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GROUND STATES

OF NONLOCAL SCALAR FIELD EQUATIONS

WITH TRUDINGER–MOSER CRITICAL NONLINEARITY

João Marcos do Ó — Oĺımpio H. Miyagaki — Marco Squassina

(Submitted by Mónica Clapp)

Abstract. We investigate the existence of ground state solutions for a class

of nonlinear scalar field equations defined on the whole real line, involv-
ing a fractional Laplacian and nonlinearities with Trudinger–Moser criti-

cal growth. We handle the lack of compactness of the associated energy

functional due to the unboundedness of the domain and the presence of
a limiting case embedding.

1. Introduction and main result

The goal of this paper is to investigate the existence of ground state solutions

u ∈ H1/2(R) for the following class of nonlinear scalar field equations:

(1.1) (−∆)1/2u+ u = f(u) in R,

where f : R→ R is a smooth nonlinearity in the critical growth range. Precisely,

we focus here on the case when f has maximal growth which allows to study prob-

lem (1.1) variationally in the Sobolev space u ∈ H1/2(R), see Section 2. We are

motivated by the following Trudinger–Moser type inequality due to Ozawa [27].
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Theorem 1.1. There exists 0 < ω ≤ π such that, for all α ∈ (0, ω), there

exists Hα > 0 with

(1.2)

∫
R

(eαu
2

− 1) dx ≤ Hα‖u‖2L2 ,

for all u ∈ H1/2(R) with ‖(−∆)1/4u‖2L2 ≤ 1.

From inequality (1.2) we have naturally associated notions of subcriticality

and criticality for this class of problems. Precisely, we say that f : R → R has

subcritical growth at ±∞ if

lim sup
s→±∞

f(s)

eαs2 − 1
= 0, for all α > 0,

and has α0-critical growth at ±∞ if there exist ω ∈ (0, π] and α0 ∈ (0, ω) such

that

lim sup
s→±∞

f(s)

eαs2 − 1
= 0, for all α > α0,

lim sup
s→±∞

f(s)

eαs2 − 1
= ±∞, for all α < α0.

For instance, let f be given by

f(s) = s3eα0|s|ν for all s ∈ R.

If ν < 2, f has subcritical growth, while if ν = 2 and α0 ∈ (0, ω], f has critical

growth. By a ground state solution to problem (1.1) we mean a nontrivial weak

solution of (1.1) with the least possible energy.

The following assumptions on f will be needed throughout the paper:

(f1) f : R→ R is a C1, odd, convex function on R+, and

lim
s→0

f(s)

s
= 0.

(f2) s 7→ s−1f(s) is an increasing function for s > 0.

(f3) There are q > 2 and Cq > 0 with

F (s) ≥ Cq|s|q, for all s ∈ R.

(AR) There exists ϑ > 2 such that

ϑF (s) ≤ sf(s), for all s ∈ R, F (s) =

∫ s

0

f(σ) dσ.

The main result of the paper is the following:

Theorem 1.2. Let f(s) and f ′(s)s have α0-critical growth and satisfy (f1)–

(f3) and (AR). Then problem (1.1) admits a ground state solution u ∈ H1/2(R)

provided Cq in (f3) is large enough.
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The nonlinearity

f(s) = λs|s|q−2 + |s|q−2seα0s
2

, q > 2 and s ∈ R,

satisfies all hypotheses of Theorem 1.2 provided that λ is sufficiently large. More

examples of nonlinearities which satisfy the above assumptions can be found in

[18]. In R2 one can use radial estimates, then apply, for instance, the Strauss

lemma [33] to recover some compactness results. In R analogous compactness

results fail, but in [20], the authors used the concentration compactness principle

due to Lions [35] for problems with polynomial nonlinearities. In this paper, we

use the minimization technique over the Nehari manifold in order to get ground

state solutions. We adopt some arguments from [4] combined with those used

in [10] and [21].

1.1. Quick overview of the literature. In [28], P. Rabinowitz studied

the semi-linear problem

(1.3) −∆u+ V (x)u = f(x, u) in RN , u ∈ H1(RN ), u > 0,

when V is a positive potential and f : RN ×R→ R has subcritical growth, that

is it behaves at infinity like sp with 2 < p < 2∗ − 1, where 2∗ = 2N/(N − 2) is

the critical Sobolev exponent, N ≥ 3. This was extended or complemented in

several ways, see e.g. [35].

