 be given,

with |η|1,0S < ε and |η̃|1,0S < ε. Let 0 ≤ w ≤ S, 0 ≤ θ ≤ 1. Then

|PST η|1,0T ≤ (2 + T )|η|1,0S < ε′

(see (3.1)) and analogously |PST η̃|1,0T < ε′. By convexity,

|PST η + θ[PST η̃ − PST η]|1,0T < ε′.

The choice of V and ε′ in part 2 yields

V ′ 3 E1
∞(P∞χ,w) + E1

T (ZT (PST η + θ[PST η̃ − PST η]), w).

Due to 0 ≤ w ≤ S,

E1
T (ZTPST η, w) = (ZSη)w, E1

T (ZTPST η̃, w) = (ZS η̃)w,
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and

E1
T (ZT (PST η + θ[PST η̃ − PST η]), w)

=E1
T (ZTPST η, w) + θ[E1

T (ZTPST η̃, w)− E1
T (ZTPST η, w)]

= (ZSη)w + θ[(ZS η̃)w − (ZSη)w].

Using this and E1
∞(P∞χ,w) = (PSχ)w, one arrives at

V ′ 3 (PSχ)w + (ZSη)w + θ[(ZS η̃)w − (ZSη)w].

4. Set ζ = (η̃ − η)/(2j|η − η̃|0S) ∈ C0S . Then

|(ZSζ)w|j = max
−j≤t≤0

|(ZSζ)(w + t)| = max
w−j≤s≤w

|(ZSζ)(s)|

≤ max
0≤s≤S

|(ZSζ)(s)| = max
0≤s≤S

|ζ(s)| = |ζ|0S <
1

j
,

hence (ZSζ)w ∈ N , and therefore

1 > |Def((PSχ)w + (ZSη)w + θ[(ZS η̃)w − (ZSη)w])(ZSζ)w|

=

∣∣∣∣Def((PSχ)w + (ZSη)w + θ[(ZS η̃)w − (ZSη)w])

× 1

2j|η − η̃|0S
(ZS(η̃ − η))w

∣∣∣∣
=

∣∣∣∣Def((PSχ)w + (ZSη)w + θ[(ZS η̃)w − (ZSη)w])

× 1

2j|η − η̃|0S
((ZS η̃)w − (ZSη)w)

∣∣∣∣
which implies the assertion. �

4. A parametrized contraction and local solutions

Let φ ∈ U , and let T = Tφ > 0, a convex neighbourhood V = Vφ of φ in U ,

ε = εφ > 0, and j = jφ ∈ N be given as in Proposition 3.4.

Proposition 4.1. For every S ∈ (0, T ), χ ∈ V , η and η̃ in C1
0S,0 with

|η|1,0S < ε and |η̃|1,0S < ε,

(χ, η) ∈ DS , (χ, η̃) ∈ DS and |AS(χ, η̃)−AS(χ, η)|1,0S ≤ 2jS(S+1)|η̃−η|1,0S .

Proof. Let S ∈ (0, T ), χ ∈ V , η and η̃ in C1
0S,0 with |η|1,0S < ε and

|η̃|1,0S < ε be given. Relation (3.2) with θ = 0 and θ = 1 yields (χ, η) ∈ DS and

(χ, η̃) ∈ DS . Moreover,

|AS(χ, η̃)−AS(χ, η)|1,0S = |IS(GS(χ, η̃)−GS(χ, η))|1,0S
≤S max

0≤w≤S
|GS(χ, η̃)(w)−GS(χ, η)(w)|+ max

0≤w≤S
|GS(χ, η̃)(w)−GS(χ, η)(w)|

= (S + 1) max
0≤w≤S

|GS(χ, η̃)(w)−GS(χ, η)(w)|
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and, for every w ∈ [0, S],

|GS(χ, η̃)(w)−GS(χ, η)(w)| ≤ |GS(χ, η̃)−GS(χ, η)|0S

=

∣∣∣∣ ∫ 1

0

DGS(χ, η + θ[η̃ − η])(0, η̃ − η) dθ

∣∣∣∣
0S

(smoothness of GS , convexity of V × {η̂ ∈ C1
0S,0 : |η̂|1,0S < ε})

≤ max
0≤θ≤1

|DGS(χ, η + θ[η̃ − η])(0, η̃ − η)|0S .

The last term equals

max
0≤θ≤1

max
0≤w≤S

|Def((PSχ)w + (ZS(η + θ[η̃ − η]))w)(ZS(η̃ − η))w|

(see Corollary 3.3 with φ̂ = 0)

= max
0≤θ≤1

max
0≤w≤S

|Def((PSχ)w +(ZSη)w +θ[(ZS η̃)w− (ZSη)w])[(ZS η̃)w− (ZSη)w]|

≤ 2j|η̃ − η|0S

(by Proposition 3.4). It follows that

|AS(χ, η̃) −AS(χ, η)|1,0S

≤ 2j(S + 1)|η̃ − η|0S = 2j(S + 1) max
0≤w≤S

∣∣∣∣ ∫ w

0

(η̃′(s)− η′(s)) ds
∣∣∣∣

≤ 2j(S + 1)S max
0≤w≤S

|η̃′(s)− η′(s)| ≤ 2jS(2 + S)|η̃ − η|1,0S . �

Proposition 4.2. lim
S↘0

AS(φ, 0) = 0.

