MOTION PLANNING ALGORITHMS FOR CONFIGURATION SPACES IN THE HIGHER DIMENSIONAL CASE

Ayşe Borat

Abstract

The aim of this paper is to give an explicit motion planning algorithm for configuration spaces in the higher dimensional case.

1. Introduction

The topological approach to the motion planning problem was introduced by Farber in [2] and [3]. A motion planning problem is a rule assigning a continuous path to given two configurations - initial point and desired final point of a robot. Farber introduced the notion of topological complexity which measures the discontinuity of any motion planner in a configuration space. In [6], Rudyak introduced higher topological complexity, the concept fully developed in [1]. Higher topological complexity is related to motion planning problem which assigns a continuous path (with n-legs) to given n configurations. More precisely, it can be understood as a motion planning algorithm when a robot travels from the initial point A_{1} to A_{2}, then from A_{2} to A_{3}, and this keeps going until it reaches at the desired final point A_{n}.

This paper is based on the work of Mas-Ku and Torres-Giese who gave an explicit motion planning algorithm for configuration spaces $F\left(\mathbb{R}^{2}, k\right)$ and $F\left(\mathbb{R}^{n}, k\right)$, in [5]. In the last section, we will consider the higher dimensional case

[^0]in the sense of Rudyak in [6], and give an explicit motion planning algorithm for this case.

2. Preliminaries

In this section, we will re-phrase the definitions and propositions for $F\left(\mathbb{R}^{n}, k\right)$ which are given in [5].

A vector $A=\left(a_{1}, \ldots, a_{l}\right)$ (where a_{i} is a positive integer for $i=1, \ldots, l$) which satisfies $\sum a_{i}=k$ is called a partition of k. Here, the number $|A|=l$ is called the number of levels of A.

Recall the reverse lexicographic order on $\mathbb{R}^{n}:\left(b_{1}, \ldots, b_{n}\right) \leq\left(c_{1}, \ldots, c_{n}\right)$ if there is an index $k \in\{1, \ldots, n\}$ such that $b_{i}=c_{i}$ for $k<i \leq n$ and $b_{k}<c_{k}$.

As stated in [5], if $x=\left(x_{1}, \ldots, x_{k}\right) \in F\left(\mathbb{R}^{2}, k\right)$, then there is a unique permutation $\sigma \in \Sigma_{k}$ such that $x_{\sigma(1)}<\ldots<x_{\sigma(k)}$. Such a permutation is denoted by σ_{x}. A similar argument can be stated for $F\left(\mathbb{R}^{n}, k\right)$, namely, if $x=$ $\left(x_{1}, \ldots, x_{k}\right) \in F\left(\mathbb{R}^{n}, k\right)$, then there is a unique permutation $\sigma \in \Sigma_{k}$ such that $x_{\sigma(1)}<\ldots<x_{\sigma(k)}$.

Let $\pi_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, given by $\pi_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{n}$, be the projection to the n-th factor. For the configuration $x=\left(x_{1}, \ldots, x_{k}\right) \in F\left(\mathbb{R}^{n}, k\right)$ which is reverse lexicographically ordered, we can find positive integers a_{1}, \ldots, a_{l} as follows:

$$
\begin{aligned}
\pi_{n}\left(x_{1}\right) & =\ldots=\pi_{n}\left(x_{a_{1}}\right)<\pi_{n}\left(x_{a_{1}+1}\right) \\
\pi_{n}\left(x_{a_{1}+1}\right) & =\ldots=\pi_{n}\left(x_{a_{1}+a_{2}}\right)<\pi_{n}\left(x_{a_{1}+a_{2}+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{n}\left(x_{a_{1}+\ldots+a_{l-2}+1}\right)=\ldots=\pi_{n}\left(x_{a_{1}+\ldots+a_{l-1}}\right)<\pi_{n}\left(x_{a_{1}+\ldots+a_{l-1}+1}\right), \\
& \pi_{n}\left(x_{a_{1}+\ldots+a_{l-1}+1}\right)=\ldots=\pi_{n}\left(x_{a_{1}+\ldots+a_{l}}\right)=\pi_{n}\left(x_{k}\right) .
\end{aligned}
$$

Since $a_{1}+\ldots+a_{l}=k,\left(a_{1}, \ldots, a_{l}\right)$ is a partition of k. This partition is denoted by A_{x}. If A is obtained from the configuration x as in the above paragraph, then x is called an A-configuration.

Let $x=\left(x_{1}, \ldots, x_{k}\right) \in F\left(\mathbb{R}^{n}, k\right)$ be an A-configuration. Then x has $|A|$ levels. Moreover, x_{i} and x_{j} are said to have the same level if $\pi_{n}\left(x_{i}\right)=\pi_{n}\left(x_{j}\right)$. Given a partition A of k and a permutation $\sigma \in \Sigma_{k}$, let

$$
F_{A, \sigma}=\left\{x=\left(x_{1}, \ldots, x_{k}\right) \in F\left(\mathbb{R}^{n}, k\right): \sigma_{x}=\sigma \text { and } x \text { is an } A \text {-configuration }\right\} .
$$

Define

$$
F_{A}=\bigcup_{\sigma \in \Sigma_{k}} F_{A, \sigma} .
$$

In fact, F_{A} denotes the set consisting of configurations x which produce A. Moreover, notice that $F\left(\mathbb{R}^{n}, k\right)=\bigcup_{A} F_{A}$.

[^0]: 2010 Mathematics Subject Classification. 55R80.
 Key words and phrases. Motion planning algorithm; configuration spaces.

