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HOMOCLINIC ORBITS

OF FIRST ORDER NONLINEAR HAMILTONIAN SYSTEMS

WITH ASYMPTOTICALLY LINEAR NONLINEARITIES

AT INFINITY

Guanwei Chen

Abstract. By using variational methods and critical point theory, in par-

ticular, a generalized weak linking theorem, we study a first order nonlinear
Hamiltonian system with asymptotically linear nonlinearity at infinity. We

obtain the existence of ground state homoclinic orbits for this nonlinear

Hamiltonian system. In particular, we obtain a necessary and sufficient
condition for the existence of ground state homoclinic orbits. To the best

of our knowledge, there is no published result focusing on necessary and

sufficient conditions of the existence of ground state homoclinic orbits for
this system.

1. Introduction and main results

In this paper, we consider the following first order nonlinear Hamiltonian

system:

(1.1) −Ju̇(t)− L(t)u = ∇W (t, u(t)), t ∈ R,

where J =
(

0 −In
In 0

)
denotes the standard symplectic matrix, L(t) is a given con-

tinuous T -periodic and symmetric 2N×2N -matrix-value function and W (t, u) ∈
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C1(R×R2N ,R) is T -periodic in the t-variable and ∇W (t, u) denotes its gradient

with respect to the u variable. Recall that a solution u of (1.1) is a homoclinic

orbit if u 6= 0 and u→ 0 as |t| → ∞.

In this paper, we are interested in the strongly indefinite case for (1.1), that is,

(A1) Λ := sup(σ(B) ∩ (−∞, 0)) < 0 < Λ := inf(σ(B) ∩ (0,∞)), where B :=

−J d
dt2 − L(t) and σ(B) denotes the spectrum of B. Clearly, σ(B) is

absolutely continuous.

Remark 1.1. If (A1) holds and the nonlinearity W (t, u) of (1.1) is su-

perquadratic at infinity, i.e.

lim
|u|→∞

W (t, u)

|u|2
= +∞,

the authors of [2] have obtained the existence of ground state homoclinic orbits

of (1.1) (i.e. solutions corresponding to the least energy of the action functional

of (1.1)). Inspired by [2], we study the existence of ground state homoclinic

orbits of (1.1) in the case where W (t, u) is asymptotically quadratic at infinity,

see Theorem 1.3. As we know, the asymptotically quadratic case is very dif-

ferent from the superquadratic case. In particular, we obtain a necessary and

sufficient condition of the existence of ground state homoclinic orbits for (1.1),

see Theorem 1.4.

Remark 1.2. The main novelty of this paper is that we obtain a necessary

and sufficient condition for the existence of ground state homoclinic orbits in the

strongly indefinite case (A1), see Theorem 1.4. In fact, for the positive definite

case, i.e. inf σ(B) > 0, we believe that the necessary and sufficient condition can

also be obtained.

Let W̃ (t, u) := (∇W (t, u), u)/2−W (t, u), where ( · , · ) denotes the standard

inner product in R2N , and the associated norm is denoted by | · |. We assume

that

(W1) |∇W (t, u)| = o(|u|) as |u| → 0 uniformly in t ∈ R.

(W2) W (t, u) ≥ 0 for all (t, u) ∈ R× R2N and W̃ (t, u) > 0 if u ∈ R2N \ {0}.
(W3) W (t, u) = V (t)|u|2/2 + F (t, u), where 0 < V (t) < +∞ and

|∇F (t, u)| = o(|u|) as |u| → ∞ uniformly in t.

(W4) W̃ (t, u)→ +∞ as |u| → +∞, and there is a function P (t) (|P (t)| < +∞,

for all t ∈ R) such that

lim sup
|u|→0

|∇W (t, u)|2

W̃ (t, u)
= P (t) uniformly in t.

Now, our main results read as follows:
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Theorem 1.3. If (A1) and (W1)–(W4) hold, and V (t) > Λ for all t ∈ R,

then (1.1) has at least one nontrivial homoclinic orbit, which is a ground state

solution.

As we know, nonlinear problems usually do not have necessary and sufficient

conditions of the existence of solutions. However, we obtain a necessary and

sufficient condition of the existence of ground state homoclinic orbit for (1.1).

