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MOTION PLANNING ALGORITHMS

FOR CONFIGURATION SPACES

IN THE HIGHER DIMENSIONAL CASE

Ayşe Borat

Abstract. The aim of this paper is to give an explicit motion planning

algorithm for configuration spaces in the higher dimensional case.

1. Introduction

The topological approach to the motion planning problem was introduced

by Farber in [2] and [3]. A motion planning problem is a rule assigning a con-

tinuous path to given two configurations – initial point and desired final point

of a robot. Farber introduced the notion of topological complexity which mea-

sures the discontinuity of any motion planner in a configuration space. In [6],

Rudyak introduced higher topological complexity, the concept fully developed

in [1]. Higher topological complexity is related to motion planning problem

which assigns a continuous path (with n-legs) to given n configurations. More

precisely, it can be understood as a motion planning algorithm when a robot

travels from the initial point A1 to A2, then from A2 to A3, and this keeps going

until it reaches at the desired final point An.

This paper is based on the work of Mas–Ku and Torres–Giese who gave

an explicit motion planning algorithm for configuration spaces F (R2, k) and

F (Rn, k), in [5]. In the last section, we will consider the higher dimensional case
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in the sense of Rudyak in [6], and give an explicit motion planning algorithm for

this case.

2. Preliminaries

In this section, we will re-phrase the definitions and propositions for F (Rn, k)

which are given in [5].

A vector A = (a1, . . . , al) (where ai is a positive integer for i = 1, . . . , l)

which satisfies
∑

ai = k is called a partition of k. Here, the number |A| = l is

called the number of levels of A.

Recall the reverse lexicographic order on R
n: (b1, . . . , bn) ≤ (c1, . . . , cn) if

there is an index k ∈ {1, . . . , n} such that bi = ci for k < i ≤ n and bk < ck.

As stated in [5], if x = (x1, . . . , xk) ∈ F (R2, k), then there is a unique

permutation σ ∈ Σk such that xσ(1) < . . . < xσ(k). Such a permutation is

denoted by σx. A similar argument can be stated for F (Rn, k), namely, if x =

(x1, . . . , xk) ∈ F (Rn, k), then there is a unique permutation σ ∈ Σk such that

xσ(1) < . . . < xσ(k).

Let πn : R
n → R, given by πn(x1, . . . , xn) = xn, be the projection to the

n-th factor. For the configuration x = (x1, . . . , xk) ∈ F (Rn, k) which is reverse

lexicographically ordered, we can find positive integers a1, . . . , al as follows:

πn(x1) = . . . = πn(xa1
) < πn(xa1+1),

πn(xa1+1) = . . . = πn(xa1+a2
) < πn(xa1+a2+1),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

πn(xa1+...+al−2+1) = . . . = πn(xa1+...+al−1
) < πn(xa1+...+al−1+1),

πn(xa1+...+al−1+1) = . . . = πn(xa1+...+al
) = πn(xk).

Since a1 + . . .+ al = k, (a1, . . . , al) is a partition of k. This partition is denoted

by Ax. If A is obtained from the configuration x as in the above paragraph, then

x is called an A-configuration.

Let x = (x1, . . . , xk) ∈ F (Rn, k) be an A-configuration. Then x has |A|

levels. Moreover, xi and xj are said to have the same level if πn(xi) = πn(xj).

Given a partition A of k and a permutation σ ∈ Σk, let

FA,σ = {x = (x1, . . . , xk) ∈ F (Rn, k) : σx = σ and x is an A-configuration}.

Define

FA =
⋃

σ∈Σk

FA,σ.

In fact, FA denotes the set consisting of configurations x which produce A.

Moreover, notice that F (Rn, k) =
⋃
A

FA.