For N = 2 formally 2∗  +∞, but H1(RN ) 6↪→ L∞(RN ). Instead, the

Trudinger–Moser inequality [26], [34] states that H1 is continuously embedded

into an Orlicz space defined by the Young function φ(t) = eαt
2 − 1. In [1], [14],

[13], [24], with the help of Trudinger–Moser embedding, problems in a bounded

domain were investigated, when the nonlinear term f behaves at infinity like

eαs
2

for some α > 0. We refer the reader to [12] for a recent survey on this

subject. In [11] the Trudinger–Moser inequality was extended to the whole R2

and the authors gave some applications to study equations like (1.3) when the

nonlinear term has critical growth of Trudinger–Moser type. For further results

and applications, we would like to mention also [2], [3], [16], [29] and references

therein. When the potential V is a positive constant and f(x, s) = f(s) for

(x, s) ∈ RN × R, that is the autonomous case, the existence of ground states

for subcritical nonlinearities was established in [6] for N ≥ 3 and [7] for N = 2

respectively, while in [3] the critical case for N ≥ 3 and N = 2 was treated. For

fractional problem of the form

(−∆)su+ V (x)u = f(u) in RN ,

with N > 2s and s ∈ (0, 1), we refer to [10, 19] where positive ground states

were obtained in subcritical situations. For instance, [10] extends the results

in [6] to the fractional Laplacian. In [19] regularity and qualitative properties of

the ground state solution are obtained, while in [31] a ground state solution is
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obtained for coercive potential. For fractional problems in bounded domains of

RN with N > 2s involving critical nonlinearities we cite [5], [9], [22], [30] and [17]

for the whole space with vanishing potentials. In [20] the authors investigated

properties of the ground state solutions of (−∆)su + u = up in R. Recently,

in [21], nonlocal problems defined in bounded intervals of the real line involving

the square root of the Laplacian and exponential nonlinearities were investigated,

using a version of the Trudinger–Moser inequality due to Ozawa [27]. As it

was remarked in [21], the nonlinear problem involving exponential growth with

fractional diffusion (−∆)s requires s = 1/2 and N = 1. In [18] some nonlocal

problems in R with vanishing potential, thus providing compactifying effects,

are considered. See also [32] for related results on the existence of solutions for

fractional Schrödinger equations involving exponential critical growth.

2. Preliminary stuff

We recall that

H1/2(R) =

{
u ∈ L2(R) :

∫
R2

(u(x)− u(y))2

|x− y|2
dx dy <∞

}
,

endowed with the norm

‖u‖ =

(
‖u‖2L2 +

∫
R2

(u(x)− u(y))2

|x− y|2
dx dy

)1/2

.

The square root of the Laplacian, (−∆)1/2, of a smooth function u : R → R is

defined by

F((−∆)1/2u)(ξ) = |ξ|F(u)(ξ),

where F denotes the Fourier transform, that is,

F(φ)(ξ) =
1√
2π

∫
R

e−iξ·xφ(x) dx,

for functions φ in the Schwartz class. Also (−∆)1/2u can be equivalently repre-

sented [15] as

(−∆)1/2u = − 1

2π

∫
R

u(x+ y) + u(x− y)− 2u(x)

|y|2
dy.

Also, in light of [15, Propostion 3.6], we have

(2.1) ‖(−∆)1/4u‖2L2 :=
1

2π

∫
R2

(u(x)− u(y))2

|x− y|2
dx dy, for all u ∈ H1/2(R),

and, sometimes, we identify these two quantities by omitting the normalization

constant 1/2π. From [25, Theorem 8.5 (iii)] we also know that, for any m ≥ 2,

there exists Cm > 0 such that

(2.2) ‖u‖Lm ≤ Cm‖u‖, for all u ∈ H1/2(R).
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Proposition 2.1. The integral∫
R

(eαu
2

− 1) dx

is finite for any positive α and u ∈ H1/2(R).

Proof. Let α0 ∈ (0, ω) and consider the convex function defined by

φ(t) =
eα0t

2 − 1

Hα0

, t ∈ R,

where Hα0 > 0 is defined as in Theorem 1.1. We introduce the Orlicz norm

induced by φ by setting

‖u‖φ := inf

{
γ > 0 :

∫
R
φ

(
u

γ

)
dx ≤ 1

}
,

and the corresponding Orlicz space Lφ∗(0, 1), see the monograph by Krasnosel’skĭı

and Rutickĭı [23, Chapter II, in particular pp. 78–81] for properties of this space.