Theorem 1.4. Assume that (A1) and (W1)–(W4) with V (t) ≡ V in (W3)

hold (V is a positive constant). If |∇W (t, u)|/|u| ≤ V , for all (t, u) ∈ R× R2N ,

and

(1.2) Λ + V ≤ min{0,Λ− V },

then (1.1) admits a nontrivial homoclinic orbit if and only if V > Λ.

Remark 1.5. Notice that (1.2) always holds if V is small enough, thus The-

orem 1.4 shows that V > Λ is a sharp condition for the existence of ground state

homoclinic orbit for (1.1). To the best of our knowledge, there is no published

result focusing on necessary and sufficient conditions of the existence of ground

state homoclinic orbits for (1.1).

Next, we give an example, which illustrates the main results.

Example 1.6. Let

W (t, u) :=
1

2
V (t)(|u|2 − ln(1 + |u|2)),

where 0 < V (t) < +∞ is continuous and T -periodic. It is not hard to check that

it satisfies conditions (W1)–(W4).

It is maybe worthwhile recalling here that since appearance in 1990 of the

work [3], there were obtained many sufficient conditions of the existence of ho-

moclinic orbits for systems (1.1). For example, in the papers [1], [3], [6]–[8], [10],

[11], [13], [15], [16] there were obtained sufficient conditions of the existence of ho-

moclinic orbits for (1.1) by considering the well-known Ambrosetti–Rabinowitz

(AR for short) super quadratic condition. Roughly speaking the role of AR super

quadratic condition is to insure that all Palais–Smale sequences for the corre-

sponding function of (1.1) at the Mountain–Pass level are bounded. If W (t, u)

and L(t) depend periodically on t so that 0 lies in a gap of σ(−J d
dt −L), Ding [4]

has obtained sufficient conditions of the existence of infinitely many homoclinic

orbits for (1.1) with W (t, u) super quadratic or asymptotically quadratic in u at

infinity by some recent information on strongly indefinite functionals in critical

point theory. If W (t, u) and L(t) depend periodically on t while 0 lies on the

boundary of σ(−J d
dt − L), Ding and Willem [7] have obtained sufficient condi-

tions of the existence of one homoclinic orbit, and Ding and Girardi [6] have
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got sufficient conditions of the existence of infinitely many homoclinic orbits for

some super quadratic systems. The authors of [3] firstly studied sufficient con-

ditions of the existence of homoclinic orbits for (1.1) by means of critical point

theory. Under the assumptions that L is constant and 0 is a hyperbolic point of

−(J d
dt + L), W (t, u) strictly convex in u and satisfying the AR super quadratic

condition, they obtained the existence and multiplicity of homoclinic orbits of

(1.1). This result was deepened in [10], [11] when Séré established the existence

of infinitely many homoclinic orbits. Independently, Hofer and Wysocki [8], us-

ing Fredholm operator theory and a linking argument, and Tanaka [13], passing

through a subharmonic approach, managed to remove the convexity assumption

to get sufficient conditions of the existence of one homoclinic orbit. Later linking

type arguments were used in [1], [6], [7] to get sufficient conditions of the exis-

tence and multiplicity of homoclinic orbits of (1.1) when L depend periodically

on t and certain symmetries on W (t, u) are assumed for the multiplicity.

The rest of this paper is organized as follows. In Section 2, we first establish

the variational framework of (1.1), and then we give some preliminary lemmas,

which are useful in the proofs of our main results. In Section 3, we give the

detailed proofs of our main results.

2. Variational framework and preliminary lemmas

We first give some notations used in this paper.

Notations. Let Br(s) := [s − r, s + r]. Let ‖ · ‖Lq and ( · , · )Lq denote the

usual norm and the inner product of Lq(R,R2N ), respectively.

Under assumption (A1), B = −J d
dt − L(t) is a self-adjoint operator acting

on L2(R,R2N ) with the domain D(B) := H1(R,R2N ). Let E := D(|B|1/2) be

the domain of the self-adjoint operator |B|1/2 which is a Hilbert space equipped

with the inner product

〈u, v〉D := (u, v)L2 + (|B|1/2u, |B|1/2v)L2 .

Moreover, to B there corresponds a bounded self-adjoint operator χ : E → E

such that

〈χu, v〉D =

∫
R
(−Ju̇− L(t)u, v) dt,

E = E− ⊕ E+, where E± are χ-invariant and 〈u+, u−〉D = (u+, u−)L2 = 0, for

all u± ∈ E±. Also, 〈χu, u〉D is positive definite on E+ and negative definite

on E−. We introduce a new inner product in E by setting

(2.1) 〈u, v〉 := 〈χu+, v+〉D − 〈χu−, v−〉D.

