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SEMIFLOWS FOR DIFFERENTIAL EQUATIONS
WITH LOCALLY BOUNDED DELAY
ON SOLUTION MANIFOLDS IN THE SPACE C!((—0,0],R")

HaANS-OTTO WALTHER

ABSTRACT. We construct a semiflow of continuously differentiable solution
operators for delay differential equations z’(t) = f(z+) with f defined on an
open subset of the Fréchet space C! = C1((—o0, 0], R™). This space has the
advantage that it contains all histories z¢ = z(t+ - ), t € R, of every possible
entire solution of the delay differential equation, in contrast to a Banach
space of maps (—oo, 0] — R™ whose norm would impose growth conditions
at —oo. The semiflow lives on the set Xy = {¢ € U : ¢/(0) = f(¢)} which
is a submanifold of finite codimension in C'. The hypotheses are that the
functional f is continuously differentiable (in the Michal-Bastiani sense)
and that the derivatives have a mild extension property. The result applies
to autonomous differential equations with state-dependent delay which may
be unbounded but which is locally bounded. The case of constant bounded
delay, distributed or not, is included.

1. Introduction

An autonomous delay differential equation has the form

(1.1) '(t) = f(x)
with a functional f: U — R™, where U C (R")! is a set of maps I — R"™ defined

on a closed interval I C R of positive length with max ! = 0. A solution on an
interval J C Ris a map z: I +J — R"™ so that z|; is differentiable, all segments,
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or histories, x;: I 3 s — xz(s+t) € R", ¢t € J, belong to U, and equation (1.1)
holds for all ¢ € J, with the right derivative of z at ¢ = minJ in case J has
a minimum (or, with the derivative of z|; on the left-hand side).

In case I = [-n,0], » > 0, U C C(I,R") open, and f locally Lipschitz
continuous the initial value problem (IVP)

2'(t) = f(zy) fort>0, z9=¢eUcCC(-r0,R")

has a unique maximal solution z = z® on some interval J = [0,%,), and the
solution operators ¢ — xf , 0 <t <t4, define a continuous semiflow on U. For f
continuously differentiable the solution operators are continuously differentiable,
see [2] and compare [5]. This by now familiar theory applies to examples like

0
2(t) = g(x(t),x(t —r)) or a'(t) =/ g(x(t + s)) dp(s)

—r
where the delay is invariant, that is, does not depend neither on the argument ¢
nor on the state ¢ = ;.

For case I = (—o0,0] and equations with unbounded invariant delay, results
on well-posed IVPs in suitable Banach spaces of continuous functions (—oo, 0] —
R™ may be found in [8] and in [1].

All of these do not cover equations with a variable, state-dependent delay,
like for example

(1.2) (1) = g(x(t — d(z1)))

with a nonconstant delay functional d: C([—r,0],R™) D U — [0,r]. The reason
for this may be seen in the fact that the evaluation map

C([-r,0],R™) x [-7,0] 3 (¢, 5) — ¢(s) € R"

is not locally Lipschitz continuous [14]. A theory which applies to equations with
bounded state-dependent delay and yields continuously differentiable solution
operators was developed in [14, 15]. The main result in [14] considers equation
(1.1) for a continuously differentiable functional f: U — R™, U an open subset
of the Banach space C*([—r,0],R™), and establishes a continuous semiflow of
continuously differentiable solution operators for equation (1.1) under a mild
additional smoothness hypothesis, which requires that

[e] every derivative D f(¢), ¢ € U, extends to a linear map
D.f(8): C([-r,0},R") > R"
and the map
U x C([=r,0],R") 5 (¢,X) = Def(¢)x € R"

18 continuous.
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This is a variant of the property of being almost Fréchet differentiable from [9],
designed for the application to differential equations with bounded state-depen-
dent delay. The semiflow from [14] lives on the solution manifold

Xp={0eU:¢(0)=f(9)}

which is indeed a continuously differentiable submanifold of codimension n in
C([-r,0],R™).

In [16] the result from [14] is used to obtain analogous results for a class
of equations which involve unbounded state-dependent delay, like for example
equation (1.2) with a delay functional d: U — [0, 00) which may be unbounded
but is locally bounded — with respect to a topology on U. In [16] equation (1.1)
is studied for a map f defined on an open subset U of a Banach space B!, a > 0,
of continuously differentiable maps (—o0,0] — R™ which satisfy

ep(t) -0 and e (t) >0 ast— —oo.

The property that such a map f: Bl > U — R" is of locally bounded delay
means that

[Ibd | for every ¢ € U there are a neighbourhood V. C U and r > 0 such
that for all x,v in V with x(t) = ¢¥(t), for all t € [—r,0], we have

fO0) = F{@).

A further extension in [17] concerns the construction of an evolutionary sys-
tem (or, a process) of continuously differentiable solution operators for a nonau-
tonomous delay differential equation

o' (t) = f(t, z1)

with a continuously differentiable map f: R x Bl D V' — R™ which satisfies
nonautonomous versions of the properties [e] and [Ibd]. Applications include, for
example, Volterra integro-differential equations of the form

2 (t) = / K(t, 5)g(x(s)) ds,

where the time-dependent delay at time ¢ is bounded by ¢, and equations with
proportional delay like the pantograph equation

2/ (t) = ax(\t) + bx(t)

with 0 < A < 1, where the time-dependent delay is given by d(t) = (1 — A\)t,
because of z(At) = z(t — d(t)).
The solution operators from [17] are defined on open subsets of continuously
differentiable submanifolds of finite codimension in the Banach space B..
Working in a Banach space like B!, a > 0, which is defined by a growth condi-
tion at —oo, has a shortcoming, though. Linearization of the semiflows from [16]
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at equilibria yields autonomous linear differential equations with bounded invari-
ant delay. For almost all solutions A € C of the characteristic equation associated
to such a linear delay differential equation the nontrivial entire solutions (solu-
tions on J = R, in the former terminology)

z:R>t— ReeMceR”, ceCm,

grow too fast at —oo for having segments x; in the space Bl. This means, in
particular, that the spectrum of the generator of the linearized semiflow is no
longer given by the characteristic equation, which results from an Ansatz with
exponential solutions.

A state space which contains all segments z;: (—00,0] — R", t € R, of
all continuously differentiable solutions of an autonomous differential equation
with locally bounded delay together with all segments of all entire solutions of
its linearizations must not be restricted by growth or integrability conditions
at —oo. This suggests to try the vector space C* = C!((—o0,0],R"), which
equipped with the topology of uniform convergence of maps and their derivatives
on compact sets, is a Fréchet space, that is, a complete topological vector space
whose topology is given by a sequence of seminorms | - |;, j € N, which is

separating (klim x = x if and only if klim |z, — x|; = 0 for every j € N, and
—00 —00

=0 if and only if |z|; =0 for all j € N).

Let us recall here that continuous differentiability in Banach spaces does
not generalize in a canonical way to topological vector spaces. In the sequel
continuous differentiability of a map f: V O U — W, V and W topological
vector spaces and U C V open, is always understood in the sense of Michal and
Bastiani, which means the following: The tangent vector of a continuous curve
c¢: I — V, I CR an interval of positive length, at t € I is defined by

() = Oiihrgo% (c(t+ 1) —c(t) €V

provided this limit exists. The curve is called continuously differentiable if it
has tangent vectors everywhere and if the map I ¢ — ¢/(¢) € V is continuous.
For a continuous map f: V O U — W as above and for u € U and v € V
with u + (—e,e)v C U for some ¢ > 0 the directional derivative D f(u)v € W is
defined by the tangent vector of the curve (—e,e) 2t +— f(u+tv) e W at t =0
provided the latter exists. The map f is called continuously differentiable if all
directional derivatives D f(u)v, u € U and v € V, exist and if the map

UxV>3(u,v)—= Df(u)veW

is continuous.
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This notion, obviously weaker than familiar continuous differentiability of
maps in Banach spaces, avoids the choice of a topology on the vector space of
linear continuous maps V' — W. For more on this, consult e.g. [13], [3], [6].

Let C = C((—o0, 0], R™) denote the Fréchet space of continuous maps (—o0, 0]
— R”, with the topology of uniform convergence on compact sets.

The present paper deals with equation (1.1) for continuously differentiable
functionals f on open subsets U C C'! so that the analogue (e) of the exten-
sion property [e] holds where C1([—r,0],R™) and C([—r,0],R") are replaced by
C' and C, respectively. The main results are that, analogously to the results
in [14], [16], the solution manifold X is a continuously differentiable submani-
fold of codimension n in C! (Proposition 2.3 below) and the maximal solutions
of the IVPs

()= f(zy) fort>0, zo=¢€ Xy

define a continuous semiflow ¥ of continuously differentiable solution operators
on X; (Proposition 5.2, Corollary 5.4). Proposition 6.1 shows that the deriva-
tives

Dng(t, ¢) T¢Xf — TE(t,¢)X,f

of the solution operators are given by variational equations

V' (t) = Df(Z¢(t, ¢))vr-

In a forthcoming paper [18] we shall obtain local invariant manifolds at stationary
points of the semiflow X .

