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Abstract. We consider a class of abstract evolution reaction-diffusion

systems with delay and nonlocal initial data of the form
u′(t) ∈ Au(t) + F (t, ut, vt) for t ∈ R+,

v′(t) ∈ Bv(t) +G(t, ut, vt) for t ∈ R+,

u(t) = p(u, v)(t) for t ∈ [−τ1, 0],

v(t) = q(u, v)(t) for t ∈ [−τ2, 0],

where τi ≥ 0, i = 1, 2, A and B are two m-dissipative operators acting in

two Banach spaces, the perturbations F and G are continuous, while the
history functions p and q are nonexpansive functions with affine growth.

We prove an existence result of C0-solutions for the above problem and we

give an example to illustrate the effectiveness of our abstract theory.

1. Introduction

Let X,Y be Banach spaces, τ1, τ2 ≥ 0, and let A : D(A) ⊆ X  X and

B : D(B) ⊆ Y  Y be m-dissipative operators. Our paper is devoted to provide
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an existence result for C0-solutions to the next reaction-diffusion system with

delay and nonlocal initial conditions:

(1.1)


u′(t) ∈ Au(t) + F (t, ut, vt) for t ∈ R+,

v′(t) ∈ Bv(t) +G(t, ut, vt) for t ∈ R+,

u(t) = p(u, v)(t) for t ∈ [−τ1, 0],

v(t) = q(u, v)(t) for t ∈ [−τ2, 0],

where the perturbations F : R+ × C([−τ1, 0];D(A)) × C([−τ2, 0];D(B)) → X

and G : R+×C([−τ1, 0];D(A))×C([−τ2, 0];D(B))→ Y are continuous and the

initial data p : Cb([−τ1,+∞);D(A)) × Cb([−τ2,+∞);D(B)) → C([−τ1, 0];X)

and q : Cb([−τ1,+∞);D(A)) × Cb([−τ2,+∞);D(B)) → C([−τ2, 0];Y ) are non-

expansive functions with affine growth.

Partial differential equations with nonlocal initial conditions arise in many

areas of applied mathematics and represent mathematical models of various phe-

nomena. See Deng [18] and McKibben [25]. The study for nonlocal Cauchy

problems without delay was initiated by Byszewski [15] (in the semilinear case),

and subsequently it has been developed by many authors. We mention here

some significant contributions to the field: Aizicovici and Lee [1], Aizicovici and

McKibben [2], Garćıa-Falset [21], Garćıa-Falset and Reich [22], Cardinali, Pre-

cup and Rubbioni [16] in the single-valued case, Aizicovici and Staicu [3], Paicu

and Vrabie [32], Zhu and Li [43] in the multi-valued case. Nica [31] proved

the existence of the solutions for nonlinear first order differential systems with

nonlocal conditions. These results were extended by Bolojan-Nica, Infante and

Precup [7] to differential systems with nonlinear and nonlocal boundary condi-

tions. For delay evolution equations with local initial conditions see Mitidieri

and Vrabie [26], [27], Necula and Popescu [28], and the references therein. As

far as nonlocal initial conditions are concerned, we mention the papers Burlică

and Roşu [11], Burlică, Roşu and Vrabie [13], Necula, Popescu and Vrabie [29],

Vrabie [37]–[41], Wang and Zhu [42]. For parabolic systems with nonlinear, non-

local initial conditions we mention the paper of Infante and Maciejewski [24].

Concerning the reaction-diffusion systems without delay see: Burlică [8], Burlică

and Roşu [9], [10], Dı́az and Vrabie [19], Necula and Vrabie [30], Roşu [33], [34].

Existence results for reaction-diffusion systems with delay and nonlocal initial

conditions were obtained in Burlică, Roşu and Vrabie [14] for the single-valued

case and by Burlică and Roşu [12] for the multi-valued case. The present work

complements Burlică, Roşu and Vrabie [14] by allowing the nonlocal initial con-

straint function p to have affine instead of linear growth with respect to the first

argument and q to obey the same property with respect to its second variable.

Moreover, we allow the unknown functions to have different delays, τ1 and τ2.