Then 〈χu, u〉D = ‖u+‖2−‖u−‖2, where ‖ · ‖ is the norm corresponding to 〈 · , · 〉.
Obviously, the decomposition E = E− ⊕ E+ is orthogonal with respect to both
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〈 · , · 〉 and ( · , · )L2 . Therefore, the corresponding functional with (1.1) can be

rewritten as:

I(u) =
1

2

∫
R

(−Ju̇− L(t)u, u) dt−
∫
R
W (t, u) dt(2.2)

=
1

2
(‖u+‖2 − ‖u−‖2)−

∫
R
W (t, u) dt.

The hypotheses on W imply that I ∈ C1(E,R) and a standard argument shows

that critical points of I are homoclinic orbits of (1.1).

The following abstract critical point theorem plays an important role in prov-

ing our main result. Let E be a Hilbert space with norm ‖ · ‖ and have an

orthogonal decomposition E = N ⊕N⊥, N ⊂ E is a closed and separable sub-

space. There exists norm |v|ω satisfying |v|ω ≤ ‖v‖ for all v ∈ N and inducing

a topology equivalent to the weak topology of N on bounded subset of N . For

u = v + w ∈ E = N ⊕N⊥ with v ∈ N , w ∈ N⊥, we define |u|2ω = |v|2ω + ‖w‖2.

Particularly, if (un = vn + wn) is ‖ · ‖-bounded and un
| · |ω−→ u, then vn ⇀ v

weakly in N , wn → w strongly in N⊥, un ⇀ v + w weakly in E (cf. [12]).

Let E = E− ⊕ E+, z0 ∈ E+ with ‖z0‖ = 1. Let N := E− ⊕ Rz0 and

E+
1 := N⊥ = (E− ⊕Rz0)⊥. For R > 0, let

Q := {u := u− + sz0 | s ∈ R+, u− ∈ E−, ‖u‖ < R}

with p0 = s0z0 ∈ Q, s0 > 0. We define

D := {u := sz0 + w+ | s ∈ R, w+ ∈ E+
1 , ‖sz0 + w+‖ = s0}.

For I ∈ C1(E,R), define Γ := {h | h : [0, 1] × Q 7→ E is | · |ω-continuous,

h(0, u) = u, I(h(s, u)) ≤ I(u), for all u ∈ Q. For any (s0, u0) ∈ [0, 1]×Q, there

is a | · |ω-neighbourhood U(s0,u0), such that

{u− h(t, u) | (t, u) ∈ U(s0,u0) ∩ ([0, 1]×Q)} ⊂ Efin},

where Efin denotes various finite-dimensional subspaces of E, Γ 6= 0 since id ∈ Γ.

The weak linking variant is:

Lemma 2.1 ([12]). The family of C1-functionals {Iλ} has the form Iλ(u) :=

J(u)− λK(u) for all λ ∈ [1, 2]. Assume that:

(a) K(u) ≥ 0, for all u ∈ E, I1 = I;

(b) J(u)→∞ or K(u)→∞ as ‖u‖ → ∞;

(c) Iλ is | · |ω-upper semicontinuous, I ′λ is weakly sequentially continuous

on E. Moreover, Iλ maps bounded sets to bounded sets;

(d) sup
∂Q

Iλ < inf
D
Iλ, for all λ ∈ [1, 2].

Then, for almost all λ ∈ [1, 2], there exists a sequence {un} such that

sup
n
‖un‖ <∞, I ′λ(un)→ 0, Iλ(un)→ cλ,
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where cλ := inf
h∈Γ

supu∈Q Iλ(h(1, u)) ∈
[

inf
D
Iλ, sup

Q

I
]
.

In order to apply Lemma 2.1, we consider

Iλ(u) :=
1

2
‖u+‖2 − λ

(
1

2
‖u−‖2 +

∫
R
W (t, u) dt

)
.