At the beginning of Section 2 below it is shown how to verify property (e) for
a simple but nevertheless typical example of the form (1.2). When written in the
form (1.1) this example is of locally bounded delay (with the space B} in condi-
tion [Ibd] replaced by C'). This is not merely a coincidence — being of locally
bounded delay follows from continuous differentiability, see Proposition 1.1 at
the end of this introduction. Equations which involve integration over (—oc, 0],
like for example

0
P = [ B+ s)ds

or infinite series as in
'(t) = — Z 27%x(t — k —r(x(t))), r:R—[0,00) bounded,
k=1

will in general escape the approach presented here. Such examples require state
spaces which are restricted by the condition that the term on the right-hand
side of the differential equation makes sense. The results below do not include
statements about partial derivatives 0;X¢(t, ¢), in contrast to [14], [15] about
equations with bounded delay. It is easy to see that in the present case such
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partial derivatives may exist only at initial data ¢ € Xy C C' which are twice
continuously differentiable.

Local solutions of IVPs are obtained by means of a result due to Gléckner [4],
on uniform contractions whose fixed points are continuously differentiable with
respect to a parameter in a topological vector space. The special case needed
here, with parameters in a Fréchet space, is stated in the appendix, Section 7,
as Theorem 7.2. This theorem also yields a simple Implicit Function Theorem
for maps F' x B D U — B, F a Fréchet space and B a Banach space, which is
stated as Theorem 7.3. The case of Theorem 7.3 with dim B < oo, which helps
to show that the set X is a submanifold, is part of a much more general result
of Glockner [3]. The proofs of Theorems 7.2 and 7.3 are included for convenience
and simplicity.

The approach in Sections 2—6 is similar to the Banach space case studied
in [14], with modifications most of which are required by the lack of norms and by
the different notions of continuous differentiability. The hypothesis (e) is used in
the proof that X is a continuously differentiable submanifold (Proposition 2.3)
and in the proof of the estimate in Proposition 3.4 with a norm on the right-hand
side which does not involve derivatives. This is crucial in order to obtain the
Lipschitz estimate of Proposition 4.1, which in turn yields a contraction. The
construction of the semiflow in Section 5 from the local results in Section 4 is
standard and included for convenience.

For earlier work on differential equations with unbounded delay and solution
segments in topological vector spaces, see [11], [12].

Preliminaries. For basic facts about topological vector spaces see [10]. The
facts from calculus in Fréchet spaces, including the Riemann integral for contin-
uous maps [a,b] — F into a Fréchet space and up to Fréchet manifolds, which
are freely used in Sections 2-7 below, are taken from Sections I.1-1.4 in [6].

Products of topological vector spaces are always equipped with the product
topology. The product F' x G of Fréchet spaces is a Fréchet space.

For maps f: U — Z, V, W, Z topological vector spaces and U C V x W open,
partial derivatives are defined in the usual way. For example, Dy f(v,w): V — Z
is given by

Duf(e.w)i = Jim = (f(0-+0,w) = ().

The tangent cone of a set M C F, F' a Fréchet space, at x € M is the set T, M
of all tangent vectors v = ¢/(0) of continuously differentiable curves ¢: I — F
with I open, 0 € I, ¢(0) =z, ¢c(I) C M.

The following Fréchet spaces are used in the sequel: For n € N and T € R,
Cr = C((—00,T],R™) denotes the Fréchet space of continuous maps (—oo, T| —

R™ with the seminorms given by |¢|7; = max |é(t)], ¢ € Cr and j €N,
T—j<t<T
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which define the topology of uniform convergence on compact sets, and C}. =
C1((—o0, T],R") is the Fréchet space of continuously differentiable maps (—oo, T
— R™ with [¢|1,7; = |91 + [¢|T5-

Analogously, Co, = C(R,R™) denotes the Fréchet space of continuous maps
R — R with |¢]ec; = _max |6(t)|, and CL, = CH(R,R™) denotes the Fréchet
space of continuously differentiable maps R — R™ with |¢|1 ao.; = |¢]oo.; 419 |o.s-
The differentiation map dr: Ch > ¢ +— ¢’ € Cr is linear and continuous.

It will be convenient to use C' = Cy and C' = C} and to abbreviate |- |; =

| “lojs | 115 =110, @ = Oo. The convex sets

1 .
{¢€C|¢|J<]}a JeNa
form a neighbourhood base at 0 € C, and the convex sets
1 1 :
¢€Ci|¢|1,j<; , JEN,

form a neighbourhood base at 0 € C?.

Every Banach space B over R, with norm | - |, is a Fréchet space with | - |; =] - |
for 7 € N. For Banach spaces B, E the Banach space of linear continuous maps
B — E is denoted by L.(B, E).

The following Banach spaces occur in the sequel: For n € N and real numbers
S < T, the space Csr = C([S,T],R™) of continuous maps [S, 7] — R™ with the
norm given by |¢|sr = S@?§T|¢(t)|, and the space Ciy = CY([S,T],R") of
continuously differentiable ;n;ps [S,T] — R™ with the norm given by |¢|1, 57 =
|plsT + 19|57

In case S =0 < T, Cyr,o denotes the closed subspace {¢ € Cor : $(0) = 0},
and Cr , denotes the closed subspace {¢ € Cjr : ¢(0) = 0 = ¢'(0)}.

PROPOSITION 1.1. Each continuously differentiable map f: C* > U — R

is of locally bounded delay in the sense that for every ¢ € U there are a neigh-
bourhood V-C U and r > 0 such that for all x,v in V with

x(t) =) forallt € [—r,0]
we have f(x) = f(¢).

PROOF. For j € Nset V; = {n € C': |nl1; < 1/j}. Assume the assertion
is false. Then there exists ¢ € U such that for every j € N there are x;,v; in
(¢ +V;) NU with x;(t) = v;(t) for —j <t < 0and 0# f(x;) — f(¥;). There
exists j, € N so that ¢ +V; C U for all integers j > js. For these integers j,

04 FOx) — f(;) = / DF(; + 506 — ) — 5] ds,
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and it follows that for some s; € [0, 1],

0# Df(¥; + s;(x; — ¥i)s — ¥
For integers j > jg define ¢; > 0 by

I Df (5 +55(xs — i) s — sl = 1.
Observe that ¢ + V; 3 ¥; + s;(x; — ;) = ¢ as j — oo. Also, ¢;[x; —¥;] = 0
as j — oo because given k € N and j > max{jg,k}, ¢;[x; — ¢¥;](t) = 0 on
[—4,0] D [—k,0], hence |cj[x; — ¥4]l1,x = 0. By continuity, |Df(¢)0] = 1,
contradicting linearity. O

2. The extension property and the solution manifold

In order to rewrite examples like equation (1.2) in the general form of equa-
tion (1.1) evaluation maps are convenient. With the numerical evaluation map

ev: (R")(70 5 (—00,0] 3 (¢,1) — ¢(t) € R"
in case n = 1 the right-hand side of (1.2) is given by (1.1) for U = R(=>:0] and
f(9) = glev(¢,—d(9))) = g o ev o (id x (=d))(¢9).

PROPOSITION 2.1. evg = eV|cx (—o0,0] 8 continuous, and evy = ev|c1 x (00,0
is continuously differentiable with

Devi(,1)(,1) = o) + 10/ (t).

PrOOF. 1. (On evg) Suppose ¢p — ¢ in C and t — t in (—o0,0] as
N > k£ — oo. There exists an integer j € N with —j < ¢; for all £ € N. Use

lev(dr, tr) — ev(o,t)| = |px(ts) — B(t)]
< |or(tr) — o(t)| + |B(tx) — o(t)]
< |br — dlo + |d(te) — B(t)]

and |¢r — ¢lo,; — 0 for kK — oo and the continuity of ¢ at ¢.

