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AN EXISTENCE RESULT

FOR A NONLINEAR BOUNDARY VALUE PROBLEM

VIA TOPOLOGICAL ARGUMENTS

Khadijah Sharaf

Abstract. We investigate a nonlinear PDE related to the prescribing mean

curvature problem on the boundary of the unit ball. We use variational and
topological methods to prove the existence of at least one solution when

the function to be prescribed satisfies at its critical points a non-degeneracy

condition.

1. Introduction and main results

In this paper we consider the problem of existence of conformal scalar flat

metric with prescribed boundary mean curvature on the unit n-dimensional ball.

To be more specific, let Bn be the unit ball of Rn, n ≥ 3, with Euclidean metric g0.

Its boundary will be denoted by Sn−1 and will be endowed with the standard

metric still denoted by g0. Let H : Sn−1 → R be a given function, we study

the problem of finding a conformal metric g = u4/(n−2)g0 (here u is a smooth

positive function and the exponent 4/(n− 2) is used to make the next equation

simpler) such that Rg = 0 in Bn and hg = H on Sn−1. Here Rg is the scalar

curvature associated to the metric g in Bn and hg is the mean curvature of g
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on Sn−1. This problem is equivalent to solving the following nonlinear boundary

value equation:

(1.1)

∆u = 0 in Bn,
∂u

∂ν
+
n− 2

2
u =

n− 2

2
Hun/(n−2) on Sn−1,

where ν is the outward unit normal vector on Sn−1 with respect to the metric g0,

see e.g. [5].

Equation (1.1) enjoys a variational structure. A natural space to look in

for solutions is the Sobolev space H1(Bn). Recall that by the regularity result

of P. Cherrier [12], a weak solution of (1.1) is indeed a smooth solution. In

equation (1.1), the exponent is N −1, where N = 2(n− 1)/(n− 2) is the critical

case of the trace Soboev embedding H1(Bn)→ Lq(Sn−1). In virtue of the lack of

compactness of this embedding, the Euler–Lagrange functional J associated to

our problem (see Section 2 for the definition of J) fails to satisfy the Palais–Smale

condition; that is there exist non-compact sequences along which the functional

is bounded and its gradient goes to zero. From the variational view point, it is

the occurrence of critical points at infinity, that are the limit of the non-compact

orbits of the gradient flow of J (see Definition 2.1 below for more precision). This

prevents the use of standard variational methods to prove existence of solutions.

Moreover, besides the obvious necessary condition that H should be positive

somewhere, there is at least another obstruction to solving the problem, the

so-called Kazdan–Warner condition [20].

Problem (1.1) has been studied by Escobar and Garcia [16] in dimension 3,

who proved that blow-ups of solutions of subcritical approximations occur at one

point and gave an index-count formula reminiscent to the one given by Bahri and

Coron [8] and Chang, Gursky and Yang [10] for the prescribed scalar curvature

on three dimensional sphere. We point out that the index formula of [16] has

an equivalent in dimension 4, see [13] and [2]. However, the method cannot

be generalized to higher dimension n ≥ 5 under the non-degeneracy condition,

since the corresponding index-count criteria, when taking into account all critical

points at infinity is always equal to 1. There have been many works devoted to

the existence results, trying to understand under what condition (1.1) is solvable.

For details see [1]–[4], [11], [13]–[19], [22] and the references therein.

Motivated by the work of [1] and [4], and aiming to include a larger class of

functions H in the existence results for (1.1), we develop in this paper a topo-

logical approach which enables us to provide sufficient conditions on H weaker

than those of [2], [3], [11], [13], [16] to obtain solution of (1.1) for every dimen-

sion n ≥ 3. Our method hinges on the theory of critical points at infinity of

A. Bahri [6].
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To state our existence result, we need to introduce the assumptions that

we will use and some known facts. Throughout this paper, we assume that

H : Sn−1 → R, n ≥ 3, is a positive Morse function satisfying the following non-

degeneracy condition:

∆H(y) 6= 0 whenever ∇H(y) = 0.