Our general assumptions include reaction-diffusion systems in which one or both
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perturbations are of the form F (t, u(t), vt) or G(t, ut, v(t)). So, the initial non-

local constraint p belongs to a general class of functions including the important

instances below:

(i) p(u, v)(t) = p0(u)(t) + ϕ(t), t ∈ [−τ1, 0], where ϕ ∈ C([−τ1, 0];X) and

p0 : Cb([−τ1,+∞);D(A))→ C([−τ1, 0];X);

(ii) p(u, v)(t) = u(t+ 2π) or p(u, v)(t) = −u(t+ 2π), t ∈ [−τ1, 0];

(iii) p(u, v)(t) =
∫ +∞
τ1

k1(s)u(s+t) ds , t ∈ [−τ1, 0], where k1 ∈ L1(τ1,+∞;R)

with
∫ +∞
τ1
|k1(s)| ds = 1.

Similar remarks refer to the nonlocal initial constraint function q and, of

course, we can consider various mixed conditions on the pair (p, q).

Even though our main result is inspired by Vrabie [41], we emphasize that

it cannot be obtained by a direct application of the above mentioned result in

a product space simply because our assumptions lead to a problem essentially

different from that in Vrabie [41]. Finally, the passing from linear to affine growth

is not at all so simple as it seems to be at first glance because in the latter case we

face some real difficulties in obtaining the sharp estimates needed in the proof.

The paper is organized as follows. Section 2 contains the basic background

material on m-dissipative operators and evolution equations. The main existence

result for problem (1.1) is stated in Section 3. Section 4 is devoted to some

auxiliary results while the proof of the main result of this paper is carried out in

Section 5. Finally, Section 6 contains an example to which our abstract theory

does apply but the previous known results do not.

2. Preliminaries

As usual, R+ denotes the set of all nonnegative real numbers. Let X be

a real Banach space with the norm ‖ · ‖ and let I be a real interval. We denote

by Cb(I;X) the space of all bounded and continuous functions from I to X,

equipped with the sup-norm ‖ · ‖Cb(I;X) = sup{‖u(t)‖; t ∈ I}. If the interval I

is compact we use the standard notation C(I;X) for the space and ‖ · ‖C(I;X)

for the sup-norm. If Z ⊂ X is a closed subset, we denote by Cb(I;Z) the closed

subset in Cb(I;X) consisting of all elements u ∈ Cb(I;X) satisfying u(t) ∈ Z
for each t ∈ I.

We denote by C̃b([a,+∞);X), a ∈ R+, the space Cb([a,+∞);X) endowed

with the family of seminorms {‖ · ‖k; k ∈ N, k > a}, ‖u‖k := sup{‖u(t)‖;
t ∈ [a, k]}, for each k ∈ N, k > a, and each u ∈ Cb([a,+∞);X). Thus

C̃b([a,+∞);X) is a separated locally convex space and its topology coincides

with the uniform convergence on compacta topology.

If τ ≥ 0, u ∈ C([−τ,+∞);X) and t ∈ R+, we denote by ut : [−τ, 0]→ X the

delayed function defined as ut(s) := u(t + s) for each s ∈ [−τ, 0]. So, if τ = 0,

we have ut(s) = u(t) for each s ∈ [−τ, 0], simply because [−τ, 0] = {0}.
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We assume that the reader is familiar with the theory of m-dissipative oper-

ators and nonlinear evolution equations in Banach spaces. For the sake of clarity

and easy references we recall however some basic concepts and results belonging

to this theory. For more details we refer to Barbu [5] and Vrabie [36]. As far as

differential equations with delay are concerned, we refer to Hale [23].

Let X be a real Banach space with the norm ‖ · ‖. As usual, for x, y ∈ X we

denote by [x, y]+ the right directional derivative of the norm calculated at x in

the direction y, i.e.,

[x, y]+ := lim
h↓0

1

h
(‖x+ hy‖ − ‖x‖),

and we remark that |[x, y]+| ≤ ‖y‖. For other significant properties of the

mapping (x, y) 7→ [x, y]+, see Barbu [5, Proposition 3.7, p. 103]. A multi-valued

operator A : D(A) ⊆ X  X is called dissipative if for each xi ∈ D(A) and

yi ∈ Axi, i = 1, 2, we have [x1 − x2, y2 − y1]+ ≥ 0. It is called m-dissipative if it

is dissipative, and, in addition, R(I − λA) = X for each λ > 0.