2. (On evy) Each map ev(-,t), t <0, is linear. This implies that for every
peClt<0and a € C! the directional derivative Devy (¢, t)qg € R" of the map
evi(-,t): Ct 34— evi(1h,t) € R™ at ¢ exists and is given by Devy( - ,t)(qﬁ)QAﬁ:
QAS(t) = ev(a, t). This means that the partial derivative Dievy(¢,t): C' — R
exists and is given by Djevy(o, t)qAS = ev(a, t). Using this in combination with
the continuity of evy and of the inclusion map C! — C, one finds that the map

C! x (—00,0] X C' 5 (¢,t,¢) — Dievi(d,t)p € R”

is continuous. Next, for ¢ € C1, t < 0, s € R with s # 0, and for all h # 0 with
t+ hs <0,

¢(t + sh) — ¢(t)

F(ev(g,t 4 hs) — ev(, 1) = s L

, 40
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as h — 0. It follows that the directional derivative Devy(¢, -)(t)s exists and is
given by Devi(o, - )(t)s = s¢'(t) = sev(¢’,t). The same holds for s = 0. So
the partial derivative Daevy(¢,t): R — R"™ exists and is given by Daevy(o,t)s =
sev(¢',t). Using this in combination with the continuity of 9, evy, and of the
multiplication on R one finds that the map

C' x (=00,0) x R > (¢,t,5) = Dgevi(¢,t)s € R™
is continuous. Now the assertion follows (see [6]). O

Counsider the special case 2/(t) = az(t —(x(t))) (€ R) of equation (1.2), with
0 # a € R and a continuously differentiable function §: R — [0, c0), which is
equation (1.1) with f: R 5 R f =aevo (id x (=5 oev(-,0))). The chain
rule in combination with Proposition 2.1 shows that the restriction f; = f|c1 is
continuously differentiable with

Dfi($)¢ = aDevi (¢, —3(6(0)))(d, —8'(¢(0))$(0))
= alp(—6(6(0))) — & ((0))(0)¢' (—8(¢(0)))].

Moreover, f; has property (e) since the last term does not involve ¢': For ¢ € C1
and x € C define

Defr(d)x = alx(=0(6(0))) — 6"(6(0))x(0)¢' (—6(¢(0)))]-

Then the continuity of evg and of the inclusion and differentiation maps C* — C
shows that the map C! x C 3 (¢, %) — Dofi(¢)x € R is continuous.

From now on let a continuously differentiable functional f: C* > U — R"®
with property (e) be given. Its solution manifold X = X; = {¢p € U : ¢'(0) =
f(#)} is the zeroset of the continuously differentiable map

g: U > ¢—evg(09,0) — f(p) € R™.

The nullspaces Y =Y, = Yr 4 = {x € C' : X(0) = Df(¢)x} = Dg(¢)~1(0),
for ¢ € U, are closed, and for ¢ € X, Ty X C Yy because every x € T4 X equals
x = c(0) for a continuously differentiable curve c¢: I — C! with I open and
0€l,c(0)=¢,c(I)C X, d(0) =y, hence goc =0, and the chain rule yields
Dyg(¢)x=Dg(c(0))Dc(0)1=D(g o ¢)1=0, or equivalently, x € Dg(¢)~1(0)=Y.

PROPOSITION 2.2. For every ¢ € U the derivative Dg(¢): C* — R™ is
surjective, and there is a subspace Qp C C' with dim Qy = n and C' =Y, & Q.

PROOF. 1. Let ¢ € U be given. For surjectivity of the linear map Dg(¢) it
is sufficient to show that the range is dense. In order to prove this let y € R"”
and € > 0 be given. As D.f(¢): C — R™ is continuous (at 0 € C) there is
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a neighbourhood N of 0 in C' with |Def(¢)x| < € for all x € N. N contains
a neighbourhood of the form

{w € C: max [P(t)| < ;},

—j<t<0

with some j € N, which in turn contains elements 1 € C* with ¥’(0) = y, hence

[Dg(d)y =yl = [¢'(0) = Df(¢)¢ — y| = [Def($)¢h] <e.

2. Choose a basis of R", take preimages ¢1, .. ., ¢, under Dg(¢), and consider
the span @)y of these preimages. Then dim Q4 = n and

C' = (Dg(¢))"1(0) ® Qy = Yy ® Q- O

Recall that finite-dimensional subspaces of a topological vectorspace are
closed. The next result implies that Xy is a continuously differentiable sub-
manifold of codimension n in the space C.

PROPOSITION 2.3. For every ¢ € Xy there are open neighbourhoods Ny of 0
in Yy, Ng of 0 in Qg, and a continuously differentiable map §: Ny — Q4 with
E(Ny) C Ng and E(O) =0 and

XN (Ny +Ng) ={¢p+9+&) e Cl 9 € Ny}

PROOF. Let ¢ € X = Xy = g !(0) be given, write Y = Y, Q@ = Q¢.
The restriction Dg(¢)|g is an isomorphism, due to Proposition 2.2. The map
j: Y x@Q — C! given by j(1,x) = ¢+ + x is affine linear and continuous and

thereby continuously differentiable. The set V = j~(U) is open with (0,0) € V,
the map h = g o j|y is continuously differentiable with h(0,0) = 0 and

Dah(, x)n = Dh(v, x)(0,m) = Dg(j(v, x)) D3 (¥, x)(0,m) = Dg(j (¢, x))n

for all (¢, x) € V and all n € Q. The equations Dyh(0,0)n = Dg(¢p)n for n € Q
show that D3h(0,0): Q@ — R™ is an isomorphism. The Implicit Function Theo-
rem 7.3 in combination with the remark preceding it yields open neighbourhoods
Ny of 0in Y, Ng of 0 in @, and a continuously differentiable map £: Ny — @
with Ny x Ng C V, &(Ny) C Ng, £(0) =0 and

h=H0) N (Ny x No) = {(¢,£(¥)) €Y x Q : ¢ € Ny}
Applying j, we obtain the assertion. O
The idea how to solve the IVP
2'(t) = f(zy) fort>0, zo=¢€ Xy

is as in [14]. Suppose z: (—o0,T] — R™, T > 0, is a solution of equation (1.1)
on [0,7T] with g = ¢. Continue ¢ by ¢(t) = #(0) + t¢'(0) to a continuously
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differentiable function $: (=00, T] = R™. Then y = = — (,zAS satisfies y(t) = 0 for
t <0, and for 0 <t < T the equation

mozwﬂ—ao=xmw3£fugm—¢mw¢ww
:Af@+&m&%mm:/0@+&w¢@m5

0

holds, with the parameter ¢ € Xy C U C C*. Obviously, y(0) = 0 = y'(0). So
1=yl € Cor,o satisfies the fixed point equation

(2.1) mw=AU@+&w¢wmm 0<t<T,

where 7 € C# is the prolongation of 7 given by 7j(t) = 0 for all ¢ < 0. In order
to find a solution of the IVP one solves the fixed point equation (2.1) by means
of a parametrized contraction on a subset of the Banach space C&Tﬁ with the
parameter ¢ € U C C'. For ¢ € X the associated fixed point n = 74 yields
a solution x =7 + & of the IVP.

The next section begins with a framework for studying equation (2.1).

3. Evaluations, substition operator, and prolongations

The segment evaluation maps

ET: CT X (_OO?T] > (¢7t> = ¢t S 07
EL: C} x (=00,T] 3 (¢,t) — ¢ € C1,
EP: Cp x (—00,T) 3 (¢,t) > ¢ € C
for T € R and their analogues E.., EL for T = oo are all linear in the first
argument.
PRrROPOSITION 3.1. Let T < oo.

(a) The maps Ep and EX are continuous.

(b) For every ¢ € Ck the curve ®: (—o0,T) 3 t — ¢ € C is continuously
differentiable, with ®'(t) = Er(0ro,t).

(¢) The map E%O|C%X(,OO7T) is continuously differentiable, with

D1EP(6,)¢ = B’ (d,t) = ¢ and
DoEX (¢,t)s = s EX(Op¢,t) = s(0rd): = s(d');.

Proor. 1. Let T' € R.
1.1. Continuity of Ep. Let ¢p — ¢ in Cp as N 3 k — oo, and ¢, — ¢ in
(—00,T]. Let j € N be given. In order to show |¢p ¢, — ¢¢|; — 0 as k — oo,
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choose m > T in N with T'— m < t. There exists k,, € N such that for all
integers k > k,,, T —m < t; <T. For such k,
| Okt — Delj = _max |Pr(te +5) — o(t + 5)]
< _ _
< max [ntn+ ) = 0t )|+ max |6t +3) = 6(t+5)

—JS8>

< pogmax k() = o)+ max [tk + 5) = 6(t + 5)|

= |k — PlTm+j + _max |p(t + 5) — o(t + 5)|.