We claim that ‖v‖φ ≤ ‖v‖, for all v ∈ H1/2(R). Let v ∈ H1/2(R) \ {0} and set

w = ‖v‖−1v, so that by formula (2.1) we conclude

(2.3)

‖(−∆)1/4w‖L2 =
1

(2π)1/2‖v‖

(∫
R2

(v(x)− v(y))2

|x− y|2
dxdy

)1/2

≤ (2π)−1/2 < 1.

Therefore, in light of Theorem 1.1, we have∫
R
φ

(
v

‖v‖

)
dx =

∫
R

eα0w
2 − 1

Hα0

dx ≤ ‖w‖2L2 ≤ 1,

which proves the claim by the very definition of ‖ · ‖φ. Fix now an arbitrary

function u ∈ H1/2(R). Hence, there exists a sequence (ψn) in C∞c (R) such that

ψn → u in H1/2(R), as n → ∞. By the claim this yields ‖ψn − u‖φ → 0,

as n→∞.

Fix now n = n0 sufficiently large that ‖ψn0
− u‖φ < 1/2. Then we have, in

light of [23, Theorem 9.15, p. 79], that∫
R
φ(2u− 2ψn0

) dx ≤ ‖2u− 2ψn0
‖φ < 1.

Finally, writing u = (2u− 2ψn0
)/2 + (2ψn0

)/2, and since∫
R
φ(2ψn0) dx =

1

Hα0

∫
R

(e4α0ψ
2
n0 − 1) dx =

1

Hα0

∫
supt(ψn0

)

(e4α0ψ
2
n0 − 1) dx <∞,

the convexity of φ yields
∫
R φ(u) dx < ∞. Hence, the assertion follows by the

arbitrariness of u. A different proof can be given writing (in the above notations)∫
R

(eαu
2

− 1) dx =

∫
R

(eαψ
2
n − 1) dx+

∫
R
(eαu

2

− eαψ
2
n) dx,
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estimating the right-hand side by

|eαu
2

− eαψ
2
n | ≤ 2α(|ψn − u|+ |ψn|)e2α|ψn−u|

2

e2α|ψn|
2

|ψn − u|,

using the Hölder inequality, the smallness of ‖ψn − u‖ and Theorem 1.1 to con-

clude, for n large enough. �

Define the functional J : H1/2(R)→ R associated with problem (1.1), given

by

J(u) =
1

2

∫
R

(|(−∆)1/4u|2 + u2) dx−
∫
R
F (u) dx.

Under our assumptions on f , by Proposition 2.1, we can easily see that J is well

defined. Also, it is standard to prove that J is a C1-functional and

J ′(u)v =

∫
R
(−∆)1/4u(−∆)1/4v dx+

∫
R
uv dx−

∫
R
f(u)v dx,

for all u, v ∈ H1/2(R). Thus, the critical points of J are precisely the solutions

of (1.1), namely u ∈ H1/2(R) with∫
R

(−∆)1/4u(−∆)1/4v dx+

∫
R
uv dx =

∫
R
f(u)v dx, for all v ∈ H1/2(R),

is a (weak) solution to (1.1).

Lemma 2.2. Let u ∈ H1/2(R) and ρ0 > 0 be such that ‖u‖ ≤ ρ0. Then∫
R

(eαu
2

− 1) dx ≤ Λ(α, ρ0), for every 0 < αρ20 < ω.

Proof. Let 0 < αρ20 < ω. Then, by Theorem 1.1, we have∫
R

(
eαu

2

− 1
)
dx ≤

∫
R

(
eαρ

2
0(u/‖u‖)

2

− 1
)
dx ≤ Hαρ20

‖u‖2L2

‖u‖2
≤ Hαρ20

:= Λ(α, ρ0),

since ‖(−∆)1/4u‖u‖−1‖2L2 < 1, see inequality (2.3). �

Remark 2.3. From (f1)–(f2) and (AR) we see that, for s ∈ R \ {0},

s2f ′(s)− sf(s) > 0,(2.4)

f ′(s) > 0,

H(s) := sf(s)− 2F (s) > 0,(2.5)

H is even, and increasing on R+,

H(s) > H(λs), for allλ ∈ (0, 1).(2.6)

Suppose that u 6= 0 is a critical point of J , that is, J ′(u) = 0, then necessarily

u belongs to N := {u ∈ H1/2(R)\{0} : J ′(u)u = 0}. So N is a natural constraint

for the problem of finding nontrivial critical points of J .