Let us consider the evolution equation

(2.1) u′(t) ∈ Au(t) + f(t), t ∈ [a, b],

where f ∈ L1(a, b ;X). A function u : [a, b] → D(A) is called a C0-solution, or

integral solution of (2.1) on [a, b], if u ∈ C([a, b];X) and it satisfies

‖u(t)− x‖ ≤ ‖u(s)− x‖+

∫ t

s

[u(θ)− x, f(θ) + y]+ dθ

for each x ∈ D(A), y ∈ Ax and a ≤ s ≤ t ≤ b.

Theorem 2.1. Let A : D(A) ⊆ X  X be m-dissipative and ω > 0 be

such that A + ωI is dissipative. Then, for each ξ ∈ D(A) and f ∈ L1(a, b ;X)

there exists a unique C0-solution of (2.1) on [a, b] which satisfies u(a) = ξ. If

f, g ∈ L1(a, b;X) and u, v are two C0-solutions of (2.1) corresponding to f and

g respectively, then

(2.2) ‖u(t)− v(t)‖ ≤ e−ω(t−s)‖u(s)− v(s)‖+

∫ t

s

e−ω(t−θ)‖f(θ)− g(θ)‖ dθ

for each a ≤ s ≤ t ≤ b. In particular, if x ∈ D(A) and y ∈ Ax, we have

(2.3) ‖u(t)− x‖ ≤ e−ω(t−s)‖u(s)− x‖+

∫ t

s

e−ω(t−θ)‖f(θ) + y‖ dθ

for each a ≤ s ≤ t ≤ b.

See Benilan [6] or Barbu [5, Theorem 4.1, p. 128].

For ξ ∈ D(A), we denote by u( · , a, ξ, f) the unique C0-solution of (2.1) which

satisfies the initial condition u(a, a, ξ, f) = ξ. If {S(t) : D(A) → D(A), t ≥ 0}
is the semigroup of nonexpansive mappings generated by A on D(A) via the
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Crandall–Liggett Exponential Formula [17], then S(t)ξ = u(t, 0, ξ, 0) for each

ξ ∈ D(A) and t ≥ 0.

The semigroup generated by A is called compact if for each t > 0 the operator

S(t) : D(A) → D(A) is compact, i.e., for each bounded set U ⊆ D(A), S(t)(U)

is a relatively compact set in X.

A subset F in L1(a, b ;X) is called uniformly integrable if for each ε > 0 there

exists δ(ε) > 0 such that for each measurable subset E in [a, b] whose Lebesgue

measure µ(E) < δ(ε) we have ∫
E

‖f(s)‖ ds ≤ ε,

uniformly for f ∈ F. We remark that if for some p ∈ (1,+∞], F is a bounded

subset in Lp(a, b ;X), then F is uniformly integrable.

We will need the compactness result below.

Theorem 2.2. Let A : D(A) ⊆ X  X be an m-dissipative operator gener-

ating a compact semigroup. Let D ⊆ D(A) be a bounded set and F in L1(a, b;X)

be an uniformly integrable set. Then, for each c ∈ (a, b), the C0-solutions set

{u( · , a, ξ, f); (ξ, f) ∈ D× F}

is relatively compact in C([c, b];X). If, in addition, D is relatively compact in X,

then the C0-solutions set is relatively compact even in C([a, b];X).

See Baras [4] or Vrabie [36, Theorem 2.3.3, p. 47].

We also recall the Tychonoff Fixed Point Theorem.

Theorem 2.3. Let X be a separated locally convex topological vector space

and C be a nonempty, convex, and closed subset in X. If Γ: C→ C is continuous

and Γ(C) is relatively compact, then it has at least one fixed point, i.e., there

exists ξ ∈ C such that Γ(ξ) = ξ.

See Tychonoff [35] or Edwards [20, Theorem 3.6.1, p. 161].

3. The main result

In order to state our main result we need the following assumptions.