Proof. For 0 < S < T ,

|AS(φ, 0)|1,0S = |ISGS(φ, 0)|1,0S ≤ S|GS(φ, 0)|0S + |GS(φ, 0)|0S
= (S + 1)|GS(φ, 0)|0S = (S + 1) max

0≤w≤S
|f((PSφ)w + 0)− f(φ)|

= (S + 1) max
0≤w≤S

|f((PTφ)w)− f((PTφ)0)|

= (S + 1) max
0≤w≤S

|f(E1
T (PTφ,w))− f(E1

T (PTφ, 0))|,

so continuity of f, PT and E1
T yields the assertion. �

Proposition 4.3. There exist Sφ ∈ (0, Tφ) and an open neighbourhood Wφ

of φ in Vφ such that for all χ ∈ Wφ, for all S ∈ (0, Sφ], and all η ∈ C1
0S,0,

η̃ ∈ C1
0S,0 with |η|1,0S ≤ εφ/2, |η̃|1,0S ≤ εφ/2,

(χ, η) ∈ DS , (χ, η̃) ∈ DS ,

|AS(χ, η)|1,0S <
εφ
2

and |AS(χ, η̃)−AS(χ, η)|1,0S ≤
1

2
|η̃ − η|1,0S .
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Proof. 1. Choose Sφ ∈ (0, Tφ) with |AS(φ, 0)|1,0S < εφ/6 for all S ∈ (0, Sφ],

which is possible due to Proposition 4.2, and

2jSφ(1 + Sφ) < min

{
1

2
,
εφ
3

}
.

As ASφ is continuous, there exists an open neigbourhood Wφ of φ in Vφ so that

for all χ ∈Wφ,

|ASφ(χ, 0)−ASφ(φ, 0)|1,0Sφ <
εφ
6
.

2. Now let S ∈ (0, Sφ] be given. For every χ ∈Wφ and t ∈ [0, S],

AS(χ, 0)(t) =

∫ t

0

(f((PSχ)w)− f(χ)) dw

=

∫ t

0

(f((PSφχ)w)− f(χ)) dw = ASφ(χ, 0)(t).

Using this (for χ and φ) and the definition of the norms | · |1,0S , | · |1,0Sφ , one

gets

|AS(χ, 0)−AS(φ, 0)|1,0S ≤ |ASφ(χ, 0)−ASφ(φ, 0)|1,0Sφ <
εφ
6

for every χ ∈Wφ.

3. Let χ ∈ Wφ, η ∈ C1
0S,0, η̃ ∈ C1

0S,0 be given, with |η|1,0S ≤ εφ/2 and

|η̃|1,0S ≤ εφ/2. Proposition 4.1 yields

|AS(χ, η̃)−AS(χ, η)|1,0S ≤ 2jS(1 + S)|η̃ − η|1,0S

≤ 2jSφ(1 + Sφ)|η̃ − η|1,0S ≤ min

{
1

2
,
εφ
3

}
|η̃ − η|1,0S .

Furthermore,

|AS(χ,η)|1,0S
≤ |AS(χ, η)−AS(χ, 0)|1,0S + |AS(χ, 0)−AS(φ, 0)|1,0S + |AS(φ, 0)|1,0S

<
εφ
3
|η|1,0S +

εφ
6

+
εφ
6
≤ εφ

3

εφ
2

+
2εφ
6

=
εφ
2
. �

For each S ∈ (0, Sφ] now Theorem 7.2 applies to the map

Wφ × {η ∈ C1
0S,0 : |η|1,0S < εφ} 3 (χ, η) 7→ AS(χ, η) ∈ C1

0S,0,

with M = Mφ = {η ∈ C1
0S,0 : |η|1,0S ≤ εφ/2}, and yields a continuously differ-

entiable map

Wφ 3 χ 7→ ηχ ∈ C1
0S,0

given by ηχ ∈ Mφ and AS(χ, ηχ) = ηχ. As the maps PS and ZS are linear and

continuous, it follows that the map

Σφ : Wφ 3 χ 7→ PSχ+ ZSηχ ∈ C1
S

is continuously differentiable.
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Using this and the continuous linear maps E1
S( · , t) : C1

S → C1, 0 ≤ t ≤ S,

one gets that each map

Wφ 3 χ 7→ E1
S(Σφ(χ), t) ∈ C1, 0 ≤ t ≤ S,

is continuously differentiable. The map

[0, S]×Wφ 3 (t, χ) 7→ E1
S(Σφ(χ), t) ∈ C1

is continuous.

Proposition 4.4. For every S ∈ (0, Sφ] and for every χ ∈ Wφ ∩ Xf the

function x = x(χ) = Σφ(χ) is a solution of (1.1) on [0, S], with x0 = χ and

xt ∈ Xf for 0 ≤ t ≤ S.