Lemma 2.4. Under assumptions (f1)–(f3) and (AR), N satisfies the following

properties:
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(a) N is a manifold and N 6= ∅.
(b) For u ∈ H1/2(R) \ {0} with J ′(u)u < 0, there is a unique λ(u) ∈ (0, 1)

with λu ∈ N .

(c) There exists ρ > 0 such that ‖u‖ ≥ ρ for any u ∈ N .

(d) If u ∈ N is a constrained critical point of J |N , then J ′(u) = 0 and u

solves (1.1).

(e) m = inf
u∈N

J(u) > 0.

Proof. Consider the C1-functional Φ: H1/2(R) \ {0} → R defined by

Φ(u) = J ′(u)u = ‖u‖2 −
∫
R
f(u)u dx.

Note that N = Φ−1(0) and Φ′(u)u < 0, if u ∈ N . Indeed, if u ∈ N , then

Φ′(u)u =

∫
R

(f(u)u− f ′(u)u2) dx < 0,

where we have used (2.4). Then c = 0 is a regular value of Φ and consequently

N = Φ−1(0) is a C1-manifold, proving (a).

Now we prove N 6= ∅ and that (b) holds. Fix u ∈ H1/2(R)\{0} and consider

the function Ψ: R+ → R,

Ψ(t) =
t2

2
‖u‖2 −

∫
R
F (tu) dx.

Then Ψ′(t) = 0 if and only if tu ∈ N , in which case it holds

(2.7) ‖u‖2 =

∫
R

f(tu)

t
u dx.

In light of (2.4), the function on the right-hand side of (2.7) is increasing.

Whence, it follows that a critical point of Ψ, if exists, is unique. Now, there

exist δ > 0 and R > 0 such that

Ψ(t) > 0 if t ∈ (0, δ) and Ψ(t) < 0 if t ∈ (R,∞).

In fact, by virtue of (f3), there exist C,C ′ > 0 such that

Ψ(t) =
t2

2
‖u‖2 −

∫
R
F (tu) dx ≤ Ct2 − C ′tq < 0,

provided that t > 0 is chosen large enough. Using (f1) and the fact that f has

α0-Trudinger–Moser critical growth at +∞, for some α ∈ (α0, ω) and for any

ε > 0, there exists Cε > 0 such that

F (s) ≤ ε[s2 + s4(eαs
2

− 1)] + Cεs
4, s ∈ R.

Then, for any u ∈ H1/2(R) \ {0},

Ψ(t) ≥ t2

2
‖u‖2 − εt2‖u‖2L2 − Cεt4‖u‖4L4 − εt4

∫
R
u4(eα(tu)

2

− 1) dx.
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For 0 < t < τ < (ω/(2α‖u‖2))1/2, by Lemma 2.2 and (2.2), there is C =

C(‖u‖, α) > 0 such that∫
R
u4(eα(tu)

2

− 1) ≤ ‖u‖4L8

(∫
R
e2ατ

2u2

− 1

)1/2

≤ C.

Then, for some B,B′ > 0, we have

Ψ(t) ≥ Bt2 −B′t4 > 0, for t > 0 small enough.

Thus, we conclude that there exists a unique maximum t0 = t0(u) > 0 such that

t0u ∈ N , and consequently N is a nonempty set. Given u ∈ H1/2(R) \ {0} with

J ′(u)u < 0, we have

Ψ′(1) = ‖u‖2 −
∫
R
f(u)u dx = J ′(u)u < 0,

which implies t0 < 1.

Let us prove (c). Let α ∈ (α0, ω) and ρ0 > 0 with αρ20 < ω. By the growth

conditions on f , there exists r > 1 so close to 1 that rαρ20 < ω, ` > 2 and C > 0

with

f(s)s ≤ 1

4
s2 + C(erαs

2

− 1)1/r|s|`, for all s ∈ R.