Use |¢r, —@|7,m+; — 0 as k — oo and the uniform continuity of ¢ on the compact
interval [T'— m — j,T] in order to complete the proof.
1.2. Continuity of EL. For j € N and ¢, in C} and ¢, s € (—oo,T7,

|6¢ = sl1g = |de = sl + |(¢0)" — (¥s)l;
= |Er(¢,t) — Er(v,8)]; + |(¢')e — (¥')sl;
= |Er(¢,t) — Ex(¢,5)|; + [Er(Ore, t) — Er(dry, s)|;.
Use the continuity of Er and dr in order to complete the proof.
1.3. As the inclusion C' — C'is continuous, it follows that E1° is continuous.

1.4. On the map @, for p € CL. Let t < T, €N, 0£heR, t+h <T.
Then

’zﬁ (@(t + h) — @(t)) — Er(dre, 1)

J

1 /
:7;1%3;};0 E(¢(t+h+s)f¢(t+s))f¢(t+s)
1
= max /O(¢’(t+s+6’[t+h+s(t+s)])¢'(t+s))d0‘

N

1
/ o
_7%35;0/0 |¢'(t + s+ 0h) — ¢ (t+ s)| db,

and the uniform continuity of ¢’ on [t — 1 — j, T| implies that the last term tends
to 0 as 0 # h — 0. This shows that ® is differentiable with ®'(t) = Ep(9r¢,1).
Using (a), one finds that ®’ is continuous.

L5, On E°| ¢« (—o0,1)- Eet o€ CA% and t< T. The existence of D1 EX(¢, 1)
and the formula Dy EX(¢,t)¢ = E3%(¢,t) = ¢; follow from linearity in the first
argument. Using part 1.3 of the proof, one concludes that the map

Ch % (=00, T) x C} 3 (¢,t,0) — D1 EX (¢, 1) € C

is continuous.
The existence of Dy EX°(¢,t)s for s € R follows from EXY(¢, t+hs) = ®(t+hs)
for t + hs < T in combination with (b) and the chain rule. Also, Dy E3%(¢,t)s =
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s®'(t) = sEX(Ore,t), which in combination with part 1.3 shows that the map
Ch x (—00,T) xR 3 (p,t,8) = Do EX (o, t)s € C

is continuous. Now it follows that EX° is continuously differentiable (see [6]).
2. The proofs for T' = oo are analogous. O

Next, consider the substitution operator Fp: domp — Cyp which, for 0 <
T < o0, is given by

domy ={¢p € C}: ¢, € U for 0 < s < T}

and

Fr()(t) = f(¢r) = f(Er(6.1)) € R
Notice that in order to obtain continuous differentiability of Frr the chain rule
cannot be applied, due to lack of smoothness of the map Ex.

PROPOSITION 3.2. Let 0 <T < oo. The set domp is open and Fr is contin-
wously differentiable with

(DFr(9)9)(s) = Def(ER(¢,5)EX (6, 5).

PROOF. 1. (Openness) Let ¢ € domr. Due to the continuity of EX for each
t € [0,7] there are open neighbourhoods N; of ¢ in Ck and V; of ¢t in R with
s = EL(1,s) € U for ally) € Ny, s € V;N[0,T]. Due to compactness there exists

a finite subset 7 C [0,7] with [0,7] C |J V;. Then [ NV is a neighbourhood of
ter ter
¢ in domr.

2. For every ¢ € domp and every qg € C} the map
0.7) > t = Def(E7(9,1)) Ef(6,1) € R

is continuous. Therefore, the equation

Br(¢,6)(t) = Def(Er(6,) B’ (6, 1)
defines a map Br: domp X C} — Cor. In order to show that B is continuous,
assume ¢ — ¢ in domy and ¢ — ¢ in Ch as N> k — oo. For all k € N,

|Br (6w, 1) — Br(d, d)|or

= nax [Def(EH(0r, 1) B (dr,1) = Def (EL(6, 1) B (6,1)]

The map domg x Ch x [0,T] > (x,X,t) = Def(Eh(x,t))EX(X,t) € R" is
uniformly continuous on the compact set {(¢, )} x [0,T].
Let € > 0. Then there is a neighbourhood N of (¢, ¢) in doms x Ck such

that for all (1,4)) € N and for all ¢ € [0, 7],

By (1, 9)(t) — Br(¢,9)(t)|
= [Def(EX(1, 1) B (0,) — Do f(E1(¢,1)) EX($,1)] < e.
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There exists an integer ky with (¢, QASk) € N for all integers k > ky. For such k,

|BT(¢I€; Q/f)\k) - BT(¢, $)|OT < E.

3. (Directional derivatives) Let ¢ € domr, qg € CL be given. There is a con-
vex neighbourhood N of ¢ in domp, and there exists n > 0 with ¢ + h¢ € N for
all h € (—n,n). Hence ¢ + [0,1]h¢ C N for |h| <, and thereby

¢+ Ohgy = (¢ +0hd), €U for |h| <n, 0<0<1, 0<t<T.

For 0 < |h| < n it follows that

3 (Fr(o + 1) - Fr(0) = Br(6.)
(8
= s, |7 (F(0-+18)) = F(60) = D (BH6.0)BF(G.0)

1
= max |+ /0 <Df(¢t+0h¢t>h¢tDef(E%w,t))E%O(as,t))de‘

0<t<T | h

1 o~ o~
= max /O (Def(E%(mams,t))E%O(qb,t)Def(E%(@t))E%O(qb,t))d@‘-

0<t<T

The map

[0.7) x (=,m) x [0.1] 3 (¢, 1,0) = Def (ER(6 + 0h6, 1)) E(6,1) € R
is continuous, hence uniformly continuous on the compact set [0, 7] x {0} x [0, 1].
Let € > 0. Then there exists §. € (0,7) such that for all ¢ € [0,T], h € (—0¢, d¢),
0 < [0,1],

|De f(E7(6 + 0h, ) BY(6,1) = Def (E1(6,1) Ef(6.1)]

= [Def(B}(9 + 61, £) B (6,1) — Def (EL(6+6-0- 6,) E*(,1)] <.

It follows that for 0 < |h| < 4.,

1 ~ ~
7 (Fr(¢+ ho) — Fr(¢)) — Br(¢,¢)| <e.
0T
Therefore DFT(¢)$ exists and is equal to Bp(¢, 5) Using part 2, one finds that
Fr is continuously differentiable. U
The prolongation maps Pr: C1 — Ck, 0 < T < oo, given by
Pro(t) = ¢(t) for t <0, Pro(t) = ¢(0) +t¢'(0) for0<t < T,
Psr: Clg — Clrp, 0< S < T < 0, given by
PSTgf)(t) = (,25(75) for 0 <t< S,
Psro(t) = ¢(S) + (t —S)¢'(S) for S <t <T,
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Zr: Coro — Cr, 0 <T < 00, given by
Zrop(t) = ¢(t) for0<t<T, Zr(o)(t) =0 fort <0,

and the integration operators Ir: Cor,o — C’(%T’O, 0 < T < o0, given by

o) = [ o(s)as
are all linear and continuous. Obviously, ZrCip o, C Cp. For Psp, 0 < S < T,
Ps1Cigo C Cor,o, and
(3.1) |Psr¢lior < (2+T)|pl1os forall ¢ € Chg
because of the estimate
|PsTd|1,0r = (DX, |PsTo(t)| + onax |(PsTo) (t)]

< max [6(0)] + [6(S)] + [/ (S)[T + max [¢/(D)].

It follows that, for every T > 0, the set
Dr ={(¢,n) €U x Corg : Pré + Zrn € domr}
is open, and the map
Gr: Dy — Corpo, Gr(¢,n)(t) = Fr(Pré+ Zrn)(t) — f(¢) € R”,

(with Gr(6,n)(0) = F((Pré+ Zrn)o) — £(6) = f(6+0) — (9) = 0) is continu-
ously differentiable, because of the chain rule, continuity of the linear maps Py
and Zr, Proposition 3.2, the continuous differentiability of f, the continuity of
the linear mapping 7: R” — Cor given by 7(£)(t) = &, and the fact that the
vectorspace operations of Cor and C} are continuous.

COROLLARY 3.3. Let 0 < T < co. For (¢,n) € Dr and b€ Cline Oolm,

-~

DGr(6,1)($,7) = DPr(Pré + Zrn)(Pré + Zri) — 7(Df($)9),
and, for 0 <t <T,
DGr(¢,n)(,7)(t)
= Do f(EX(Pro + Zrn,t)) ER(Pré + Zrij,t) — (D f(8))(t)
= Do f((Pro): + (Zrm)) (Pro) + (Zri):) — Df(9)é.
The map Ar = It o G is continuously differentiable.