Proof. The function x is continuously differentiable with x0 = (PSχ)0 +

(ZSηχ)0 = (PSχ)0 = χ, and for 0 ≤ t ≤ S,

x(t) =PSχ(t) + ZSηχ(t) = χ(0) + tχ′(0) + ηχ(t)

=x(0) + t f(χ) +AS(χ, ηχ)(t)

(with χ ∈ Xf and the fixed point equation)

=x(0) + tf(χ) +

∫ t

0

(f((PSχ)w + (ZSηχ)w)− f(χ)) dw

=x(0) +

∫ t

0

f(xw) dw. �

Observe that the restrictions of the maps E1
S(Σφ( · ), t), 0 ≤ t ≤ S, to the

open subset Wφ∩Xf of the manifold Xf are continuously differentiable, and the

restriction of the map E1
S(Σφ( · ), · ) to [0, S]× (Wφ∩Xf ) is continuous. In other

words, the map

[0, S]× (Wφ ∩Xf ) 3 (t, χ) 7→ x
(χ)
t ∈ Xf

is continuous and each map

Wφ ∩Xf 3 χ 7→ x
(χ)
t ∈ Xf , 0 ≤ t ≤ S,

is continuously differentiable.

Proposition 4.5 (Local uniqueness). Suppose x and x̃ are solutions of (1.1)

on an interval I of positive length, with min I = 0 and x0 = x̃0 ∈ Xf . Then

there exists τ > 0 with x(t) = x̃(t) for all t ≤ τ .

Proof. Let φ = x0 and consider Tφ, εφ, Sφ as in Proposition 4.3. By conti-

nuity, there exists τ = S ∈ (0, Sφ] ∩ I such that for 0 ≤ t ≤ S,

|x(t)− φ(0)− tφ′(0)| < εφ
4
, |x′(t)− φ′(0)| < εφ

4
,

|x̃(t)− φ(0)− tφ′(0)| < εφ
4
, |x̃′(t)− φ′(0)| < εφ

4
.
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Define

y =x|(−∞,S] − PSφ, η = y|[0,S] ∈ C1
0S,0,

ỹ = x̃|(−∞,S] − PSφ, η̃ = ỹ|[0,S] ∈ C1
0S,0.

Then |η|1,0S < εφ/2 and |η̃|1,0S < εφ/2.

By Proposition 4.3, (φ, η) ∈ DS and (φ, η̃) ∈ DS . Also, for 0 ≤ t ≤ S,

AS(φ, η)(t) =

∫ t

0

(f((PSφ)w + (ZSη)w)− f(φ)) dw

=

∫ t

0

f(xw) dw − tf(φ) = x(0) +

∫ t

0

f(xw) dw − (φ(0) + tφ′(0))

= x(t)− (PSφ)(t) = η(t)

(recall that Proposition 3.1 yields the continuity of (−∞, S] 3 w 7→ xw =

E1
S(x|(−∞,S], w) ∈ C1). Hence AS(φ, η) = η. Analogously, AS(φ, η̃) = η̃. Propo-

sition 4.3 yields

|η − η̃|1,0S = |AS(φ, η)−AS(φ, η̃)|1,0S ≤
1

2
|η − η̃|1,0S ,

which gives η = η̃ and thereby x(t) = x̃(t) on [0, S] = [0, τ ]. �

5. The semiflow on the solution manifold

Proposition 5.1. Suppose x and x̃ are solutions of (1.1) on intervals I and

Ĩ of positive length, and 0 = min I = min Ĩ, x0 = x̃0 ∈ Xf . Then x(t) = x̃(t) on

I ∩ Ĩ.

Proof. The interval J = I ∩ Ĩ has positive length and minJ = 0. As-

sume x(t) 6= x̃(t) for some t ∈ J . Set tJ = inf{t ∈ J : x(t) 6= x̃(t)} and

assume in addition that tJ < sup J . The continuously differentiable function

y : (−∞, sup J − tJ)→ Rn given by y(t) = x(t+ tJ) satisfies

y′(t) = x′(t+ tJ) = f(xt+tJ ) = f(yt)

for 0 ≤ t < sup J − tJ , in particular, y0 ∈ Xf . Analogously, the function

ỹ : (−∞, sup J − tJ) → Rn given by y(t) = x̃(t + tJ) is a solution of equation

(1.1) on [0, sup J − tJ), and y0 = ỹ0. Proposition 4.5 yields y(t) = ỹ(t) on

[0, τ ] for some τ > 0. This implies x(t) = x̃(t) on [tJ , tJ + τ ], contradicting the

definition of tJ . It follows that tJ = sup J , hence x(t) = x̃(t) on [0, sup J). In

case sup J = max J continuity yields x(t) = x̃(t) on J . In both cases, one arrives

at a contradiction to the first assumption. �

Now maximal solutions are defined as follows. Let φ ∈ Xf . Set

tφ = sup {t > 0 : there is a solution of (1.1) on [0, t] with x0 = φ} ≤ ∞.
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By Proposition 4.4, 0 < tφ. Using Proposition 5.1, one obtains a solution xφ of

equation (1.1) on [0, tφ), with xφ0 = φ, by xφ(t) = x(t) for 0 < t < tφ, where x is

any solution of equation (1.1) on [0, t′] with t < t′ < tφ and x0 = φ. Equation

(1.1) yields xφt ∈ Xf for 0 ≤ t < tφ.

It is easy to show that any solution of (1.1) on some interval I of positive

length with min I = 0 and x0 = φ is a restriction of xφ.