Let now u ∈ N with ‖u‖ ≤ ρ ≤ ρ0. Then, by Lemma 2.2 and (2.2), we have for

u ∈ N

0 = Φ(u) ≥ ‖u‖2 − 1

4
‖u‖2L2 − C

∫
R

(
erαu

2

− 1
)1/r|u|` dx(2.8)

≥ 3

4
‖u‖2 − C

(∫
R

(
erαu

2

− 1
)
dx

)1/r(∫
R
|u|r

′` dx

)1/r′

≥ 3

4
‖u‖2 − C‖u‖`,

which yields 0 < ρ̂ := (3/(4C))1/(`−2) ≤ ‖u‖ ≤ ρ, a contradiction if ρ <

min{ρ̂, ρ0}. Then u ∈ N implies ‖u‖ ≥ min{ρ̂, ρ0}, proving (c).

Concerning (d), if u ∈ N is a minimizer, then J ′(u) = λΦ′(u) for some λ ∈ R.

Testing with u and recalling the previous conclusions yields λ = 0, hence the

assertion.

Finally, assertion (e) follows by condition (AR) and (c), since u ∈ N implies

J(u) ≥ (1/2− 1/ϑ)‖u‖2 ≥ (1/2− 1/ϑ)ρ2 > 0. �

Lemma 2.5. Let (un) ⊂ N be a minimizing sequence for J on N , that is,

(2.9) J ′(un)un = 0 and J(un)→ m := inf
u∈N

J(u) as n→∞,

then the following facts hold:

(a) (un) is bounded in H1/2(R). Thus, up to a subsequence, un ⇀ u weakly

in H1/2(R).

(b) lim sup
n
‖un‖ < ρ0, for some ρ0 > 0 sufficiently small.
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(c) (un) does not converge strongly to zero in Lσ(R), for some σ > 2.

Proof. Let (un) ⊂ H1/2(R) satisfy (2.9). Using (AR) condition, we have

for ϑ > 2,

(2.10) m+ o(1) = J(un) ≥ ‖un‖
2

2
− 1

ϑ

∫
R
f(un)un dx =

(
1

2
− 1

ϑ

)
‖un‖2,

which implies (a).

To prove (b) we use assumption (f3) and the fact that, by (2.2),

(2.11) Sq := inf
v∈H1/2(R)\{0}

Sq(v) > 0, Sq(v) =
‖v‖
‖v‖Lq

.

Let (un) ⊂ N and u ∈ N satisfy (2.9). Then inequality (2.10) yields

(2.12) lim sup
n
‖un‖2 ≤

2ϑ

ϑ− 2
m.

Notice that, for every v ∈ H1/2(R) \ {0}, arguing as for the proof of (b) of

Lemma 2.4, one finds t0 > 0 such that t0v ∈ N . Hence m ≤ J(t0v) ≤ max
t≥0

J(tv).

Now, using assumption (f3) and formula (2.11), for every ψ ∈ H1/2(R) \ {0},
we can estimate

m ≤max
t≥0

J(tψ) ≤ max
t≥0

(
t2

2
‖ψ‖2 − Cqtq‖ψ‖qLq

)
≤max

t≥0

(
Sq(ψ)2

2
t2‖ψ‖2Lq − Cqtq‖ψ‖

q
Lq

)
=

(
1

2
− 1

q

)
Sq(ψ)2q/(q−2)

(qCq)2/(q−2)
,

which together with (2.12) implies that

lim sup
n
‖un‖2 ≤

2ϑ

ϑ− 2

(
1

2
− 1

q

)
Sq(ψ)2q/(q−2)

(qCq)2/(q−2)
.

Taking the infimum over ψ ∈ H1/2(R) \ {0}, we get

lim sup
n
‖un‖2 ≤

ϑ

ϑ− 2

q − 2

q

S2q/(q−2)q

(qCq)2/(q−2)
< ρ20,

provided Cq is large enough, proving (b).

Let us prove (c). By Lemma 2.4 (c), we have

‖un‖2 =

∫
R
f(un)un dx ≥ ρ2 > 0.