We denote K+ := {y ∈ Sn−1,∇H(y) = 0 and −∆H(y) > 0}. To every tuple of

distinct elements yi1 , . . . , yip of K+, we associate the matrix M(yi1 , . . . , yip) =

(Mjk) defined by
Mjj = −c

∆H(yij )

(H(yij ))n−1
for j = 1, . . . , p,

Mjk = −c′
G(yij , yik)

(H(yij )H(yik))(n−2)/2
for j 6= k,

where

c =

∫
Rn−1

|z|2

(1 + |z|2)n−1 dz
, c′ =

∫
Rn−1

dz

(1 + |z|2)n−2
,

and G denotes the Green’s function related to problem (1.1).

Let ρ(yi1 , . . . , yip) be the least eigenvalue of M(yi1 , . . . , yip). It was first

pointed out by A. Bahri [6], that when the self interactions of functions failing

the Palais–Smale condition and the mutual interactions between two such dif-

ferent functions are of the same size, the function ρ plays a fundamental role

in the existence of solutions to problems like (1.1). Regarding problem (1.1),

such kind of phenomenon appears in dimension 4, see [2]. However in dimension

n ≥ 5, the interaction of two different functions failing the Palais–Smale condi-

tion is negligible with respect to the self interactions, while in dimension 3 the

reverse happens. When it comes to the 4-dimensional case, we will assume that

ρ(yi1 , . . . , yip) 6= 0, for all yi1 , . . . , yip ∈ K+.

Let C+ be the following set:

C+ := {(yi1 , . . . , yip) ∈ (K+)p, p ≥ 1, with yij 6= yik , for all j 6= k}, if n ≥ 5,

C+ := {(yi1 , . . . , yip) ∈ (K+)p, p ≥ 1, with yij 6= yik ,

for all j 6= k and ρ(yi1 , . . . , yip) > 0}, if n = 4,

and C+ := K+, if n = 3. The following known result describes the lack of

compactness property associated to problem (1.1).

Proposition 1.1. Assume that (1.1) has no solution on Bn, n ≥ 3. Then

the critical points at infinity of the associated variational problem correspond to:

(yi1 , . . . , yip)∞ :=

p∑
j=1

1

(H(yij ))(n−2)/2
δ(yij ,∞),
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where (yi1 , . . . , yip) ∈ C+. The Morse index of such critical point at infinity is

equal to

i(yi1 , . . . , yip)∞ := p− 1−
p∑
j=1

(n− 1− ind(H, yij )),

here ind(H, y) denotes the Morse index of H at y and δ(a,λ), a ∈ Sn−1 and λ > 0,

are the solutions of the Yamabe type problem when H equals to a constant.

The above result was proved in [3, Proposition 5.5] for the dimension 3, in [2,

Corollary 6.3] for the dimension 4 and in [3, Proposition 4.2] for the dimension

n ≥ 5.

Let C∞ be the set of critical points at infinity given by

(1.2) C∞ = {w∞p := (yi1 , . . . , yip)∞, (yi1 , . . . , yip) ∈ C+}.

If w∞p ∈ C∞, let W∞u (w∞p ) designates its unstable manifold and W∞s (w∞p ) its

stable manifold relative to the C1-vector field (−∂J), the opposite of the gradient

vector field for J .

Let k0 ∈ N and let S∞k0 be a subset of C∞k0 , where C∞k0 := {w∞p ∈ C∞, i(w∞p )

≤ k0}. We consider the following set:

Wu(S∞k0 ) :=
⋃

w∞p ∈S∞k0

W∞u (w∞p ).

Observe that Wu(S∞k0 ) is contractible in Σ+, the space of variation of J , since

Σ+ is a contractible space. Therefore, Wu(S∞k0 ) admits at least one contraction

in Σ+.