The next result prepares the proof that A with T > 0 sufficiently small
defines a uniform contraction on a small ball in Cj, .
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PROPOSITION 3.4. Let ¢ € U be given. There exist T = Ty > 0, a neigh-
bourhood V.= Vg of ¢ in U, € = €4 > 0, and j = j, € N such that for all
Se(0,T), x €V, nand 7 in Cig, with [n]10s < e and |7]10s < e, w € [0, 5],
and 0 € [0,1],

(3.2) (PsX)w + (Zsn)w + 0[(Zs)w — (Zsn)w] €U

and

|Def((Psx)w + (Zsn)w + 0[(ZsM)w — (Zsn)w))[(Zs)w — (Zsn)w]]
<25 |7 —nlos-

PROOF. 1. Let ¢ € U be given. As the map U xC 3 (x,n) — Dof(x)n € R™
is continuous at (¢, 0), there are neighbourhoods V' of ¢ in U and N of 0 in C
with
[Def(x)n] = |Def(x)n — Def(#)0] <1 forall x € V',n € N.

There exists j = jy € Nwith {{ € C: |(|; <1/j} C N.

2. By the continuity of the map R > t — El (P ¢,t) € C at t = 0, with
El (Px¢,0) = ¢, there exists T > 0 with El (Pyx¢,t) € V' for all t € [0,T].
The continuous map

a: C" x Clpp % [0,T) 3 (x,1,t) = EL(Pocxot) + Eb(Zrm,t) € C!

satisfies a(,0,t) = EL (P, t) € V' for all t € [0,T] and is uniformly con-
tinuous on the compact set {¢} x {0} x [0,T]. It follows that there exist a
neighbourhood V of ¢ in V' and ¢’ > 0 such that

Eéo(POOXﬂf) =+ E%”(ZTT]J") = a(Xa 777t) € 14

for all x € V, n € Cipoy with [nf1or < €, and t € [0,T]. Observe that
El (Pxx,t) = EX(Pry,t) for these x and t.

3. Sete=¢"/(24T). Let 0 < S<Tandlet x € V,n#7in O(%S,O be given,
with |n]1.0s < e and |f]10s <e. Let 0 <w < §,0<6<1. Then

|Pstnli.0or < (2+T)|n|10s <&
(see (3.1)) and analogously |Psrij|1,0r < €. By convexity,
|Pst1 + 0[Psri] — Psrn]|10r < €.
The choice of V and ¢’ in part 2 yields
V'3 EL (Pxx,w) + Ep(Z7(Psrn + 0[Psi] — Psn)), w).
Dueto0 <w < S,

E1(ZrPstn,w) = (Zsn)w,  EF(ZrPsrij,w) = (Zs)w,
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and
Ep(Zr(Pstn +0[Psril — Psri)), w)
= Ep(Zp Psrn, w) + 0| Ep(Z7 Psrij, w) — Ep(Zr Psrn, w)]
=(Zsn)w + 0[(ZsM)w — (Zsn)w]-
Using this and EL (P, w) = (PsX)w, one arrives at
V'3 (PsX)w + (Zsn)w + 0[(Zs0)w — (Zsn)w)-
4. Set ¢ = (7 —n)/(2jln — Nlos) € Cos. Then

(ZsQuly = max [(ZsQw+1)] = max [(ZsO)(s)]

| =
w—7
1
< _ _ 1
< jmax [(ZsC)(s)] = max |¢(s)] = [Clos < 5
hence (Zs(), € N, and therefore

1> |Def((PSX)w + (ZST/)w + 9[(25"7)11) - (an)w])(zsg)w‘
= PP + (Zs) + 01257 = (Z5)
1
X =
2j|n — 7los
Do f((PsX)w + (Zsn)w + 0[(Z50)w — (Z50)w))

1
X m (ZsN)w — (Zsn)w)

which implies the assertion. O

(Zs (1 =n))w

4. A parametrized contraction and local solutions
Let ¢ € U, and let T' =Ty > 0, a convex neighbourhood V' =V, of ¢ in U,
e =¢€4>0,and j = j, € N be given as in Proposition 3.4.
PROPOSITION 4.1. For every S € (0,T), x € V, n and 1] in Cés,o with
Inl10s <€ and |7]1,0s < €,

(x;m) € Ds, (x;m) € Ds and [As(x,n)—As(x,n)|1,058 < 25S(S+1)[1—nl10s-

71,08 < € be given. Relation (3.2) with # =0 and 6 = 1 yields (x,n) € Dg and
(x,n) € Ds. Moreover,

|[As(x: 1) — As(xs 108 = Is(Gs(x;n) — Gs(x;m)) 1,08
<8 max_|Gs(x D)(w) = Gs (6 m)(w)| + max [Gs () (w) = Gsxn)(w)

=(S+1) onax |Gs(x,n)(w) — Gs(x,n)(w)]
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and, for every w € [0, 5],
IGs(xm)(w) = Gs(x;m)(w)| <|Gs(x,n) — Gs(x:n)los

1
| [ DGstcn+ 87— )07 ) at
(smoothness of Gs, convexity of V x {7 € Cig : 71,05 < €})

= n— n— .
- o??%i |DGs(x,n+6[1—n])(0,7 —n)los

0S

The last term equals

Jnax  max |Def((PsX)w + (Zs(n + 007 — 1)) w)(Zs (7 —1))uwl

(see Corollary 3.3 with ¢ = 0)

= Olgggl orgnq?gs |Def((PSX)w + (ZSn)w + 9[(Z5mw - (ZSn)w])[(ZSmw - (ZSn)w]l

< 2j|1m = nlos
(by Proposition 3.4). It follows that
[As(x,m) — As(x;n)l10s
<2j(S + 1)l — nlos = 2/(S + 1) max

o
0<w<s /0 (7' (s) —n'(s)) ds
<2j(S+1)S max [7(s) =7/ (s)| < 25@+ i —nlos. O

P 4.2. lim A =0.
ROPOSITION Ly 5(6,0) =0

PROOF. For 0 < S < T,

[As(9,0)]1,08 =[IsGs(¢,0)]1,05 < S|Gs(9,0)|os + |Gs(¢,0)|os
=(S+1)|Gs(9,0)[os = (S +1) JHax, |f(Ps¢)w +0) — f()]

=(S+1) o ax Lf((Pré)w) — f((Pré)o)l
= (S+1) max |[f(Ex(Pré,w)) = f(E(Pre,0))],
so continuity of f, Pr and EL yields the assertion. O

PROPOSITION 4.3. There exist Sy € (0,Ty) and an open neighbourhood W,
of ¢ in Vy such that for all x € Wy, for all S € (0,Sy], and all n € 06570,
7€ Cs with [n|1,0s < ¢/2, 1Ml1,05 < €4/2,

(x,m) € Ds, (x,n) € Ds,

€ 1
| As(x;m)]1,0s < 5‘# and |As(x,1m) — As(X,n)]1,05 < 5 17 —nl1,0s-
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PrOOF. 1. Choose Sy € (0,T) with |Ag(4,0)]1,0s < €4/6 for all S € (0, Sy,
which is possible due to Proposition 4.2, and
1
2S,(1+ Sp) < mind =, =2\,
2”3
As Ag, is continuous, there exists an open neigbourhood Wy of ¢ in V;; so that

for all x € Wy,
€
[As, (x.0) — 45, (6. 0)l10s, < -

2. Now let S € (0, Sy] be given. For every x € Wy, and t € [0, 5],
t
Aste0)(0) = [ (F(Psx)) = F00) duw

- / (F((Ps, X)w) — F()) dw = Ag, (x, 0)(1).

Using this (for x and ¢) and the definition of the norms | - |1 0s,| - [1,0s,, one

gets
g¢

|AS(X,O) - AS(QSvO)‘l,OS < |AS¢ (Xvo) - AS¢ (¢7 0)‘1,05‘(15 < 6

for every x € W.
3. Let x € Wy, n € Cigg, 1 € Cig be given, with [n];0s < €4/2 and
71,08 < €4/2. Proposition 4.1 yields

|[As(x; 1) — As(x,n)|1,08 < 255(1+ S)|1n—nl10s

) ~ L[l s )~
< 2j85(1+ Sl - nlsos < min { 3.5}~ 1 os.

Furthermore,

|AS(X>77)|1,OS
<|As(x;m) — As(x,0)|1,05 + [A4s(x,0) — As(,0)|1,05 + |As(9,0)]1,0s
€ S, o €9 Es 29 9 O
<3|ﬂ\1,os+6+6_32+6 5

For each S € (0, Sy] now Theorem 7.2 applies to the map

Wy x {n € Csp: Inl1,0s <eo} 3 (x,m) — As(x,n) € Cig.0;

with M = My = {n € Cjg, : [nl10s < €4/2}, and yields a continuously differ-
entiable map

Wgo x>y € Cés,o
given by 1, € My and Ag(x,ny) = 7y. As the maps Ps and Zg are linear and
continuous, it follows that the map

E¢:W¢9X’—>PSX+ZS77XECé

is continuously differentiable.
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Using this and the continuous linear maps E&(-,t): C& — C1, 0 <t < S,
one gets that each map
W3 x = Bs(Zs(x),t) €CT, 0<t<S,
is continuously differentiable. The map
[0,5] x Wy 3 (t,x) — E§(Z4(x), t) € C!
is continuous.