(HA) The operator A : D(A) ⊆ X  X is m-dissipative, 0 ∈ D(A), 0 ∈ A0,

D(A) is convex and there exists ω > 0 such that A+ ωI is dissipative.

(HB) The operator B : D(B) ⊆ Y  Y is m-dissipative, 0 ∈ D(B), 0 ∈ B0,

D(B) is convex, there exists γ > 0 such that B + γI is dissipative. In

addition, the semigroup generated by B on D(B) is compact.

(HF ) The function F : R+ × C([−τ1, 0];D(A)) × C([−τ2, 0];D(B)) → X is

continuous and satisfies
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(F1) there exists ` > 0 such that

‖F (t, u, v)− F (t, ũ, ṽ)‖ ≤ `max{‖u− ũ‖C([−τ1,0];X), ‖v − ṽ‖C([−τ2,0];Y )}

for each (t, u, v), (t, ũ, ṽ) ∈ R+×C([−τ1, 0];D(A))×C([−τ2, 0];D(B));

(F2) there exists m > 0 such that ‖F (t, 0, 0)‖ ≤ m for each t ∈ R+.

(HG) The function G : R+ × C([−τ1, 0];D(A)) × C([−τ2, 0];D(B)) → Y is

continuous and satisfies

(G1) with ` > 0 and m > 0 given by (F1) and (F2), we have

‖G(t, u, v)‖ ≤ `max{‖u‖C([−τ1,0];X), ‖v‖C([−τ2,0];Y )}+m

for each (t, u, v) ∈ R+ × C([−τ1, 0];D(A))× C([−τ2, 0];D(B));

(G2) for each T > 0, the family {G(t, · , · ); t ∈ [0, T ]} is uniformly

equicontinuous on C([−τ1, 0];D(A)) × C([−τ2, 0];D(B)), i.e., for

each ε > 0 there exists η(ε) > 0 such that for each (t, u, v) and

(t, ũ, ṽ) in [0, T ]× C([−τ1, 0];D(A))× C([−τ2, 0];D(B)) satisfying

‖u− ũ‖C([−τ1,0];X) ≤ η(ε) and ‖v − ṽ‖C([−τ2,0];Y ) ≤ η(ε)

we have ‖G(t, u, v)−G(t, ũ, ṽ)‖ ≤ ε.

(Hc) The constants ` and δ := min{ω, γ} satisfy the nonresonance condition:

` < δ.

(Hp) The function

p : Cb([−τ1,+∞);D(A))× Cb([−τ2,+∞);D(B))→ C([−τ1, 0];D(A))

satisfies

(p1) there exists a > 0 such that, with m > 0 given by (F2), we have

‖p(u, v)‖C([−τ1,0];X) ≤ ‖u‖Cb([a,+∞);X) +m

for each (u, v) ∈ Cb([−τ1,+∞);D(A))× Cb([−τ2,+∞);D(B));

(p2) there exists d > a, where a is given by (p1), such that we have

‖p(u, v)− p(ũ, ṽ)‖C([−τ1,0];X) ≤ max{‖u− ũ‖C([a,d];X), ‖v − ṽ‖C([a,d];Y )}

for each (u, v), (ũ, ṽ) ∈ Cb([−τ1,+∞);D(A))×Cb([−τ2,+∞);D(B)).

(Hq) With a given by (p1) and m given by (F2), the function

q : Cb([−τ1,+∞);D(A))× Cb([−τ2,+∞);D(B))→ C([−τ2, 0];D(B))

satisfies

(q1) for each (u, v) ∈ Cb([−τ1,+∞);D(A)) × Cb([−τ2,+∞);D(B)), we

have

‖q(u, v)‖C([−τ2,0];Y ) ≤ ‖v‖Cb(R+;Y ) +m;
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(q2) for each (u, v), (ũ, ṽ) ∈ Cb([−τ1,+∞);D(A))×Cb([−τ2,+∞);D(B)),

we have

‖q(u, v)− q(ũ, ṽ)‖C([−τ2,0];Y )

≤ max{‖u− ũ‖Cb([a,+∞);X), ‖v − ṽ‖Cb([a,+∞);Y )};

(q3) for each bounded set U in Cb(R+;D(A)) and each bounded set V in

Cb(R+;D(B)) which is relatively compact in C̃b([a,+∞);Y ), the

set q(U,V) is relatively compact in C([−τ2, 0];Y ).