(A1) Assume that Wu(S∞k0 ) possesses a contraction Θ0(Wu(S∞k0 )) in Σ+ with

the following property:

Θ0(Wu(S∞k0 )) ∩W∞s (w∞p ) = ∅, for all w∞p ∈ C∞k0+1 \ S∞k0 .

Here C∞k0+1 := {w∞p ∈ C∞, i(w∞p ) ≤ k0 + 1}.

Theorem 1.2. Under assumption (A1), if

(A2)
∑

w∞p ∈S∞k0

(−1)i(w
∞
p ) 6= 1,

then (1.1) has a solution.

We will show that many interesting existence results are applications of The-

orem 1.2, particulary those of [2], [3], [11], [13], [16]. In Section 3, we will

consider some situations where the aforesaid results do not provide a solution

to problem (1.1), but by Theorem 1.2 we derive that (1.1) admits a solution.

More precisely, we shall prove that Theorem 1.2 is a proper generalization of the

following results.
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Corollary 1.3. In the 3- and 4-dimensional cases, if∑
w∞p ∈C∞

(−1)i(w
∞
p ) 6= 1,

then (1.1) has a solution.

The result of Corollary 1.3 was proved in [3] and [16] in the 3-dimensional case

and in [2] and [13] in the 4-dimensional case. The used method in [13] and [16]

is based on a fine blow-up analysis of some subcritical approximations. While

the approach of [2] and [3] consists of studying the critical points at infinity of

the associated variational problem.

Corollary 1.4. Assume that H is of the form H = 1+εH0, H0 ∈ C2(Sn−1)

and |ε| is small, then problem (1.1) has a solution provided

∑
y∈K+

(−1)n−1−ind(H,y) 6= 1.

The result of Corollary 1.4 was proved in [11], see also [4].

In Section 2, we set up the variational structure of problem (1.1) and we give

some auxiliary tools. In Section 3, we provide the proof of Theorem 1.2 and

discuss the relation between this theorem and its corollaries.

2. Variational structure

In this section, we recall the functional setting and the variational problem

and its main features. Problem (1.1) has a variational structure. The Euler–

Lagrange functional is

J(u) =

(∫
Sn−1

Hu2(n−1)/(n−2) dσg0

)(2−n)/(n−1)

,

defined on H1(Bn) equipped with the norm

‖u‖2 =

∫
Bn

|∇u|2dvg0 +
n− 2

2

∫
Sn−1

u2 dσg0 ,

where dvg0 and dσg0 denote the Riemannian measure on Bn and Sn−1 induced

by the metric g0. We denote by Σ the unit sphere of H1(Bn) and we set

Σ+ = {u ∈ Σ, u ≥ 0}. The exponent 2(n− 1)/(n− 2) is critical for the Sobolev

trace embedding H1(Bn) → Lq(Sn−1). As this embedding is not compact, the

functional J does not satisfy the Palais–Smale condition.

In order to characterize the sequences failing the Palais–Smale condition, we

need to introduce some notations. We will use the notation x for the variables

belonging to the unit ball Bn or to the half space Rn+ defined by Rn+ := {x ∈
Rn, xn > 0}. We will also use the notation x = (x′, xn) for x ∈ Rn+. It will be

convenient to perform some stereographic projection in order to reduce the above
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problem to Rn+. Let D1,2(Rn+) denote the completion of C∞c (Rn+), with respect

to the Dirichlet norm. The stereographic projection πq through an appropriate

point q ∈ Sn−1 induces an isometry i : H1(Bn) → D1,2(Rn+) according to the

following formula:

iu(x) =

(
2

|x′|2 + (xn + 1)2

)(n−2)/2

u

(
2x′

|x′|2 + (xn + 1)2
,
|x′|2 + xn − 1

|x′|2 + (xn + 1)2

)
,

where x′ = (x1, . . . , xn−1). For a ∈ ∂Rn+ and λ > 0, we define the function

(2.1) δ̃(a,λ)(x) = c0
λ(n−2)/2

((1 + λxn)2 + λ2|x′ − a′|2)(n−2)/2
,

where x ∈ Rn+, and c is chosen such that δ̃a,λ satisfies the following equation: ∆u = 0 and u > 0 in Rn+,

− ∂u

∂xn
= un/(n−2) on ∂Rn+.