Set Ωf = {(t, φ) ∈ [0,∞) × Xf : t < tφ} and define Σf : Ωf → Xf by

Σf (t, φ) = xφt .

Proposition 5.2. The map Σf is a semiflow.

Proof. For every φ ∈ Xf , 0 < tφ, hence (0, φ) ∈ Ωf and Σf (0, φ) = xφ0 = φ.

Let (t, φ) ∈ Ωf and (s,Σ(t, φ)) ∈ Ωf . It remains to show that (t+s, φ) ∈ Ωf and

Σf (s+ t, φ) = Σf (s,Σf (t, φ)). In order to prove this let x = xφ, ψ = xt, y = xψ.

Define ξ : (−∞, s + t] → Rn by ξ(u) = y(u − t). The map ξ is continuously

differentiable, and for u ≤ t,

ξ(u) = y(u− t) = ψ(u− t) = xt(u− t) = x(u).

In particular, ξ0 = φ and ξ′(u) = f(ξu) for 0 ≤ u ≤ t. For t < u ≤ t+ s,

ξ′(u) = y′(u− t) = f(yu−t) = f(ξu).

It follows that ξ is a restriction of xφ. Hence s+ t < tφ, or, (s+ t, φ) ∈ Ωf , and

Σf (s+ t, φ) = ξs+t = ys = Σf (s, ψ) = Σf (s,Σf (t, φ)). �

For t ≥ 0 with Ωf,t = {φ ∈ Xf : (t, φ) ∈ Ωf} 6= ∅ consider the solution

operator Σf,t : Ωf,t → Xf given by Σf,t(φ) = Σf (t, φ).

Proposition 5.3. For every (t, φ) ∈ Ωf there exist an open neighbourhood

N of φ in Xf and ε > 0 with [0, t+ ε)×N ⊂ Ωf , Σf |[0,t+ε)×N continuous, and

Σf,t|N continuously differentiable.

Proof. 1. Let (t, φ) ∈ Ωf be given. The remarks following Proposition 4.4

show that t = 0 is contained in the set

A = {s ∈ [0, tφ) : there exist an open neighbourhood Vs of φ in Xf

and εs > 0 with [0, s+ εs)× Vs ⊂ Ωf , Σf |[0,s+εs)×Vs continuous,

and Σf,s|Vs continuously differentiable}.

Let tA = supA ≤ tφ. It remains to prove that tA = tφ.

2. Suppose tA < tφ. Set ψ = Σf (tA, φ). Again by the remarks following

Proposition 4.4, there exist an open neighbourhood W of ψ in Xf and τ > 0 with

[0, τ ]×W ⊂ Ωf so that Σf |[0,τ ]×W is continuous and all Σf,u|W , 0 ≤ u ≤ τ , are

continuously differentiable. Proposition 3.1 (a) yields that the flowline [0, tφ) 3
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s 7→ xφs ∈ Xf is continuous (observe xφs = E1
u(xφ|(−∞,u], s) for 0 ≤ s < u < tφ).

It follows that there exists

t0 ∈ A ∩
(
tA −

τ

2
, tA

)
with xφt0 ∈W.

From t0 ∈ A one obtains an open neighbourhood N0 of φ in Xf and ε0 > 0 so

that [0, t0 + ε0) × N0 ⊂ Ωf , and Σf |[0,t0+ε0)×N0
is continuous, and Σf,t0 |N0 is

continuously differentiable. Because of continuity and xφt0 ∈W one may assume

Σf,t0(N0) ⊂W . For t0 < u < tA + τ/2 and χ ∈ N0,

0 < u− t0 < τ and Σf,t0(χ) ∈W,

which gives (u, χ) = ((u− t0) + t0, χ) ∈ Ωf and

Σf (u, χ) = Σf (u− t0,Σf (t0, χ)).

It follows that Σf |(t0,tA+τ/2)×N0
is continuous, which in combination with the

continuity of the restriction Σf |[0,t0+ε0)×N0
yields that the restriction of Σf to

[0, tA + τ/2)×N0 is continuous.

3. For u = tA + τ/4 and χ ∈ N0,

Σf (u, χ) = Σf (u− t0,Σf (t0, χ)) = Σf,u−t0 ◦ Σf,t0(χ)

with 0 < u − t0 < τ . Recall that Σf,t0(N0) ⊂ W . Now it follows that Σf,u|N0

is continuously differentiable. Combining this with the result of part 2 of the

proof, one concludes that u > tA belongs to A, contradicting tA = supA. �

Corollary 5.4. The semiflow Σf is continuous, each set Ωf,t, t ≥ 0, is

open in Xf , and each solution operator Σf,t, t ≥ 0, and Ωf,t 6= ∅, is continuously

differentiable.

Proof. Let t ≥ 0 and φ ∈ Ωf,t be given. Then (t, φ) ∈ Ωf , and for N chosen

according to Proposition 5.3 we get N ⊂ Ωf,t. This shows that Ωf,t is an open

subset of Xf . The remaining assertions are obvious from Proposition 5.4. �

The next result on the derivatives DΣf,t(φ), φ ∈ Ωf,t, will be used in Sec-

tion 6.