It is easy to see that Iλ satisfies conditions (a), (b) in Lemma 2.1. To see (c),

if un
| · |ω−→ u and Iλ(un) ≥ a, then u+

n → u+ and u−n ⇀ u− in E, going to

a subsequence if necessary, un → u almost everywhere on R. Next, we prove

Iλ(u) ≥ a, which means that Iλ is | · |ω-upper semicontinuous. Since

Iλ(un) =
1

2
‖u+

n ‖2 − λ
(

1

2
‖u−n ‖2 +

∫
R
W (t, un) dt

)
≥ a,

it follows from u+
n → u+ and u−n ⇀ u− in E, the weak lower semicontinuity of

the norm, W (t, un) ≥ 0 and the Fatou’s lemma that

a ≤ lim sup
n→∞

Iλ(un) = lim sup
n→∞

[
1

2
‖u+

n ‖2 − λ
(

1

2
‖u−n ‖2 +

∫
R
W (t, un) dt

)]
≤ 1

2
‖u+‖2 − lim inf

n→∞
λ

(
1

2
‖u−n ‖2 +

∫
R
W (t, un) dt

)
≤ 1

2
‖u+‖2 − λ

(
1

2
‖u−‖2 +

∫
R
W (t, u) dt

)
= Iλ(u).

Thus we get Iλ(u) ≥ a. I ′λ is weakly sequentially continuous on E, see [14].

Lemma 2.2 ([5, 15]). E embeds continuously into Lq(R,R2N ) and compactly

into Lqloc(R,R2N ) for all q ∈ [2,∞).

In this section, we always assume (A1) and (W1)–(W4) hold, and V (t) > Λ

for all t ∈ R. To use Lemma 2.1, we still need to verify condition (d). Indeed,

we have:

Lemma 2.3. The following facts hold true:

(a) There exists ρ > 0 independent of λ ∈ [1, 2] such that κ := inf Iλ(SρE
+)

> 0, where SρE
+ := {z ∈ E+ | ‖z‖ = ρ}.

(b) For fixed z0 ∈ E+ with ‖z0‖ = 1 and any λ ∈ [1, 2], there is R > ρ > 0

such that sup Iλ(∂Q) ≤ 0, where Q := {u := v + sz0 | s ≥ 0, v ∈ E−,

‖u‖ < R}.

Proof. (a) By (W1) and (W3), for any ε > 0 there exists Cε > 0 such that

(2.3) |∇W (t, u)| ≤ ε|u|+ Cε|u|p−1, |W (t, u)| ≤ ε|u|2 + Cε|u|p,

where p > 2. Hence, by Lemma 2.2, for any u ∈ E+, we have

Iλ(u) ≥ 1

2
‖u‖2 − λε‖u‖2 − C ′ε‖u‖p.

It implies the conclusion.
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(b) Note that V (t) is T -periodic, it follows from V (t) > Λ for all t ∈ R that

there exists ε0 > 0 such that V (t) ≥ Λ + 2ε0 for all t ∈ R. Note that σ(B)

is absolutely continuous, so we can choose z0 ∈ E+ with ‖z0‖ = 1 such that

‖z0‖2 ≤ (Λ + ε0)‖z0‖2L2 .

Suppose by contradiction that there exist un∈E−⊕R+z0 such that Iλ(un)>0

for all n and ‖un‖ → ∞ as n→∞. Set wn = un/‖un‖ = snz0 + w−n , then

(2.4) 0 <
Iλ(un)

‖un‖2
=

1

2
(s2
n − λ‖w−n ‖2)− λ

∫
R

W (t, un)

|un|2
|wn|2 dt.

From (W2), we know W (t, u) ≥ 0 and have ‖w−n ‖2 ≤ λ‖w−n ‖2 < s2
n = 1−‖w−n ‖2,

therefore, ‖w−n ‖ ≤ 1/
√

2 and 1/
√

2 ≤ sn ≤ 1. So sn → s 6= 0 after passing to

a subsequence, wn ⇀ w and wn → w almost everywhere in R. Hence w =

sz0 + w− 6= 0, and thus |un| = |wn| · ‖un‖ → ∞. It follows from (W2), (W3),

(2.4), ‖z0‖ = 1, V (t) ≥ Λ + 2ε0 for all t ∈ R, ‖z0‖2 ≤ (Λ + ε0)‖z0‖2L2 , Fatou’s

lemma and the weak lower semicontinuity of the norm that

0 ≤ lim sup
n→∞

Iλ(un)