Set

(2.2) δa,λ = i−1(δ̃(a,λ)).

For ε > 0, p ∈ N∗, let us define

V (p, ε) =



u ∈ Σ s.t. ∃ a1, . . . , ap ∈ Sn−1,∃α1, . . . , αp > 0,

∃λ1, . . . , λp > ε−1 with

∥∥∥∥u− p∑
i=1

αiδ(ai,λi)

∥∥∥∥ < ε, εij < ε ∀i 6= j,

and

∣∣∣∣α2/(n−2)
i H(ai)

α
2/(n−2)
j H(aj)

− 1

∣∣∣∣ < ε ∀i, j = 1, . . . , p,

where

εij =

(
λi
λj

+
λj
λi

+ λiλj |ai − aj |2
)(2−n)/2

.

If u is a function in V (p, ε), one can find an optimal representation following [7].

Namely we have

Proposition 2.1. For any p ∈ N∗, there is εp > 0 such that if ε ≤ εp and

u ∈ V (p, ε), then the following minimization problem:

min
αi>0, λi>0, ai∈Sn−1

∥∥∥∥u− p∑
i=1

αiδ(ai,λi)

∥∥∥∥,
has a unique solution (α, λ, a), up to a permutation.

In particular, we can write u as follows:

u =

p∑
i=1

αiδ(ai,λi) + v,

where v belongs to H1(Bn) and it satisfies the condition
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(V0) 〈v, ψ〉 = 0 for ψ ∈
{
δi,

∂δi
∂λi

,
∂δi
∂ai

, i = 1, . . . , p

}
,

here, δi = δ(ai,λi) and 〈 · , · 〉 denotes the scalar product defined on

H1(Bn) by

〈u, v〉 =

∫
Bn

∇u∇v dvg0 +
n− 2

2

∫
Sn−1

uv dσg0 .

The failure of the Palais–Smale condition can be characterized as follows, see

[3] and [21].

Proposition 2.2. Let (uk) be a sequence in Σ+ such that J(uk) is bounded

and ∂J(uk) goes to zero. Then there exist an integer p ∈ N∗, a sequence (εK) >

0, εk tends to zero, and an extracted subsequence of uk’s, again denoted (uk),

such that uk ∈ V (p, εk).

Next, we give a definition extracted from [7].

Definition 2.3. A critical point at infinity of J on Σ+ is a limit of a flow

line u(s) of the equation ∂u∂s = −∂J(u(s)),

u(0) = u0,

such that u(s) remains in V (p, ε(s)) for s ≥ s0. Here ε(s) is some positive

function tending to zero when s → +∞. Using Proposition 2.1, u(s) can be

written as

u(s) =

p∑
i=1

αi(s)δ(ai(s),λi(s)) + v(s).

Denoting α̃i := lim
s→+∞

αi(s), ỹi := lim
s→+∞

ai(s), we denote by

p∑
i=1

α̃iδ(ỹi,∞) or (ỹ1, . . . , ỹp)∞,

such a critical point at infinity.

3. Proof of existence results

This section is devoted to the proof of Theorem 1.2 and its corollaries. We will

discuss how Theorem 1.2 is considered as a real generalization of Corollaries 1.3

and 1.4.

Proof of Theorem 1.2. We argue by contradiction, we suppose that prob-

lem (1.1) has no solution. It follows from Proposition 1.1 that the only critical

points at infinity of J are the elements of C∞ defined in (1.2).
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For k0 ∈ N and for S∞k0 a subset of C∞k0 := {w∞p ∈ C∞, i(w∞p ) ≤ k0}, we

define

Wu(S∞k0 ) =
⋃

w∞p ∈S∞k0

W∞u (w∞p ),

where W∞u (w∞p ) is the unstable manifold of w∞p and i(w∞p ) is its Morse in-

dex. Observe that Σ+ is a contractible set, therefore there exists at least one

contraction

Θ: [0, 1]×Wu(S∞k0 )→ Σ+, (t, u) 7→ Θ(t, u),

Θ(0, u) = u, for all u ∈ Wu(S∞k0 ), Θ is continuous and Θ(1, u) = u0, a fixed

element of Σ+. Let

Θ(Wu(S∞k0 )) := Θ([0, 1]×Wu(S∞k0 )).