Proposition 5.5. Let φ ∈ Xf , 0 ≤ t < tφ, φ̂ ∈ TφXf , and s ≤ 0. Then

(DΣf,t(φ)φ̂)(s) = φ̂(t+ s) in case t+ s ≤ 0,

(DΣf,t(φ)φ̂)(s) = (DΣf,t+s(φ)φ̂)(0) in case 0 ≤ t+ s.

Proof. Each linear map ev1,s : C1 3 ψ 7→ ψ(s) ∈ Rn, s ≤ 0, is continuous

(compare Proposition 2.1). Let φ ∈ Xf , 0 ≤ t < tφ, φ̂ ∈ TφXf , s ≤ 0. Then

(DΣf,t(φ)φ̂)(s) = ev1,s(DΣf,t(φ)φ̂) = D(ev1,s ◦ Σf,t)(φ)φ̂

= D{Ωf,t 3 φ̃ 7→ xφ̃t (s) ∈ Rn}(φ)φ̂

= D{Ωf,t 3 φ̃ 7→ xφ̃(t+ s) ∈ Rn}(φ)φ̂.
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In case 0 ≤ t+ s the set Ωf,t ⊂ Ωf,t+s is an open neighbourhood of φ in Xf , and

D{Ωf,t 3 φ̃ 7→ xφ̃(t+ s) ∈ Rn}(φ)φ̂ = D{Ωf,t 3 φ̃ 7→ xφ̃t+s(0) ∈ Rn}(φ)φ̂

= D(ev1,0 ◦ Σf,t+s)(φ)φ̂

= ev1,0(DΣf,t+s(φ)φ̂) = (DΣf,t+s(φ)φ̂)(0)

while in case t+ s ≤ 0

D{Ωf,t 3 φ̃ 7→ xφ̃(t+ s) ∈ Rn}(φ)φ̂ = D{Ωf,t 3 φ̃ 7→ φ̃(t+ s) ∈ Rn}(φ)φ̂

= Dev1,t+s(φ)φ̂ = ev1,t+s(φ̂) = φ̂(t+ s). �

6. The variational equation

For φ ∈ Xf the derivatives DΣf,t(φ) : TφXf → TΣf,t(φ)Xf , 0 ≤ t < tφ, are

given by a variational equation. In order to prove this let φ̂ ∈ TφXf and define

the map vφ,φ̂ : (−∞, tφ)→ Rn by

vφ,φ̂(t) = (DΣf,t(φ)φ̂)(0) for 0 ≤ t < tφ,

vφ,φ̂(t) = φ̂(t) for t < 0.

Proposition 6.1. Let φ ∈ Xf and φ̂ ∈ TφXf be given and consider the map

v = vφ,φ̂.

(a) vt = DΣf,t(φ)φ̂ for every t ∈ [0, tφ).

In particular, v0 = φ̂. The map v : (−∞, tφ)→ Rn is continuously differentiable

and the curve [0, tφ) 3 t 7→ vt ∈ C1 is continuous, and

(b) v′(t) = Df(xφt )vt for every t ∈ [0, tφ).

Proof. 1. (a) Let φ ∈ Xf , φ̂ ∈ TφXf , 0 ≤ t < tφ. For s ≤ 0 with 0 ≤ t+ s

Proposition 5.5 yields

vt(s) = v(t+ s) = (DΣf,t+s(φ)φ̂)(0) = (DΣf,t(φ)φ̂)(s),

and, for s ≤ 0 with t+ s < 0,

vt(s) = v(t+ s) = φ̂(t+ s) = (DΣf,t(φ)φ̂)(s).

Together, vt = DΣf,t(φ)φ̂. Notice that DΣf,0(φ)φ̂ = φ̂. The fact that each

vt = DΣf,t(φ)φ̂, 0 ≤ t < tφ, belongs to TΣf,t(φ)Xf ⊂ C1 implies that v is

continuously differentiable. Using Proposition 3.1 (a), one obtains that the curve

[0, tφ) 3 t 7→ vt ∈ C1 is continuous.

2. Let t > 0 with Ωf,t 6= ∅ be given. For φ ∈ Ωf,t consider the map

ηφ : [0, t] 3 s 7→ xφ(s)− φ(0)− sφ′(0) ∈ Rn.

Observe that ηφ ∈ C1
0t,0 and Ptφ+ Ztη

φ = xφ|(−∞,t], which yields

(Ptφ+ Ztη
φ)s = xφs ∈ Xf ⊂ U for 0 ≤ s ≤ t.
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It follows that Ptφ + Ztη
φ ∈ domt. Then (φ, ηφ) belongs to the domain Dt of

the map Gt. The map Yt : Ωf,t 3 φ 7→ ηφ ∈ C1
0t,0 satisfies

Yt(φ)(s) = ηφ(s) = xφ(s)− φ(0)− sφ′(0)

=

∫ s

0

f(xφu) du− sf(φ) =

∫ s

0

(f((Ptφ+ Ztη
φ)u)− f(φ)) du

=

∫ s

0

(f(E1
t (Ptφ+ ZtYt(φ), u))− f(φ)) du = It(Gt(φ, Yt(φ)))(s)

for all φ ∈ Ωf,t and s ∈ [0, t], hence

(6.1) Yt(φ) = It(Gt(φ, Yt(φ))) (= At(φ, Yt(φ))) for all φ ∈ Ωf,t.

