Topological Methods in Nonlinear Analysis Volume 48, No. 2, 2016, 493–506 DOI: 10.12775/TMNA.2016.055

© 2016 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University

LINEARIZATION OF PLANAR HOMEOMORPHISMS WITH A COMPACT ATTRACTOR

Armengol Gasull — Jorge Groisman — Francesc Mañosas

ABSTRACT. Kerékjártó proved in 1934 that a planar homeomorphism with an asymptotically stable fixed point is conjugated, on its basin of attraction, to one of the maps $z\mapsto z/2$ or $z\mapsto \overline{z}/2$, depending on whether f preserves or reverses the orientation. We extend this result to planar homeomorphisms with a compact attractor.

1. Introduction

Consider the discrete dynamical system generated by a planar homeomorphism f. It is well-known that if f has an asymptotically stable fixed point, then its basin of attraction \mathcal{U} is an open and simply connected subset of the plane. Moreover, Kerékjártó ([7], [8]) proved that f restricted to \mathcal{U} is either conjugated to $L_1(z) = z/2$ or to $L_2(z) = \overline{z}/2$ in \mathbb{C} , depending on whether f preserves or reverses the orientation. A different proof of this result is also given in [4]. This result has been extended, with clear modifications, to \mathbb{R}^3 in [5] and to \mathbb{R}^m for $m \neq 4, 5$ in [6], when f preserves orientation.

In this paper we will focus on the planar case and we extend Kerékjártó's result to the case where f has a compact attractor. To state our result we need

²⁰¹⁰ Mathematics Subject Classification. Primary: 37C15; Secondary: 37C70, 54H20. Key words and phrases. Kerékjártó's theorem; attractor; linearization; Lyapunov function. The first author is supported by the MINECO grant No. MTM2013-40998-P and by the CIRIT grant No. 2014SGR568. The third author is supported by the MINECO grant No. MTM2014-52209-C2-1-P. The first and second authors thank for the support of the Grupo de Sistemas Dinámicos de la Udelar.

to introduce a new concept, the stabilizer of a compact attractor. This notion is analogous to the one proposed in [3] for ordinary differential equations.

Let K be a compact attractor, not necessarily stable, and with basin of attraction $\mathcal{A}(K)$. Define the new compact set

$$\widetilde{K} := \{ x \in \mathcal{A}(K) : \alpha(x) \cap K \neq \emptyset \},$$

where $\alpha(x)$ denotes the *alpha-limit* of the orbit passing through x, which we call the *stabilizer of* K. We will see that \widetilde{K} is a compact stable attractor with the same basin of attraction as K. Our main result is the following theorem:

THEOREM 1.1. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be a homeomorphism, let K be a compact attractor and let \mathcal{U} be its basin of attraction. Assume that \mathcal{U} is connected and simply connected. Then $\mathcal{U} \setminus \widetilde{K}$ is homeomorphic to $\mathbb{R}^2 \setminus \{\mathbf{0}\}$ and $f|_{\mathcal{U} \setminus \widetilde{K}}$ is conjugated to $L_1(z) = z/2$ or $L_2(z) = \overline{z}/2$ on $\mathbb{R}^2 \setminus \{\mathbf{0}\}$.

As corollaries of the above theorem we get Kerékjártó's result and the following extension:

COROLLARY 1.2. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be a homeomorphism and let K be a global compact attractor. Then $\mathbb{R}^2 \setminus \widetilde{K}$ is homeomorphic to $\mathbb{R}^2 \setminus \{\mathbf{0}\}$ and $f|_{\mathbb{R}^2 \setminus \widetilde{K}}$ is conjugated either to L_1 or to L_2 on $\mathbb{R}^2 \setminus \{\mathbf{0}\}$.

Let us recall the main steps of Kerékjártó's proof. If γ is a Jordan curve surrounding the fixed point, p, then clearly there exists n such that $f^n(\gamma)$ is also a Jordan curve which surrounds p and lies in the bounded component of $\mathcal{U}\setminus\gamma$. Then, using all the curves $f^j(\gamma)$, $j=0,1,\ldots,n-1$, and some topological reasonings he constructs a new curve, say Γ , for which the same holds but with n=1. Then, the closed annulus \mathcal{A} with boundaries Γ and $f(\Gamma)$ constitutes a fundamental domain on which he constructs the conjugacy ψ between f and L_j , j=1 or 2. In fact, ψ must send \mathcal{A} to the set $A:=\{z\in\mathbb{C}:1/2\leq |z|\leq 1\}$, with some natural restrictions on the boundary. Then, this ψ can be extended to \mathcal{U} in a natural way by iteration.

Our proof of Theorem 1.1 follows a similar approach, but with two main differences. The first one is that the curve Γ with the property described above is constructed by using a different idea. First, we prove the existence of a continuous Lyapunov function L associated to the asymptotically stable compact set \widetilde{K} , by adapting a similar construction developed in [1] for ordinary differential equations. Afterwards, we show how to smoothen some of the level sets of L by using Sard's theorem and the classification of one dimensional manifolds. One of these smooth levels will be Γ . A second difference is that we use an extension of Jordan's curve theorem known as Schoenflies' theorem ([2], [9]) to prove the existence of a continuous conjugacy ψ between the respective domains $\mathcal A$ and $\mathcal A$, satisfying a suitable boundary condition.