Deform Θ(Wu(S∞k0 )) by using the gradient flow-lines of (−∂J). We say that a

critical point at infinity w∞p is dominated by Θ(Wu(S∞k0 )) and denote w∞p <

Θ(Wu(S∞k0 )) if

Θ(Wu(S∞k0 )) ∩Ws(w
∞
p ) 6= ∅.

By using a deformation lemma, see Proposition 7.24 and Theorem 8.2 of [9], we

have

Θ(Wu(S∞k0 )) '
⋃

w∞p <Θ(Wu(S∞k0
))

W∞u (w∞p ),

where ' denotes retracts by deformation.

Observe that Wu(S∞k0 ) is a stratified set of dimension at most k0, since each

W∞u (w∞p ) is a manifold of dimension i(w∞p ). Therefore, Θ(Wu(S∞k0 )) is also

a stratified set of top dimension k0 + 1. By transversality arguments and by

dimension’s reason, the stable manifold of any critical point at infinity of Morse

index larger than or equal to k + 2 can be avoided during such a deformation.

Therefore,

Θ(Wu(S∞k0 )) '
⋃

w∞p <Θ(Wu(S∞k0
))

i(w∞p )≤k0+1

W∞u (w∞p ),

which can be written as

Θ(Wu(S∞k0 )) '
⋃

w∞p ∈S∞k0

W∞u (w∞p ) ∪
⋃

w∞p <Θ(Wu(S∞k0
))

w∞p ∈C
∞
k0+1\S

∞
k0

W∞u (w∞p ).

Working now by the contraction Θ0 provided by assumption (A1) of Theo-

rem 1.2, there is no critical point at infinity in C∞k0+1 \ S∞k0 which is dominated

by Θ0(Wu(S∞k0 )). Thus,

Θ0(Wu(S∞k0 )) '
⋃

w∞p ∈S∞k0

W∞u (w∞p ).
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Taking the Euler–Poincaré characteristic (denoted χ) of both sides, we get

χ(Θ0(Wu(S∞k0 ))) = 1 =
∑

w∞p ∈S∞k0

(−1)i(w
∞
p ),

since Θ0(Wu(S∞k0 )) is a contractible set. This yields a contradiction with as-

sumption (A2) of Theorem 1.2. This concludes the proof of Theorem 1.2. �

Proof of Corollary 1.3. Set k0 := sup{i(w∞p ), w∞p ∈ C∞}. For S∞k0 =

C∞k0 , assumption (A1) of Theorem 1.2 is satisfied for any contraction Θ(Wu(S∞k0 ))

in Σ+, since C∞k0+1 \ S∞k0 = ∅. In addition, assumption (A2) of Theorem 1.2 is

satisfied from the assumption of Corollary 1.3. Therefore Theorem 1.2 applies.�

Proof of Corollary 1.4. Set k0 := sup{i(y∞), y ∈ K+}. For S∞k0 =

{(y)∞, y ∈ K+}, assumption (A2) of Theorem 1.2 is satisfied from the condition

of Corollary 1.4. Thus, to achieve the proof, it remains to construct a contraction

Θ0(Wu(S∞k0 )) satisfying assumption (A1) of Theorem 1.2.

Since H is of the form H = 1 + εH0, H0 ∈ C2(Sn−1) and |ε| is small, the

functional is

Jε(u) =
1(∫

Sn−1

(1 + εH0)u2(n−1)/(n−2)

)(n−2)/(n−1)
.