3. Proof that the map Y is continuously differentiable with

vφ,φ̂(s) = DYt(φ)φ̂(s) + (Ptφ̂)(s) for all s ∈ [0, t], φ ∈ Ωf,t, φ̂ ∈ TφXf .

By part 2, (φ, Yt(φ)) ∈ Dt for all φ ∈ Ωf,t. With the shift map ∆t : C
1 → C1

t ,

∆tφ(s) = φ(s − t) and the restriction map Rt : C
1
t → C1

0t, Rtχ = χ|[0,t], which

are both linear and continuous,

Yt(φ) = Rt(∆t ◦ Σf,t(φ)− Ptφ) for all φ ∈ Ωf,t.

This shows that the map Yt is continuously differentiable, and for all φ ∈ Ωf,t,

φ̂ ∈ TφXf , s ∈ [0, t],

(DYt(φ)φ̂)(s) = (Rt∆tDΣf,t(φ)φ̂)(s)− (RtPtφ̂)(s)

= (DΣf,t(φ)φ̂)(s− t)− φ̂(0)− sφ̂′(0)

= (DΣf,s(φ)φ̂)(0)− φ̂(0)− sφ̂′(0) (see Proposition 5.5)

= vφ,φ̂(s)− φ̂(0)− sφ̂′(0) = vφ,φ̂(s)− Ptφ̂(s).

4. Differentiation of equation (6.1) yields

(6.2) DYt(φ)φ̂ = ItDGt(φ, Yt(φ))(φ̂,DYt(φ)φ̂) for all φ ∈ Ωf,t, φ̂ ∈ TφXf .

For such φ and φ̂ and for each s ∈ [0, t],

vφ,φ̂(s) = (DYt(φ)φ̂)(s) + φ̂(0) + sφ̂′(0) (see part 3)

=

∫ s

0

{Def((Ptφ)u + (ZtYt(φ))u)((Ptφ̂)u + (ZtDYt(φ)φ̂)u)−Df(φ)φ̂} du

+ φ̂(0) + sφ̂′(0) (with (6.2) and Corollary 3.3)

=

∫ s

0

{Def(xφu)(vφ,φ̂u )−Df(φ)φ̂} du+ φ̂(0) + sDf(φ)φ̂ (as φ̂ ∈ TφXf )

=

∫ s

0

Df(xφu)vφ,φ̂u du+ φ̂(0).

In case 0 < t differentiation yields (vφ,φ̂)′(t) = Df(xφt )vφ,φ̂t . By continuity, this

holds for t = 0 as well. �
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7. Appendix on parametrized contractions and implicit functions

Proposition 7.1. Let a Hausdorff space T , a complete metric space M , and

a map f : T ×M →M be given. Assume that f is a uniform contraction in the

sense that there exists k ∈ [0, 1) so that

d(f(t, x), f(t, y)) ≤ kd(x, y) for all t ∈ T , x ∈M , y ∈M ,

and f( · , x) : T → M is continuous for each x ∈ M . Then the map g : T → M

given by g(t) = f(t, g(t)) is continuous.

Theorem 7.2. Let a Fréchet space T , a Banach space B, open sets V ⊂ T

and OB ⊂ B, and a continuously differentiable map A : V × OB → B be given.

Assume that for a closed set M ⊂ OB we have A(V × M) ⊂ M , and A is

a uniform contraction in the sense that there exists k ∈ [0, 1) so that

|A(t, x)−A(t, y)| ≤ k|x− y| for all t ∈ V , x ∈ OB, y ∈ OB.

Then the map g : V → B given by g(t) = A(t, g(t)) ∈ M is continuously differ-

entiable.

Proof. 1. Continuous differentiability (in the Michal–Bastiani sense) im-

plies continuity. So Proposition 7.1 applies to the restriction of A to V ×M and

yields a continuous map g : V → B with g(t) = A(t, g(t)) ∈ M for all t ∈ V .

Choose κ ∈ (k, 1). Each linear map D2A(t, x) : B → B, (t, x) ∈ V × OB , is

continuous. The contraction property yields

|D2A(t, x)| ≤ κ for all (t, x) ∈ V ×OB

since given ε = κ − k and t ∈ V , x ∈ OB , and x̂ ∈ B with |x̂| ≤ 1 there exists

δ > 0 such that, for h = δ/2, x+ hx̂ ∈ OB and

|h−1(A(t, x)−A(t, x+ hx̂))−D2A(t, x)x̂|

= |h−1(A(t, x)−A(t, x+ hx̂))−DA(t, x)(0, x̂)| ≤ ε,

hence

|h||D2A(t, x)x̂| ≤ ε|h|+ |A(t, x+ hx̂)−A(t, x)|

≤ ε|h|+ k|hx̂| ≤ (ε+ k)|h| = κ|h|.

It follows that |D2A(t, x)| = sup
|x̂|≤1

|D2A(t, x)x̂| ≤ κ, for every (t, x) ∈ V ×OB .

2. The map α : V × OB × T × B 3 (t, x, t̂, x̂) 7→ DA(t, x)(t̂, x̂) ∈ B is conti-

nuous, with

α(t, x, t̂, x̂) = D1A(t, x)t̂+D2A(t, x)x̂.