‖un‖2

= lim sup
n→∞

(
1

2
(s2
n − λ‖w−n ‖2)− λ

∫
R

W (t, un)

|un|2
|wn|2 dt

)
≤ 1

2
(s2‖z0‖2 − ‖w−‖2)− 1

2

∫
R
V (t)w2 dt

≤ 1

2
s2‖z0‖2 −

1

2
(Λ + 2ε0)s2‖z0‖2L2

≤ 1

2
s2(Λ + ε0)‖z0‖2L2 −

1

2
(Λ + 2ε0)s2‖z0‖2L2 = −1

2
ε0s

2‖z0‖2L2 < 0,

which is a contradiction. Therefore, the proof is finished. �

Lemma 2.4. For almost all λ ∈ [1, 2], there exists uλ such that I ′λ(uλ) = 0

and Iλ(uλ) ≤ sup
Q

I.

Proof. By Lemmas 2.1 and 2.3, for almost all λ ∈ [1, 2], there exists a se-

quence {un} such that sup
n
‖un‖ <∞, I ′λ(un)→ 0 and Iλ(un)→ cλ ∈

[
κ, sup

Q

I
]
,

where κ is defined in Lemma 2.3.

We write un = u−n + u+
n with u±n ∈ E±. Since {u+

n } is bounded, by a Lion’s

concentration compactness principle [9], either {u+
n } is vanishing: for each l > 0,

lim
n→∞

sup
s∈R

∫
Bl(s)

|u+
n |2 dt = 0

(in this case u+
n → 0 in Lq(R,R2N ) for all q ∈ (2,∞)), or it is non-vanishing:

there exist r, δ > 0 and a sequence sn ∈ R such that

lim
n→∞

∫
Br(sn)

|u+
n |2 dt ≥ δ.
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If {u+
n } is vanishing, then u+

n → 0 in Lq(R,R2N ) for all q ∈ (2,∞), it follows

from (2.3), the boundedness of {un} and Hölder’s inequality that∫
R
|(∇W (t, un), u+

n )| dt ≤ ε
∫
R
|un| · |u+

n | dt+ Cε

∫
R
|un|p−1|u+

n | dt

≤ ε‖un‖L2‖u+
n ‖L2 + Cε‖un‖p−1

Lp ‖u+
n ‖Lp → 0

as n→∞. Therefore,

Iλ(un) ≤ ‖u+
n ‖2 = I ′λ(un)u+

n + λ

∫
R

(∇W (t, un), u+
n ) dt→ 0

as n → ∞, which contradicts with the fact that Iλ(un) ≥ κ. Hence {u+
n } must

be non-vanishing. Let us define vn = un( · − sn), then

(2.5) lim
n→∞

∫
Br(0)

|v+
n |2 dt ≥

δ

2
.

Since Iλ and I ′λ are both invariant under translation, we know that I ′λ(vn)→ 0

and Iλ(vn) → cλ as n → ∞. Since {vn} is still bounded, we may assume that

v+
n ⇀ u+

λ , v−n ⇀ u−λ in E. Lemma 2.2 implies v+
n → u+

λ in L2
loc(R,R2N ), it

follows from (2.5) that uλ = u+
λ + u−λ 6= 0 and I ′λ(uλ)ϕ = lim

n→∞
I ′λ(vn)ϕ = 0, for

all ϕ ∈ C∞0 (R). By (W2) and Fatou’s lemma, we have

sup
Q

I ≥ cλ = lim
n→∞

(
Iλ(vn)− 1

2
I ′λ(vn)vn

)
= lim

n→∞

∫
R

(
1

2
(∇W (t, vn), vn)−W (t, vn)

)
dt

≥
∫
R

(
1

2
(∇W (t, uλ), uλ)−W (t, uλ)

)
dt = Iλ(uλ),

thus we get Iλ(uλ) ≤ sup
Q

I. �

Lemma 2.5. There exist {λn} ⊂ [1, 2] with λn → 1 and {uλn
} such that

I ′λn
(uλn

) = 0 and Iλn
(uλn

) ≤ sup
Q

I. Moreover, {uλn} is bounded.

Proof. The existence of {λn} ⊂ [1, 2] with λn → 1 and {uλn
} such that

I ′λn
(uλn

) = 0 and Iλn
(uλn

) ≤ sup
Q

I is the direct consequence of Lemma 2.4.