In view of assertion (b) the norm ‖un‖ is small (precisely, we can assume that

rα‖un‖2 < rαρ20 < ω for r very close to 1). Arguing as in the proof of (2.8), we

can find ε ∈ (0, 1) and C > 0 such that

‖un‖2 =

∫
R
f(un)un dx ≤ ε‖un‖2L2 + C

∫
R

(
erαu

2
n − 1

)1/r|un|` dx
≤ ε‖un‖2 + C

(∫
R

(
erαu

2
n − 1

)
dx

)1/r

‖un‖`Lr′` ≤ ε‖un‖
2 + C‖un‖`Lr′` ,
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which implies 0 < (1 − ε)ρ2 ≤ (1 − ε)‖un‖2 ≤ C‖un‖`Lr′` , and, consequently,

(un) cannot vanish in Lr
′`(R), as n→∞. �

Next, we formulate a Brezis–Lieb type lemma in our framework.

Lemma 2.6. Let (un) ⊂ H1/2(R) be a sequence such that un ⇀ u weakly in

H1/2(R) and ‖un‖ < ρ0 with ρ0 > 0 small. Then, as n→∞, we have∫
R
f(un)un dx =

∫
R
f(un − u)(un − u) dx+

∫
R
f(u)u dx+ o(1),∫

R
F (un) dx =

∫
R
F (un − u) dx+

∫
R
F (u) dx+ o(1).

Proof. We shall apply [8, Lemma 3 and Theorem 2]. Since f is convex

on R+ and by the properties collected in Remark 2.3, we have that the functions

F (s) and G(s) := f(s)s are convex on R with F (0) = G(0) = 0. We let α ∈
(α0, ω) and ρ0 ∈ (0, 1/2) with αρ20 < ω. Thus, by Lemma 2.2, we have

(2.13) sup
n∈N

∫
R

(
eαu

2
n − 1

)
dx <∞.

Choose k ∈ (1, (1− ρ0)/ρ0) and let ε > 0 with ε < 1/k. Then, in light of [8,

Lemma 3], the functions

φε(s) := j(ks)− kj(s) ≥ 0 ψε(s) := |j(Cεs)|+ |j(−Cεs)|, Cε =
1

ε(k − 1)
,

satisfy the inequality |j(a + b) − j(a)| ≤ εφε(a) + ψε(b), for all a, b ∈ R, and, if

vn := un − u and un satisfies (2.13), we claim that

(i) vn → 0 almost everywhere;

(ii) j(u) ∈ L1(R);

(iii)
∫
R φε(vn) dx ≤ C for some constant C independent of n ≥ 1;

(iv)
∫
R ψε(u) dx <∞, for all ε > 0 small.

Under this claim, then, by [8, Theorem 2], it holds

(2.14) lim
n

∫
R
|j(un)− j(vn)− j(u)| dx = 0,

with j = F and with j = G. Next we are going to prove the claim. Item

(i) follows by the weak convergence of (un). To prove (ii) it is enough to use

Proposition 2.1 (see the growth conditions below). To check (iii) for j = F and

j = G, we find α ∈ (α0, ω), D > 0 and q > 2 such that

F (s) ≤
(
s2 + eαs

2

− 1
)

+D|s|q, for all s ∈ R,(2.15)

G(s) ≤
(
s2 + eαs

2

− 1
)

+D|s|q, for all s ∈ R,(2.16)

|f(s)| ≤
(
s+ eαs

2

− 1
)

+D|s|q−1, for all s ∈ R,(2.17)

|f ′(s)s| ≤
(
s+ eαs

2

− 1
)

+D|s|q−1, for all s ∈ R.(2.18)
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We claim that φε(vn) verifies (iii). First let us consider the case j = F , that is,

φε(vn) = F (kvn) − kF (vn). In fact, by the Mean Value Theorem, there exists

ϑ ∈ (0, 1) with wn = vn(k(1− ϑ) + ϑ) such that

φε(vn) = F (kvn)− F (vn) + F (vn)− kF (vn)

= f(wn)vn(k − 1) + (1− k)F (vn) ≤ f(wn)vn(k − 1),

since k > 1 and F ≥ 0. Analogously, for j = G, we have

φε(vn) = G(kvn)−G(vn) +G(vn)− kG(vn)

= f ′(wn)wnvn(k − 1) + f(wn)vn(k − 1) + (1− k)f(vn)vn

≤ f ′(wn)wnvn(k − 1) + f(wn)vn(k − 1),

since k > 1 and f(s)s ≥ 0 for all s ∈ R. Thus, to prove (iii) for F and G, it is

sufficient to see that

(2.19) sup
n∈N

∫
R
f(wn)vn dx <∞, sup

n∈N

∫
R
f ′(wn)wnvn dx <∞.