PROPOSITION 4.4. For every S € (0,S4] and for every x € Wy N Xy the
function x = 2X) = Sy(x) is a solution of (1.1) on [0,5], with xg = x and
xe € Xy for0<t < S,

ProOOF. The function z is continuously differentiable with xg = (Psx)o +
(Zsny)o = (Psx)o = x, and for 0 <t < S,

z(t) = Psx(t) + Zsny (t) = x(0) 4+ tx'(0) + ny ()

=z(0) + 1 f(x) + As (6 ) (t)
(with x € X; and the fixed point equation)

:um+ﬁumy/u«&mw+MMQM—ﬂMMw

0
:x(O)—i—/O f(zy) dw. O

Observe that the restrictions of the maps E§(3Z4(-),t), 0 <t < S, to the
open subset Wy N X ¢ of the manifold X are continuously differentiable, and the
restriction of the map E{(X4(-), -) to [0,5] x (W, N Xy) is continuous. In other
words, the map

[0,5] x (Wy N X;) 3 (t,x) — 2 € X;
is continuous and each map

WynX;axmaXeX;, 0<t<8,
is continuously differentiable.

PROPOSITION 4.5 (Local uniqueness). Suppose x and T are solutions of (1.1)
on an interval I of positive length, with minI = 0 and xog = To € Xy. Then
there exists T > 0 with x(t) = z(t) for allt < 7.

PRrROOF. Let ¢ = ¢ and consider Ty, €4, S¢ as in Proposition 4.3. By conti-
nuity, there exists 7 =S € (0, 54] N I such that for 0 <¢ < S,

[2(t) = 6(0) ~ t'(0) < £, 2/(6) — ¢'(0)] < .

4
|Z(t) — ¢(0) — t¢'(0)] < 7(t) - ¢'(0)] < =2.

e
4’ 4
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Define
1
Y =2|(—00,5] — Ps®, 1 =ylj0,5] € Cos.05
~ _ ~ ~ _~ 1
Y =7|(—00,5] — Ps®, 1 =Ylj0,s) € Cos.0-

Then |n]1,0s < €4/2 and [7]1,05 < €4/2.
By Proposition 4.3, (¢,n) € Dg and (¢,7) € Dg. Also, for 0 <t < S,

As(bn)(t) = / (F(Ps@) + (Zsn)a) — F(6)) du

/fa:w dw — (6 /farw )dw — (6(0) + t¢#(0))
— 2(t) — (Psd)(t) = n(t)

(recall that Proposition 3.1 yields the continuity of (—o00,S] > w — z, =
E§(2](—00,51,w) € C'). Hence Ag(¢,n) =n. Analogously, As(¢,7) = 7. Propo-
sition 4.3 yields

. 1 .
In —7l1,0s = [As(®, 1) — As(®,0)]1,0s < 3 n —1l1,08,
which gives n = 7] and thereby x(¢t) = Z(¢) on [0, 5] = [0, 7]. O

5. The semiflow on the solution manifold

PROPOSITION 5.1. Suppose x and T are solutions of (1.1) on intervals I and
I of positive length, and 0 = min I = min I, o = Zo € X;. Then x(t) = Z(t) on
Inl.

PROOF. The interval J = I NI has positive length and minJ = 0. As-
sume x(t) # Z(t) for some t € J. Set t; = inf{t € J : x(t) # Z(t)} and
assume in addition that t; < supJ. The continuously differentiable function
y: (—oo,supJ —ty) = R™ given by y(t) = x(¢t + t) satisfies

y'(t) =" (t+t5) = f(xeee,) = fye)

for 0 < t < supJ — t;, in particular, yo € X;. Analogously, the function
¥: (—oo,supJ — ty) — R™ given by y(t) = Z(t + ts) is a solution of equation
(1.1) on [0,supJ — ty), and yo = yo. Proposition 4.5 yields y(t) = y(t) on
[0, 7] for some 7 > 0. This implies x(t) = Z(t) on [ts,ts + 7], contradicting the
definition of ¢;. It follows that t; = sup J, hence z(t) = Z(¢) on [0,supJ). In
case sup J = max J continuity yields z(t) = Z(¢) on J. In both cases, one arrives
at a contradiction to the first assumption. O

Now maximal solutions are defined as follows. Let ¢ € X;. Set

ty = sup {t > 0 : there is a solution of (1.1) on [0,t] with 2y = ¢} < oco.
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By Proposition 4.4, 0 < t4. Using Proposition 5.1, one obtains a solution x? of
equation (1.1) on [0,,), with =5 = ¢, by 29(t) = (t) for 0 < t < ty, where z is
any solution of equation (1.1) on [0,#] with ¢t < ¢’ < t4 and z¢ = ¢. Equation
(1.1) yields 2 € X for 0 <t < tg.

It is easy to show that any solution of (1.1) on some interval I of positive
length with min I = 0 and x¢ = ¢ is a restriction of ?.

Set Qp = {(t,¢) € [0,00) x Xy : t < ty} and define Xy: Qy — Xy by
Sp(t @) =y

PROPOSITION 5.2. The map Xy is a semiflow.

PROOF. For every ¢ € Xy, 0 < tg, hence (0,¢) € Q7 and (0, ¢) = xg = ¢.
Let (t,¢) € Qy and (s, X(t,¢)) € Q. It remains to show that (t+s,¢) € Qf and
Si(s+t,0) = Ss(s,54(t, ¢)). In order to prove this let = 2%, ¢ = 2y, y = z¥.
Define £: (—o0,s + t] — R™ by £(u) = y(u — t). The map £ is continuously
differentiable, and for u < t,

§(u) =y(u—1t) =Y(u—t) =z (u—t) = z(u)
In particular, & = ¢ and &' (u) = f(&,) for 0 <u <t. Fort <u <t +s,
Eu) =y'(u—1) = f(yu—t) = f(&)-
It follows that £ is a restriction of . Hence s+t < ty, or, (s +t,¢) € Qy, and
Si(s+t,0) =Esrr = ys = Sp(s5,0) = Sp(s, 24 (t, 8)). 0

For t > 0 with Qf; = {¢ € Xy : (t,¢) € Qf} # 0 consider the solution
operator Xs¢: Qf; — Xy given by Xy, (4) = X¢(t, ¢).

PROPOSITION 5.3. For every (t,¢) € 1y there exist an open neighbourhood
N of ¢ in Xy and € > 0 with [0,t +) x N C Qyp, X¢ljo,14e)xn continuous, and
YN continuously differentiable.

PROOF. 1. Let (t,¢) € Q5 be given. The remarks following Proposition 4.4
show that ¢t = 0 is contained in the set

A ={s€]0,t4) : there exist an open neighbourhood V; of ¢ in X
and £, > 0 with [0,s +&5) x Vs C Qy, Xf

[0,5+e.)xV, continuous,

and Xy ;|v, continuously differentiable}.

Let t4 =sup A < ty4. It remains to prove that t4 = t4.

2. Suppose tg < ty. Set ¢ = Xy(ta,$). Again by the remarks following
Proposition 4.4, there exist an open neighbourhood W of ¢ in X and 7 > 0 with
[0, 7] x W C Qp so that X¢ljg-)xw is continuous and all Xy ,|w, 0 <u < 7, are
continuously differentiable. Proposition 3.1 (a) yields that the flowline [0,t,) >
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s — 22 € Xy is continuous (observe x? = E}(2%|(_s0,u),5) for 0 <'s < u < ty).
It follows that there exists

toe AN (tA— ;,tA) with xﬁ) e W.

From ty € A one obtains an open neighbourhood Ny of ¢ in Xy and €9 > 0 so
that [0,t9 + o) X No C Qy, and Ej|jg.49+20)x N, 1S continuous, and X4, [n, is
continuously differentiable. Because of continuity and xfo € W one may assume
Yt1o(Nog) CW. For tg <u <ts+7/2and x € No,

O<u—to<7 and Xy.(x) €W,
which gives (u, x) = (v —to) + to, x) € Qf and

Yp(u,x) = Bp(u—to, Xy (to, X))

It follows that X f|(t0,t A+7/2)x N, 18 continuous, which in combination with the
continuity of the restriction ¢ |j ¢,4<,)xn, yields that the restriction of ¥ to
[0,t4 + 7/2) x Np is continuous.