The facts I ′λn
(uλn

) = 0 and Iλn
(uλn

) ≤ supQ I imply that

1

λn

(
Iλn

(uλn
)− 1

2
I ′λn

(uλn
)uλn

)
≤ C,

it follows from the definition of Iλn
that

(2.6)

∫
R
W̃ (t, uλn

) dt =
1

λn

(
Iλn

(uλn
)− 1

2
I ′λn

(uλn
)uλn

)
≤ C.
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Note that (W4) implies
∫
R W̃ (t, u) dt → +∞ as |u| → +∞, thus it follows from

(2.6) that

(2.7) |uλn | ≤ C1

for some positive constant C1. From (W4), there exists a positive constants C2

such that

(2.8) |∇W (t, uλn
)|2 ≤ C2W̃ (t, uλn

), t ∈ R and |uλn
| ≤ C1.

Thus by (2.6)–(2.8), the fact I ′λn
(uλn)u+

λn
= 0, Hölder’s inequality and the

Sobolev imbedding theorem,

‖u+
λn
‖2 =λn

∫
R

(∇W (t, uλn
), u+

λn
) dt

≤λn
(∫

R
|∇W (t, uλn)|2 dt

)1/2(∫
R
|u+
λn
|2 dt

)1/2

≤C3

(∫
R
|∇W (t, uλn

)|2 dt
)1/2

‖u+
λn
‖ ≤ C4‖u+

λn
‖

for some positive constants C3 and C4. It implies that ‖u+
λn
‖ ≤ C. On the other

hand, the condition (W2) and I ′λn
(uλn

)uλn
= 0 imply that

‖u+
λn
‖2 − λn‖u−λn

‖2 = λn

∫
R

(∇W (t, uλn
), uλn

) dt ≥ 0,

that is, ‖u−λn
‖2 ≤ λn‖u−λn

‖2 ≤ ‖u+
λn
‖2. Therefore, we get {uλn

} is bounded. �

Lemma 2.6. If {uλn} is the sequence obtained in Lemma 2.5, then it is also

a (PS) sequence for I satisfying lim
n→∞

I ′(uλn) = 0 and lim
n→∞

I(uλn) ≤ sup
Q

I.

Proof. Note that uλn is bounded. From

lim
n→∞

I(uλn
) = lim

n→∞

(
Iλn

(uλn
) + (λn − 1)

(
1

2
‖u−λn

‖2 +

∫
R
W (t, uλn

), dt

))
and

lim
n→∞

I ′(uλn)ϕ

= lim
n→∞

(
I ′λn

(uλn)ϕ+ (λn − 1)

(
〈u−λn

, ϕ−〉+

∫
R

(
∇W (t, uλn), ϕ

)
dt

))
for any ϕ ∈ E, we obtain the conclusion. �
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3. Proofs of main results

Proof of Theorem 1.3. Lemma 2.5 implies {uλn
} is bounded, thus we

have either {uλn
} is vanishing: for each l > 0,

lim
n→∞

sup
s∈R

∫
Bl(s)

|uλn
|2 dt = 0,

or non-vanishing: there exist r, δ > 0 and a sequence {sn} ⊂ R such that

lim
n→∞

∫
Br(sn)

|uλn |2 dt ≥ δ.

If {uλn
} is vanishing, Lion’s concentration compactness principle implies uλn

→
0 in Lp(R,R2N ), for all p ∈ (2,∞). However, (2.3), Hölder’s inequality, the

Sobolev embedding theorem and the fact I ′λn
(uλn

)u+
λn

= 0 imply that

‖u+
λn
‖2 =λn

∫
R

(
∇W (t, uλn), u+

λn

)
dt

≤ ε
∫
R
|uλn
| · |u+

λn
| dt+ Cε

∫
R
|uλn
|p−1|u+

λn
| dt

≤ ε‖uλn
‖ · ‖u+

λn
‖+ C ′ε‖uλn

‖p−1
Lp ‖u+

λn
‖

≤ ε‖uλn
‖ · ‖u+

λn
‖+ C ′′ε ‖uλn

‖p−2
Lp ‖uλn

‖ · ‖u+
λn
‖

≤ ε‖uλn‖2 + C ′′ε ‖uλn‖
p−2
Lp ‖uλn‖2.