We know that ‖un‖2 = ‖vn‖2+‖u‖2+o(1), as n→∞, so that lim sup
n
‖vn‖ ≤ ρ0.

In turn, by the choice of k, we also have

lim sup
n
‖wn‖ = ‖vn‖(k(1− ϑ) + ϑ) ≤ ρ0(k(1− ϑ) + ϑ) ≤ ρ0(k + 1) < 1.

Since α0 < α < ω, we can find m > 1 very close to 1 such that mα < ω. Then,

by (2.17), we get∫
R
f(wn)vn dx

≤
∫
R
|wn||vn| dx+

∫
R

(eαw
2
n − 1)|vn| dx+D

∫
R
|wn|q−1|vn| dx

≤ ‖wn‖L2‖vn‖L2 +D‖wn‖q−1Lq ‖vn‖Lq +

(∫
R

(emαw
2
n − 1) dx

)1/m

‖vn‖Lm′

≤ C‖wn‖‖vn‖+ C‖wn‖q−1‖vn‖+ C

(∫
R

(emαw
2
n − 1) dx

)1/m

‖vn‖

≤ C + C

(∫
R

(emαw
2
n − 1) dx

)1/m

≤ C.

The last integral is bounded via Lemma 2.2, since ‖wn‖ ≤ 1 and mα < ω.

The second term in (2.19) can be treated in a similar fashion, using the growth

condition (2.18) in place of (2.17). We claim that ψε verifies (iv) for both F

and G. It suffices to prove∫
R
F (Cεu) dx <∞, for all ε > 0.
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By (2.15) this occurs since by Proposition 2.1, we have∫
R

(
eαC

2
εu

2

− 1
)
dx <∞.

Analogous proof holds for G via (2.16). We can finally apply [8, Theorem 2]

yielding (2.14). Thus∫
R
j(un) dx =

∫
R
j(vn) dx+

∫
R
j(u) dx+ o(1),

for j = F and j = G. �

The previous Lemma 2.6 yields the following useful technical results.

Lemma 2.7. Let (un) ⊂ H1/2(R) be as in Lemma 2.5 then, for vn = un − u,

we have

J ′(u)u+ lim inf
n

J ′(vn) vn = 0,

so that either J ′(u)u ≤ 0 or lim infn J
′(vn)vn < 0.

Proof. Recalling that vn = un − u, we get ‖un‖2 = ‖vn‖2 + ‖u‖2 + o(1).

Then, by Lemma 2.6,∫
R
f(un)un dx =

∫
R
f(vn)vn dx+

∫
R
f(u)u dx+ o(1).

Since un ∈ N , by using the above equality, the assertion follows. �

Lemma 2.8. Let (un) ⊂ N be a minimizing sequence for J on N , such that

un ⇀ u weakly in H1/2(R) as n→∞. If u ∈ N , then J(u) = m.

Proof. Let (un) ⊂ N and u ∈ N be as above, thus

m+ o(1) = J(un)− 1

2
J ′(un)un =

1

2

∫
R
H(un) dx

which together with Fatou’s lemma (recall that (2.5) holds) implies

m =
1

2
lim inf

n

∫
R
H(un) dx ≥ 1

2
lim inf

n

∫
R
H(u) dx = J(u)− 1

2
J ′(u)u = J(u),

which yields the conclusion. �

3. Proof of Theorem 1.2 concluded

Let (un) ⊂ N be a minimizing sequence for J on N . From Lemma 2.5 (a),

(un) is bounded in H1/2(R). Thus, up to a subsequence, we have un ⇀ u weakly

in H1/2(R).

Assertion 3.1. There exist a sequence (yn) ⊂ R and constants γ,R > 0

such that

lim inf
n

∫ yn+R

yn−R
|un|2 dx ≥ γ > 0.
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If not, for any R > 0,

lim inf
n

sup
y∈R

∫ y+R

y−R
|un|2 dx = 0.

Using a standard concentration-compactness principle due to P.L. Lions (it is

easy to see that the argument remains valid for the case studied here) we can

conclude that un → 0 in Lq(R) for any q > 2, which is a contradiction with

Lemma 2.5 (c).

Define un(x) = un(x + yn). Then J(un) = J(ūn) and without of loss gen-

erality we can assume yn = 0 for any n. Notice that (un) is also a minimizing

sequence for J on N , which it is bounded and satisfies

lim inf
n

∫ R

−R
|ūn|2 dx ≥ γ, for some γ > 0,

and un ⇀ u weakly in H1/2(R), then u 6= 0 (u 6= 0).