3. For u=1t4 +7/4 and x € Ny,

Z;f(ua X) = Ef(u - th Ef(th X)) = Zf7u_t0 © Zfatﬂ (X)
with 0 < w — 1ty < 7. Recall that X7, (Nog) C W. Now it follows that X ,|n,

is continuously differentiable. Combining this with the result of part 2 of the
proof, one concludes that u > t4 belongs to A, contradicting t4 = sup A. O

COROLLARY 5.4. The semiflow Xy is continuous, each set Qg t > 0, is
open in Xy, and each solution operator X, t > 0, and Qg # 0, is continuously
differentiable.

PROOF. Let t > 0 and ¢ € Qy, be given. Then (¢, ¢) € Qy, and for N chosen

according to Proposition 5.3 we get N C §27;. This shows that Q¢ is an open
subset of Xr. The remaining assertions are obvious from Proposition 5.4. (|

The next result on the derivatives DX (¢), ¢ € Qs4, will be used in Sec-
tion 6.

PROPOSITION 5.5. Let ¢ € X5, 0 <t < ty, ¢ € TyXy, and s < 0. Then

(DEf,t(Qs)g)(S) = g/b\(t + ) in case t+ s <0,

~

(DS4.4(¢)8)(s) = (DS4.444(¢)$)(0) in case 0 <t +s.

PROOF. Each linear map evy s: C1 3 9 + 1(s) € R", s <0, is continuous
(compare Proposition 2.1). Let ¢ € Xy, 0 <t <tg, ¢ € TyXs, s <0. Then
(DX1(0)9)(s) = evi,s(DEf(9)p) = D(evi,s 0 Xy:)(¢)o
= D{Qs 3 ¢ {(s) € R"}(¢)¢

=D{Q, 3 ¢ 2°(t + 5) € R"}).
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In case 0 < t+ s the set Qf; C ¢y is an open neighbourhood of ¢ in X, and

D{Qss 5 61> 2%(t+5) ER"}(@)S = D{Qyss 3 ¢ > a4, (0) € R"}($)o
= D(evi00p4)(0)0

-~ -~

=evi,0(DEf 14 5(0)p) = (DX 115(0)9)(0)

while in case t + s <0

D{Qsy 3 ¢ 2%(t+5) €R'Y() = D{Q1 3 & Gt +5) € R"} ()

= Devi4s(9)d = eviya(9) = d(t +5). O
6. The variational equation

For ¢ € Xy the derivatives DXy 1(¢): Ty Xy — Tx, (¢) X5, 0 <t < Ly, are
given by a variational equation. In order to prove this let qg € Ty Xy and define
the map v#?: (=00, t4) — R™ by

-~

V99 (t) = (DS 44()9)(0) for 0 <t < Ly,
v??(t) = ¢(t) for ¢ < 0.

PR(ZPOSITION 6.1. Let ¢ € X5 and 5 € Ty X+ be given and consider the map
v =v5?.

(a) ve = DEf,t((b)(/ﬁ for every t € [0,t4).
In particular, vg = qg The map v: (—oo,ty) — R™ is continuously differentiable
and the curve [0,ty) 3t +— v, € C! is continuous, and

(b) v'(t) = Df(x?)v; for everyt € [0,t,).

PROOF. 1. (a) Let ¢ € Xy, ¢ € TyXs, 0 <t <ty Fors<0with0<t+s
Proposition 5.5 yields

~ ~

vi(s) = v(t +5) = (DE1145()9)(0) = (DX, (¢)9)(5),
and, for s <0 with t 4+ s < 0,

~ ~

ve(s) = vt +5) = Bt + ) = (DX5.:(0)9)(s)-
Together, v; = DEf,t(gb)(g. Notice that D2f70(¢)$ = (}5 The fact that each
vp = DYy i(d)p, 0 < t < ty, belongs to Ty, (4 Xy C C' implies that v is
continuously differentiable. Using Proposition 3.1 (a), one obtains that the curve
[0,t4) Dt v; € C! is continuous.

2. Let t > 0 with Qf, # 0 be given. For ¢ € Qs consider the map

n?:[0,t] 3 s — 2%(s) — $(0) — 5¢'(0) € R™.

Observe that n? € C&m and Pi¢p + Zin? = x¢’|(_oo,t], which yields

(Pip+ Zin®)s =22 € X; CU for0<s<t.
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It follows that P;¢ + Zn® € dom;. Then (¢,7?) belongs to the domain D; of
the map Gy. The map Y;: Qg 3 ¢ — 1 € C,  satisfies

Yi(9)(s) = 1 (s) = 2%(s) — $(0) — 56/(0)
/ F(22) du — sf(6) = / F(Prd+ Zen®)) — £(6)) du
0

= /0 (F(Ei (Peop + ZiYy(0),u)) — [(9)) du = I(Gi(¢, Yi(6)))(5)
for all ¢ € Qs and s € [0, 1], hence

(6.1) Yi(9) = L(Gi(9, Yi(9))) (= A0, Yi(9))) forall ¢ e Qpy.
3. Proof that the map Y is continuously differentiable with

v%(s) = DYi(6)6(s) + (Pid)(s) for all s € [0,4], 6 € s, & € TyX;.
By part 2, (¢,Y:(¢)) € D, for all ¢ € Qg With the shift map A;: C1 — Cf,

Aip(s) = ¢(s — t) and the restriction map Ry: Cf — Cf,, Rix = X][0,¢), which
are both linear and continuous,

Yi(¢) = Ri(AroXy(¢) — Prp) for all ¢ € Qp,.

This shows that the map Y; is continuously differentiable, and for all ¢ € €2y,
¢€T¢Xf, ENS [O t]

(DYy(#)9)(s) = (RiADE11(6)0)(s) = (RiPid)(s)
= (DX14(6)9) (s — 1) — $(0) — 56/ (0)
(DEf s(@ )¢)(0) ( ) — s¢/ (0) (see Proposition 5.5)

9 (5) = B(0) — 58 (0) = v*%(5) — P(s):

4. Differentiation of equation (6.1) yields

-~

(6.2) DYi(¢)$ = LDGi(¢,Yi(0))(d, DYi(¢)9) for all g € Uy, & € TyXy.
For such ¢ and a and for each s € [0, ],

V() = (DYi(¢))(s) + B(0) + s¢'(0) (see part 3)
- / (Def(Pid)u + (ZeYi(#))(Pid)u + (Z:DYi($)D)a) — DI ()3} du

+ $(0) + 5¢(0) (with (6.2) and Corollary 3.3)
= | {Def(0)(v3%) — Df(#)8} du+ 3(0) + sDF($)d (as & € TyXy)

0
s

= | Df(d)witdu + (0).
0

In case 0 < ¢ differentiation yields (v>9)/(t) = Df(z?)v} 9. By continuity, this
holds for ¢t = 0 as well. O
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7. Appendix on parametrized contractions and implicit functions

PROPOSITION 7.1. Let a Hausdorff space T', a complete metric space M, and
amap f: T x M — M be given. Assume that f is a uniform contraction in the
sense that there exists k € [0,1) so that

d(f(t,x), f(t,y)) < kd(z,y) forallteT, xeM,yeM,

and f(-,z): T — M is continuous for each x € M. Then the map g: T — M
given by g(t) = f(t,g(t)) is continuous.

THEOREM 7.2. Let a Fréchet space T, a Banach space B, open sets V C T
and Op C B, and a continuously differentiable map A: V x O — B be given.
Assume that for a closed set M C Op we have A(V x M) C M, and A is
a uniform contraction in the sense that there exists k € [0,1) so that

|A(t,z) — A(t,y)| < klx —y| forallteV,ze€Op,yecOp.
Then the map g: V. — B given by g(t) = A(t,g(t)) € M is continuously differ-

entiable.

Proor. 1. Continuous differentiability (in the Michal-Bastiani sense) im-
plies continuity. So Proposition 7.1 applies to the restriction of A to V' x M and
yields a continuous map g: V — B with g(t) = A(t,g(t)) € M for all t € V.
Choose k € (k,1). Each linear map Do A(t,z): B — B, (t,z) € V x Op, is
continuous. The contraction property yields

|D2A(t,z)| <k forall (t,z) €V x Op

since given e = k —k and t € V, € Op, and ¥ € B with |Z| < 1 there exists
d > 0 such that, for h =6/2, x + hz € Op and

|1 (A(t, ) — A(t,z + hT)) — Do A(t, )|
= |h 1 (A(t,z) — A(t,z + hZ)) — DA(t,2)(0,7)| <,
hence
||| D2 A(t, 2)Z| < |h| + |A(t,z + hT) — A(t, z)|
< elh| + k|hZ| < (e + k)|h| = KA.