Similarly, we have

‖u−λn
‖2 ≤ ε‖uλn

‖2 + C ′′ε ‖uλn
‖p−2
Lp ‖uλn

‖2.

Therefore,

‖uλn
‖2 ≤ 2ε‖uλn

‖2 + 2C ′′ε ‖uλn
‖p−2
Lp ‖uλn

‖2,

which means ‖uλn
‖Lp ≥ C for some constant C. Hence {uλn

} is non-vanishing.

Let us define vλn
= uλn

( · − sn), from lim
n→∞

∫
Br(sn)

|uλn
|2 dt ≥ δ, we have

(3.1) lim
n→∞

∫
Br(0)

|vλn
|2 dt ≥ δ

2
.

Note that I and I ′ are both invariant under translation, so we know I ′(vλn
)→ 0.

Since {vλn
} is still bounded, we may assume vλn

⇀ u in E. By Lemma 2.2,

vλn
→ u in L2

loc(R,R2N ). It follows from (3.1) that u 6= 0 with I ′(u) = 0.

Let K := {u ∈ E | I ′(u) = 0, u 6= 0} be the critical set of I and c :=

inf{I(z) | z ∈ K \ {0}}. For any critical point u of I, assumption (W2) implies

that

I(u) = I(u)− 1

2
I ′(u)u =

∫
R

(
1

2
(∇W (t, u), u)−W (t, u)

)
dt > 0 if u 6= 0.

Therefore, we have c ≥ 0. We prove that c > 0 and there is u ∈ K such that

I(u) = c. Let uj ∈ K\{0} be such that I(uj)→ c. Then, the proof of Lemma 2.5



Homoclinic Orbits of First Order Nonlinear Hamiltonian Systems 509

shows that {uj} is bounded, then by the concentration compactness principle

discussion above we know uj ⇀ u ∈ K \ {0}. Thus

c = lim
j→∞

I(uj) = lim
j→∞

(
I(uj)−

1

2
I ′(uj)uj

)
= lim

j→∞

∫
R

(
1

2
(∇W (t, uj), uj)−W (t, uj)

)
dt

≥
∫
R

(
1

2
(∇W (t, u), u)−W (t, u)

)
dt = I(u) ≥ c,

where the first inequality is due to Fatou’s lemma. So I(u) = c and c > 0 because

u 6= 0. �

Proof of Theorem 1.4. By virtue of Theorem 1.3, it suffices to show

that (1.1) has no nontrivial homoclinic orbit if (A1), (W1)–(W4) with V (t) ≡ V ,

|∇W (t, u)|/|u| ≤ V for all (t, u) ∈ R × R2N and V ≤ Λ0 := min{−Λ,Λ} hold.

By way of contradiction, we assume that (1.1) has a nontrivial homoclinic orbit

u ∈ E, then for any ε > 0 there exists R > 0 such that |u(t)| < ε if |t| ≥ R. It

follows from (2.1), (2.2), (W1), I ′(u)(u+ − u−) = 0, |∇W (t, u)|/|u| ≤ V for all

(t, u) ∈ R× R2N and V ≤ Λ0 := min{−Λ,Λ} that

(Bu+, u+)L2 − (Bu−, u−)L2 = (Bu, u+ − u−)L2 =

∫
R

(∇W (t, u), u+ − u−) dt

≤
∫
{t∈R||t|≤R}

|∇W (t, u)|
|u|

|u| · |u+ − u−| dt

+

∫
{t∈R||t|≥R}

|∇W (t, u)|
|u|

|u| · |u+ − u−| dt

<

∫
R
V |u| · |u+ − u−| dt ≤

(∫
R
V u2 dt

)1/2(∫
R
V (u+ − u−)2 dt

)1/2

≤Λ0

(∫
R
u2 dt

)1/2(∫
R

(u+ − u−)2 dt

)1/2

= Λ0‖u+‖2L2 + Λ0‖u−‖2L2 ≤ Λ‖u+‖2L2 − Λ‖u−‖2L2 .

That is, (Bu+, u+)L2 − (Bu−, u−)L2 < Λ‖u+‖2L2 −Λ‖u−‖2L2 . However, by (A1),

we have

(Bu+, u+)L2 − (Bu−, u−)L2 ≥ Λ‖u+‖2L2 − Λ‖u−‖2L2 .

Therefore, we get a contradiction, which completes the proof. �
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