In the case of the Yamabe functional J0, the minimum of J0, denoted by Sn, is

achieved by the n-dimensional manifold Z of critical points given by

Z = {δ(a,λ), a ∈ Sn−1, λ > 0}.

For α ∈ R, we set Jαε := {u ∈ Σ+, Jε(u) ≤ α}. Since Jε(u) = J0(u)(1 + O(ε)),

with O(ε) independent of u, we get for |ε| small enough

JSn+η
ε ⊂ JSn+2η

0 ⊂ JSn+3η
ε .

For η = Sn/4 and for |ε| sufficiently small, the critical points at infinity made

of two bubbles or more are above the level Sn+3η and the ones with a single bub-

bles are below Sn + η. Thus, JSn+3η
ε ' JSn+η

ε and, therefore, JSn+2η
0 ' JSn+η

ε .

Observe that Z is contractible and it is a retract by deformation of JSn+2η
0 . We

derive thus that JSn+η
ε is a contractible set. Since Wu(S∞k0 ) =

⋃
y∈K+

W∞u (y)∞

is in JSn+η
ε , then there exists at least one contraction Θ0(Wu(S∞k0 )) of Wu(S∞k0 )

in JSn+η
ε . This contraction avoids the stable manifold of any critical point at

infinity which is not in S∞k0 . Hence assumption (A1) of Theorem 1.2 follows. �

Related existence results. Next we provide some existence results through

prescribed functions H which satisfy the assumptions of Theorem 1.2 indepen-

dently of the assumptions of Corollaries 1.3 and 1.4.

Theorem 3.1. For n = 4, if there exists k0 ∈ N such that
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(C1) i(w∞p ) 6= k0 + 1, for all w∞p ∈ C∞,

(C2)
∑

w∞p ∈C∞k0

(−1)i(w
∞
p ) 6= 1,

then (1.1) has a solution.

Proof. For S∞k0 = C∞k0 , let Θ0(Wu(S∞k0 )) be a contraction of Wu(S∞k0 ) in Σ+.

Observe that under assumption (C1), Θ0(Wu(S∞k0 )) satisfies assumption (A1) of

Theorem 1.2 and (A2) follows from (C2). �

We point out that Theorem 3.1 extends Corollary 1.3 in dimension 4 to

include the case where the total sum given in Corollary 1.3 equals 1 but a partial

one is not provided that there is a jump in the Morse indices of elements of C∞.

Notice that Theorem 3.1 is not applicable in dimension n 6= 4, since it is exactly

equivalent to the theorem of [3] and [16] in dimension 3 and for dimension n ≥ 5,

under (C1),
∑

w∞p ∈C∞k0

(−1)i(w
∞
p ) is always equals 1.

Theorem 3.2. Let n ≥ 3. Assume that the critical points of H are ordered

as follows H(y0) ≥ H(y1) ≥ . . . ≥ H(y`) with

(H0) Ws(yi) ∩Wu(yj) = ∅, for all yi ∈ K+, yj 6∈ K+.

Here Ws(y) and Wu(y) are the stable and the unstable manifold of the

gradient vector field (−∂H) at y.

For every j = 0, . . . , `, we denote

Xj =
⋃

yi∈K+

0≤i≤j

Ws(yi).

Under the following assumptions:

(H1) there exists j0, 0 ≤ j0 ≤ ` such that Xj0 is contractible in Hc0 := {x ∈
Sn−1, H(x) ≥ c0}, where

H(yk) < c0 ≤ H(yj0), for all k ≥ j0 + 1, with yk ∈ K+,

(H2)
∑

yi∈K+

0≤i≤j0

(−1)n−1−ind(H,yi) 6= 1,

equation (1.1) has a solution provided H is close to a constant function.