It follows that for all (t, x, t̂) ∈ V ×OB × T and for all x̂ and ŷ in B,

|α(t, x, t̂, x̂)− α(t, x, t̂, ŷ)| = |D2A(t, x)(x̂− ŷ)| ≤ κ|x̂− ŷ|.
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Therefore Proposition 7.1 yields a continuous map γ : V ×OB × T → B with

γ(t, x, t̂) = α(t, x, t̂, γ(t, x, t̂)) = D1A(t, x)t̂+D2A(t, x)γ(t, x, t̂)

for all (t, x, t̂) ∈ V ×OB × T . It follows that the map

ξ : V × T 3 (t, t̂) 7→ γ(t, g(t), t̂) ∈ B

is continuous.

3. It remains to show that for all t ∈ V and all t̂ ∈ T ,

lim
06=h→0

h−1(g(t+ ht̂)− g(t)) = ξ(t, t̂),

which in combination with the continuity of ξ yields that g is continuously dif-

ferentiable, with Dg(t)t̂ = ξ(t, t̂). So let t ∈ V and t̂ ∈ T be given. Choose

a convex neighbourhood NB ⊂ OB of g(t). There exists δ > 0 such that, for

−δ ≤ h ≤ δ,
t+ ht̂ ∈ V and g(t+ ht̂) ∈ NB .

Notice that, for all h ∈ [−δ, δ] and all θ ∈ [0, 1], g(t) + θ(g(t+ ht̂)− g(t)) ∈ NB .

With the abbreviation

ξ = ξ(t, t̂) = γ(t, g(t), t̂)

= D1A(t, g(t))t̂+D2A(t, g(t))γ(t, g(t), t̂)

= D1A(t, g(t))t̂+D2A(t, g(t))ξ

one finds that

h−1(g(t+ht̂)−g(t))−ξ = h−1(A(t+ht̂, g(t+ht̂))−A(t, g(t)))−ξ, with 0< |h|<δ,

equals

=h−1(A(t+ ht̂, g(t+ ht̂))−A(t+ ht̂, g(t)))−D1A(t, g(t))t̂−D2A(t, g(t))ξ

+ h−1(A(t+ ht̂, g(t))−A(t, g(t)))

=h−1(A(t+ ht̂, g(t))−A(t, g(t)))−D1A(t, g(t))t̂

+ h−1(A(t+ ht̂, g(t+ ht̂))−A(t+ ht̂, g(t)))

−
∫ 1

0

D2A(t+ ht̂, g(t) + θ[g(t+ ht̂)− g(t)])ξ dθ

+

∫ 1

0

{D2A(t+ ht̂, g(t) + θ[g(t+ ht̂)− g(t)])−D2A(t, g(t))}ξ dθ

=h−1(A(t+ ht̂, g(t))−A(t, g(t)))−D1A(t, g(t))t̂

+

∫ 1

0

h−1D2A(t+ ht̂, g(t) + θ[g(t+ ht̂)− g(t)])[g(t+ ht̂)− g(t)] dθ

−
∫ 1

0

D2A(t+ ht̂, g(t) + θ[g(t+ ht̂)− g(t)])ξ dθ
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+

∫ 1

0

{D2A(t+ ht̂, g(t) + θ[g(t+ ht̂)− g(t)])−D2A(t, g(t))}ξ dθ

=h−1(A(t+ ht̂, g(t))−A(t, g(t)))−D1A(t, g(t))t̂

+

∫ 1

0

D2A(t+ ht̂, g(t) + θ[g(t+ ht̂)− g(t)])[h−1(g(t+ ht̂)− g(t))− ξ] dθ

+

∫ 1

0

{D2A(t+ ht̂, g(t) + θ[g(t+ ht̂)− g(t)])−D2A(t, g(t))}ξ dθ.

Hence |h−1(g(t+ ht̂)− g(t))− ξ| is majorized by

|h−1(A(t+ ht̂, g(t))−A(t, g(t)))−D1A(t, g(t))t̂|+ κ|h−1(g(t+ ht̂)− g(t))− ξ|

+

∣∣∣∣ ∫ 1

0

{D2A(t+ ht̂, g(t) + θ[g(t+ ht̂)− g(t)])−D2A(t, g(t))}ξ dθ
∣∣∣∣,

which yields

(1− κ)|h−1(g(t+ ht̂)− g(t))− ξ|

≤ |h−1(A(t+ ht̂, g(t))−A(t, g(t)))−D1A(t, g(t))t̂|

+

∣∣∣∣ ∫ 1

0

{D2A(t+ ht̂, g(t) + θ[g(t+ ht̂)− g(t)])−D2A(t, g(t))}ξ dθ
∣∣∣∣.

The first term in the last expression converges to 0 as 0 6= h→ 0. The map

[−δ, δ]×[0, 1] 3 (h, θ) 7→ {D2A(t+ht̂, g(t)+θ[g(t+ht̂)−g(t)])−D2A(t, g(t))}ξ ∈ B

is uniformly continuous with value 0 on {0} × [0, 1]. This implies that for 0 6=
h → 0 the last integrand converges to 0 uniformly with respect to θ ∈ [0, 1].