Assertion 3.2. J ′(u)u = 0.

If Assertion 3.2 holds, then combining (d) of Lemmas 2.4 and 2.8 we have

the result.

We shall now prove Assertion 3.2. Suppose by contradiction that J ′(u)u 6= 0.

If J ′(u)u < 0, by Lemma 2.4 (b), there exists 0 < λ < 1 such that λu ∈ N .

Thus

λ‖u‖2 =

∫
R
f(λu)u dx.

Using (2.5) in combination with Fatou’s lemma, we obtain

m = lim inf
n

1

2

∫
R
H(un) dx ≥ 1

2

∫
R
H(u) dx

>
1

2

∫
R
H(λu) dx = J(λu)− 1

2
J ′(λu)λu = J(λu),

which implies J(λu) < m and, hence, a contradiction. Here we have used (2.6).

If J ′(u)u > 0, by Lemma 2.7, we get lim inf
n

J ′(vn)vn < 0. Taking a sub-

sequence, we have J ′(vn)vn < 0, for n large enough. By Lemma 2.4 (b), there

exists λn ∈ (0, 1) such that λnvn ∈ N .

Assertion 3.3. lim sup
n

λn < 1.

If lim supn λn = 1, up to a sub-sequence, we can assume that λn → 1, then

J ′(vn)vn = J ′(λnvn)λnvn + o(1).

This follows provided that

(3.1)

∫
R
f(vn)vn dx =

∫
R
f(λnvn)λnvn dx+ o(1).
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In fact, notice that if ηn := vn + τvn(λn − 1) for some τ ∈ (0, 1), it follows

f(vn)vn − f(λnvn)λnvn = (f ′(ηn)ηn + f(ηn))vn(1− λn).

Since ‖ηn‖ = ‖vn + τvn(λn− 1)‖ ≤ λn‖vn‖ ≤ ρ0, it follows by arguing as for the

justification of formula (2.19), that

sup
n∈N

∫
R
|f ′(ηn)ηn + f(ηn)||vn| dx <∞,

so that (3.1) follows, since λn → 1. Since λnvn ∈ N we have J ′(λnvn)λnvn = 0

what implies that J ′(vn)vn=o(1), which is a contradiction with lim
n
J ′(vn)vn<0.

Thus, up to subsequence, we may assume that λn → λ0 ∈ (0, 1). Arguing as

before, from (2.6) we infer

m+ o(1) =
1

2

∫
R
H(un) dx ≥ 1

2

∫
R
H(λnun) dx,

since H(un) ≥ H(λnun). By means of Lemma 2.6 applied to wn = λnun (whose

norm is small, being smaller than the norm of un) and w = λ0u, we have in turn∫
R
H(λnun) dx =

∫
R
H(λnun − λ0u) dx+

∫
R
H(λ0u) dx+ o(1).

Furthermore, we have

(3.2)

∫
R
H(λnun − λ0u) dx =

∫
R
H(λnvn) dx+ o(1).

In fact, notice that λnun − λ0u = λnvn + γnu, where γn := λn − λ0 → 0 as

n→∞. We have

H(λnun − λ0u)−H(λnvn) = H′(η̂n)uγn, η̂n := τuγn + λnvn

for τ ∈ (0, 1) and ‖η̂n‖ = ‖τuγn + λnvn‖ ≤ γn‖u‖ + λn‖vn‖ ≤ ρ0 for n large

enough. Then, arguing as for the justification of (2.19), we get

sup
n∈N

∫
R
|H′(η̂n)||u| dx ≤ sup

n∈N

∫
R
|f ′(η̂n)η̂n + f(η̂n)||vn| dx <∞,

which yields (3.2) since γn → 0 as n→∞. Therefore, we obtain

m+ o(1) ≥ 1

2

∫
R
H(λnvn) dx+

1

2

∫
R
H(λ0u) dx

= J(λnvn)− 1

2
J ′(λnvn)λvn +

1

2

∫
R
H(λ0u) dx

= J(λnvn) +
1

2

∫
R
H(λ0u) dx.

Since u 6= 0, we have
∫
RH(λ0u) dx > 0. Then J(λnvn) < m for large n enough,

namely a contradiction. �
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