Proof. Setting k0 = sup{i(yi)∞, yi ∈ K+, 0 ≤ i ≤ j0} and S∞k0 =

{(yi)∞, yi ∈ K+, 0 ≤ i ≤ j0}. Under assumption (H2), assumption (A2) of

Theorem 1.2 holds. Now to construct a contraction Θ0(Wu(S∞k0 )) of S∞k0 in Σ+

satisfying assumption (A1) of Theorem 1.2, we proceed as follows.

Recall that for every yi ∈ K+ the level of J at the critical point at infinity

(yi)∞ is c(yi)∞ := Sn/(H(yi))
(n−2)/(n−1) and the unstable manifold at infinity



An Existence Result via Topological Arguments 41

W∞u (yi)∞ can be described under assumption (H0) by Ws(yi) × [A,+∞[, the

domain of the variable λ, for a positive earl A large enough. Thus,

Wu(S∞k0 ) ≡ Xj0 × [A,+∞[ by δ(x,λ) ↔ (x, λ).

It follows from (H1) that there exists

φ : [0, 1]×Xj0 → Hc0 , (t, x) 7→ φ(t, x),

continuous such that, for all x ∈ Xj0 , φ(0, x) = x and φ(1, x) = a0, a fixed point

of Hc0 . Such contraction gives rise to the following contraction:

Θ0 : [0, 1]×Wu(S∞k0 )→ Σ+, (t, δ(x,λ)) 7→ δ(φ(t,x),λ).

For all δ(x,λ) ∈Wu(S∞k0 ), Θ0(0, δ(x,λ)) = δ(x,λ) and Θ0(1, δ(x,λ)) = δ(a0,λ), a fixed

point in Σ+. Expanding J along this homotopy, we find

J(δ(φ(t,x),λ)) =
Sn

(H(φ(t, x)))(n−2)/(n−1)
(1 +O(A−2))

≤ Sn
(c0)(n−2)/(n−1)

(1 +O(A−2)).

Let c1 := Sn/(c0)(n−2)/(n−1) and let ε > 0 be very small so that c1 +ε < c(yk)∞,

for all yk ∈ K+ and k ≥ j0 + 1. Thus, for A large enough, the contraction

Θ0(Wu(S∞k0 )) is performed under the level c1 + ε. Using the fact that H is close

to constant, all critical points at infinity of two masses or more are above c1 + ε.

Therefore, all critical points at infinity which are not in S∞k0 are above c1 + ε, so

it cannot be dominated by Θ0(Wu(S∞k0 )). Hence condition (A1) of Theorem 1.2

is satisfied for Θ0(Wu(S∞k0 )). �

Remark 3.3. We can obtain (H0), (H1) and (H2) of the above theorem

through the following situation. We order the critical points of H as follows:

H(y0) ≥ H(y1) > H(y2) > H(y3) ≥ · · · ≥ H(y`).

(a) Assume that y0 and y1 are two maxima of H on Sn−1. Thus, y0, y1 ∈ K+

and ind(H, y0) = ind(H, y1) = n− 1.

(b) Assume that y2 6∈ K+ with ind(H, y2) = n − 2. Thus Ws(y2) is a 1-

dimensional manifold.

(c) Assume that Ws(y2) is with boundary. Thus, the critical points y0 and

y1 form the boundary of Ws(y2).

(d) Assume that K+ = {y0, y1, y3} with ind(H, y3) = n− 2.

Observe that condition (H0) follows from (a)–(d) and the following dimension

argument:

Ws(z) ∩Wu(z′) 6= ∅ ⇒ ind(H, z′) ≥ ind(H, z) + 1.

For condition (H1), we take j0 = 1, Xj0 = Ws(y1) ∪ Ws(y0) = {y1, y0}.
From (c), Xj0 is contractible in Ws(y2), the closer of Ws(y2). Therefore, Xj0 is

contractible in Hc0 with c0 = H(y2).
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Lastly, condition (H2) is satisfied since∑
yi∈K+

0≤i≤1

(−1)n−1−ind(H,yi) = 2.

Hence, equation (1.1) has a solution even
∑

y∈K+

(−1)n−1−ind(H,y) = 1 in this

situation.
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