Therefore the last integral tends to 0 as 0 6= h→ 0. �

Notice that in the next result the hypothesis on continuity of U 3 (x, y) 7→
D2f(x, y) ∈ Lc(B,E) is obsolete if dimB <∞.

Theorem 7.3. Let a Fréchet space T , Banach spaces B and E, an open set

U ⊂ T ×B, a continuously differentiable map f : U → E, and a zero (t0, x0) ∈ U
of f be given. Assume that D2f(t0, x0) : B → E is bijective and that the map U 3
(t, x) 7→ D2f(t, x) ∈ Lc(B,E) is continuous. Then there are open neighbourhoods

V of t0 in T and W of x0 in B with V ×W ⊂ U and a continuously differentiable

map g : V →W with g(t0) = x0 and

{(t, x) ∈ V ×W : f(t, x) = 0} = {(t, x) ∈ V ×W : x = g(t)}.

Proof. 1. (A fixed point problem) Choose an open neighbourhood NT,1 of

t0 and a convex open neighbourhood NB of x0 in B with NT,1 ×NB ⊂ U . The

equation

f(t, x) = f(t, x0) +D2f(t0, x0)[x− x0] +R(t, x)
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defines a continuously differentiable map R : NT,1 ×NB → E, with R(t, x0) = 0

for all t ∈ NT,1,

D2R(t, x) = D2f(t, x)−D2f(t0, x0) for all t ∈ NT,1 and x ∈ NB ,

and, in particular, D2R(t0, x0) = 0. The map

NT,1 ×NB 3 (t, x) 7→ D2R(t, x) ∈ Lc(B,E)

is continuous. In order to solve the equation 0 = f(t, x), (t, x) ∈ NT,1 ×NB , for

x as a function of t, observe that the previous equation is equivalent to

0 = f(t, x0) +D2f(t0, x0)[x− x0] +R(t, x),

or

x = x0 + (D2f(t0, x0))−1[−f(t, x0)−R(t, x)]

= x0 − (D2f(t0, x0))−1f(t, x0)− (D2f(t0, x0))−1R(t, x).

The last expression defines a map A : NT,1 × NB → B with A(t0, x0) = x0,

and for (t, x) ∈ NT,1 × NB , 0 = f(t, x) if and only if x = A(t, x). The map

A is continuously differentiable since the linear map (D2f(t0, x0))−1 : E → B is

continuous, due to the open mapping theorem.

2. (Contraction) For all t ∈ NT,1 and for all x, x̂ in NB ,

|A(t, x̂)−A(t, x)| = | − (D2f(t0, x0))−1R(t, x̂) + (D2f(t0, x0))−1R(t, x)|

≤ |(D2f(t0, x0))−1|
∣∣∣∣ ∫ 1

0

D2R(t, x+ s[x̂− x])[x̂− x] ds

∣∣∣∣.
Let ε = 1/(2|(D2f(t0, x0))−1|). There are an open neighbourhood NT,2 ⊂ NT,1
of t0 and δ > 0 such that for all t ∈ NT,2 and all x ∈ B with |x− x0| ≤ δ,

x ∈ NB and |D2R(t, x)| = |D2R(t, x)−D2R(t0, x0)| < ε.

For all x 6= x̂ in B with |x − x0| ≤ δ and |x̂ − x0| ≤ δ and for all s ∈ [0, 1] it

follows that |x+ s[x̂− x]− x0| ≤ δ, hence∣∣∣∣D2R(x+ s[x̂− x])
1

|x̂− x|
[x̂− x]

∣∣∣∣ < ε,

and thereby

|A(t, x̂)−A(t, x)| ≤ ε|x̂− x||(D2f(t0, x0))−1| = 1

2
|x̂− x|.

3. (Invariance) By continuity, there is an open neighbourhood NT,3 ⊂ NT,2
of t0 such that

|A(t, x0)−A(t0, x0)| < δ

4
for all t ∈ NT,3.
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For all t ∈ NT,3 and x ∈ B with |x− x0| ≤ δ this yields

|A(t, x)− x0| = |A(t, x)−A(t0, x0)|

≤ |A(t, x)−A(t, x0)|+ |A(t, x0)−A(t0, x0)|

<
1

2
|x− x0|+

δ

4
≤ δ

2
+
δ

4
=

3δ

4
.

4. Set V = NT,3, OB = {x ∈ B : |x− x0| < δ}, and

M =

{
x ∈ B : |x− x0| ≤

3δ

4

}
,

and apply Theorem 7.2 to the restriction of A to the set V × OB . This yields

a continuously differentiable map g : V → B with g(t) = A(t, g(t)) ∈ OB for all

t ∈ V . Using part 3, we get |g(t)− x0| < 3δ/4 for all t ∈ V . Set

W =

{
x ∈ B : |x− x0| <

3δ

4

}
.

Then g(V ) ⊂W . From g(t) = A(t, g(t)) for all t ∈ V we obtain 0 = f(t, g(t)) for

these t. Conversely, if 0 = f(t, x) for (t, x) ∈ V ×W ⊂ V ×M , then x = A(t, x),

hence x = g(t). In particular, x0 = g(t0). �
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