It follows that |DyA(t, x)| = sup |D2A(t, 2)Z| < &, for every (t,2) € V x Op.
[Z|<1

2. The map a: V x Op x T x B 3 (t,z,t,%) — DA(t,z)(t,Z) € B is conti-
nuous, with
alt,z,t,T) = D1 A(t, 2)t + Do A(t, 2)T.
It follows that for all (t7x,A) €V xOp x T and for all T and ¥ in B,

la(t, 2,8, %) — alt,z,,7)| = |D2A(t,2)(@ — §)| < k[Z 7.
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Therefore Proposition 7.1 yields a continuous map v: V x Og x T — B with
Y(t, 2, ) = a(t,z, t,~y(t, x,t) = D1 A(t,z)t + Dy A(t, x)y(t, z, )
for all (t,z,t) € V x Op x T. It follows that the map
£V XT3 (t,t)—~(tg(t),t) € B

is continuous.
3. It remains to show that for all t € V and all t € T,

oJm K (g(t + ht) — g(t)) = £(t, ),

which in combination with the continuity of £ yields that g is continuously dif-
ferentiable, with Dg(t)t = &(t,1). Solet t € V and ¢ € T be given. Choose
a convex neighbourhood Ng C Op of g(t). There exists § > 0 such that, for
-0 < h<yd,
t+hteV and g(t+ ht) € Ng.
Notice that, for all k € [—6,8] and all 8 € [0,1], g(t) + 0(g(t + ht) — g(t)) € Np.
With the abbreviation
=D.A (t7 ()t + DaA(t, g(t)y(t, 9(t), 1)
= Dy A(t,g(t))t + D2 A(t, g(1))é
one finds that
W= g(t+ht)—g(0) € = b~ (A(t+ht, g(t+ht)~ A(t, g(1))—€,  with 0<|h] <3,
equals
_1(A(t +ht, g(t + ht)) = A(t + ht,g(t))) = D1 A(t, g(t)t — D2 A(t, g(t))¢
“HA(t + Wt g(t) — A(t,9(1))
(A(t +ht, g(t)) — A(t, g(t))) — DrA(t, g(1))E
“HA(t + ht, g(t + ht)) — A(t + ht, g(1)))

- / " DyA(t + KT g(t) + Olg(t + D) — g(t))¢ db
0

1
+ / {DaA(t + W, g(t) + 6lg(t + h) — g(t)]) — DaA(t, g(t))}E b
— W (A(t 4+ W g(t)) — Alt, (1)) — DyA(t, g(#))E

+ / h DoA( 4 glt) + 0lg(t + ) — g()lg(t + ) — o(1))do
0

-/ " DyA(t + KT g(t) + Olg(t + D) — g(t)) db
0
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+%;UhAU+hﬁmw+9wU+hﬂ—gUm—J%A@yﬁ»RdH
=h'(A(t+ ht,g(t)) — A(t, g(t))) — D1 A(t, g(t))t

+ /O Dy A(t + ht, g(t) + 0[g(t + ht) — g()]) [~ (g(t + ht) — g(t)) — &] db

~

1
+ /0 {D2A(t + ht, g(t) + 0[g(t + ht) — g(1)]) — D2 A(t, 9()) } db.
Hence |h='(g(t + ht) — g(t)) — £| is majorized by
[P (A(t + ht, g(1) — At g(8))) — D1 A(t, g(0)E] + &P~ (gt + ht) — g(t)) — €]

+

[;ﬂbAa+h£mw+emu+hﬂgumzhA@y@»kd47
which yields

(1= R)Ih " (g(t + 1) — g(t)) — €
< W (A( + B, () — At g(1))) — DiA(t g(t))])

+

1
/ {D2A(t + ht, g(t) + 0g(t + ht) — g(t)]) — D2 A(t, (1)) }€ de)-
0
The first term in the last expression converges to 0 as 0 # h — 0. The map
[~6,8]x[0,1] > (h,0) = {Da A(t+ht, g(t)+0[g(t+ht)—g(t)])~ D2 Alt, g(1)}¢ € B

is uniformly continuous with value 0 on {0} x [0,1]. This implies that for 0 #
h — 0 the last integrand converges to 0 uniformly with respect to 6 € [0,1].
Therefore the last integral tends to 0 as 0 # h — 0. O

Notice that in the next result the hypothesis on continuity of U 3 (x,y) —
Dy f(x,y) € L.(B, E) is obsolete if dim B < co.

THEOREM 7.3. Let a Fréchet space T', Banach spaces B and E, an open set
U C T x B, a continuously differentiable map f: U — E, and a zero (tg,x9) € U
of f be given. Assume that Do f(to,x0): B — E is bijective and that the map U >
(t,z) = Do f(t,x) € Le(B, E) is continuous. Then there are open neighbourhoods
VoftoinT and W of xg in B with V xW C U and a continuously differentiable
map g: V. — W with g(to) = zo and

{(t,x) e VxW: f(t,x) =0} ={(t,x) e V x W 2 =g(t)}.
PrOOF. 1. (A fixed point problem) Choose an open neighbourhood Nr; of

to and a convex open neighbourhood Npg of g in B with Np; x Ng C U. The
equation

f(t,x) = f(t,x0) + D2f(to, zo)[xr — wo] + R(t, )
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defines a continuously differentiable map R: Ny x Ng — E, with R(t,z9) =0
for all t € Np 1,

DyR(t,x) = Daf(t,x) — Daf(to,z9) forallte Np; and x € Np,
and, in particular, DsR(tg,z¢) = 0. The map
NT71 X Ng > (t,l‘) — DQR(t,l‘) S LC(B,E)

is continuous. In order to solve the equation 0 = f(¢, ), (¢,x) € Np1 x Np, for
x as a function of ¢, observe that the previous equation is equivalent to

0 = f(t,xo) + Dgf(to,xo)[x — Io] =+ R(t,I),
or
z =z + (D2f(to, x0)) " [—f(t,z0) — R(t, z)]
= x9 — (Daf (to, m0)) " f(t,0) — (D2f (to, z0)) "' R(t, z).

The last expression defines a map A: Ny X Ng — B with A(tg,z0) = o,
and for (t,z) € Np1 x Np, 0 = f(t,z) if and only if x = A(¢,x). The map
A is continuously differentiable since the linear map (Dsf(tg, 7)) 1: E — B is
continuous, due to the open mapping theorem.

2. (Contraction) For all t € Ny and for all 2,7 in Np,

‘A(tvfc\) - A(t, $)| = | - (D2f(t07 IO))_IR(tv/x\) + (DZf(t()va))_lR(tJ CE)|
< |(Daf(to, 70)) "] ‘ /0 DoR(t, 2 + 5|7 — 2)[& — 2] ds|.

Let e = 1/(2|(D2f(to, o))~ *|). There are an open neighbourhood Nt C Ny
of tp and ¢ > 0 such that for all ¢ € Ny and all € B with |z — z¢| <4,

z € Ng and |D2R(t,$)| = ‘DQR(t,l‘) — DQR(tO,.rQ)‘ <E.

For all # # Z in B with |z — 2] < ¢ and |Z — 2| < § and for all s € [0,1] it
follows that |z + s[Z — 2] — 2| < 4, hence

1

[ —2z]| <e,
and thereby
~ ~ _ 1.
|A(t,7) — A(t, 2)| < el = al|(D2f (to, 20)) '] = 5 [T — 2.

3. (Invariance) By continuity, there is an open neighbourhood Np 3 C Ny
of tg such that

|A(t, z0) — A(to, z0)| < g for all t € N 3.
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For all t € Ny 3 and o € B with |z — x| < ¢ this yields

|A(t, x) — xo| = |A(t,x) — A(to, zo)|
< |A<t, q:) — A(t,.’Eo)l =+ |A(t,.’1)0 — A(to,xo)‘
1 ‘ _ | + — 0 é + é 375
Todoltysgt =

4. Set V = Nrg, OB:{xGB:\x—x(ﬂ < §}, and
30
M= {xeB x—x0|<4},

and apply Theorem 7.2 to the restriction of A to the set V' x Op. This yields
a continuously differentiable map g: V' — B with g(t) = A(¢,g(t)) € Op for all
t € V. Using part 3, we get |g(t) — x| < 3§/4 for all t € V. Set

W:{mEB |x—x0|<%f}.

Then g(V) C W. From g(t) = A(t, g(t)) for all t € V' we obtain 0 = f(¢, g(¢)) for
these t. Conversely, if 0 = f(t,x) for (t,2) € VX W CV x M, then x = A(t, z),
hence z = ¢(t). In particular, o = g(to). O
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