Theorem 3.1. Let τi ≥ 0, i = 1, 2, and let X and Y be real Banach spaces.

If (HA), (HB), (HF ), (HG), (Hc), (Hp), and (Hq) are satisfied, then (1.1) has at

least one C0-solution

(u, v) ∈ Cb([−τ1,+∞);D(A))× Cb([−τ2,+∞);D(B)),

satisfying

(3.1)


‖u‖Cb([−τ1,+∞);X) ≤

m

ω − `
+

[
ω

ω − `

(
1

eωa − 1
+
`

ω

)
+ 1

]
·m,

‖v‖Cb([−τ2,+∞);Y ) ≤
m

γ − `
+

[
γ

γ − `

(
1

eγa − 1
+
`

γ

)
+ 1

]
·m.

Remark 3.2. We emphasize that the nonresonance condition ` < δ ensures

the existence of global C0-solutions. In fact, one can imagine various types of

growth conditions which in the case of local initial conditions, i.e., p(u, v)(t) :=

ψ1(t) and q(u, v)(t) = ψ2(t) for t ∈ [−τ, 0], allow us to get global solutions from

local ones via traditional Zorn’s Lemma type arguments. We notice however that

for nonlocal problems, as far as we can see, such kind of maximality arguments

do not work.

Remark 3.3. It is easy to see that hypotheses (p1), (p2), (q1) and (q2)

ensure that the function p depends only on the restrictions of u and v to [a, d],

while the function q depends only on the restrictions of u and v to [a,+∞).

Remark 3.4. We listed below some important specific cases for the function

q for which hypothesis (Hq) is satisfied:

(a) q(u, v) depends only on v, q(u, v) = q0(v), where

q0 : Cb([−τ2,+∞);D(B))→ C([−τ2, 0];D(B))

is a continuous function such that ‖q0(v)−q0(ṽ)‖C([−τ2,0];Y ) ≤ ‖v−ṽ‖Cb([a,+∞);Y ),

where a > 0 is given by (Hp);

(b) q(u, v) = q1(Cu, v), where C : Cb([a,+∞);D(A)) → Cb([a,+∞);D(A))

is a compact and nonexpansive operator and the function

q1 : Cb([−τ1,+∞);D(A))× Cb([−τ2,+∞);D(B))→ C([−τ2, 0];D(B)),
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is continuous from its domain, endowed with the sup-norm topology on Cb([−τ1,
+∞);X) and the locally convex topology on C̃b([−τ2,+∞);Y ), to C([−τ2, 0];Y )

and there exist `i > 0, i = 1, 2, with `1 + `2 ≤ 1 such that

‖q1(u, v)− q1(ũ, ṽ)‖C([−τ2,0];Y ) ≤ `1‖u− ũ‖Cb([a,+∞);X) + `2‖v − ṽ‖Cb([a,+∞);Y )

for each (u, v), (ũ, ṽ)∈Cb([−τ1,+∞);D(A))×Cb([−τ2,+∞);D(B)), where a>0

is given by (Hp).

Remark 3.5. From Theorem 3.1, we can obtain as simple consequences

existence results referring to various systems whose forcing terms are either of the

form F (t, ut, v(t)) and G(t, ut, v(t)) or of the form F (t, u(t), vt) and G(t, u(t), vt)

or even of the form F (t, u(t), v(t)) and G(t, u(t), v(t)) and, in each of the cases

considered, p and q are accordingly defined.

4. An auxiliary result

Lemma 4.1. Let A : D(A) ⊆ X  X be m-dissipative with 0 ∈ D(A), 0 ∈ A0

and let us assume that there exists ω > 0 such that A + ωI is dissipative. Let

τ ≥ 0 and g : Cb([−τ,+∞);D(A)) → C([−τ, 0];D(A)) be such that there exists

a > 0 such that

(4.1) ‖g(u)− g(ũ)‖C([−τ,0];X) ≤ ‖u− ũ‖Cb([a,+∞);X)

for each u, ũ ∈ Cb([−τ,+∞);D(A)). Then, for each h ∈ L∞(R+;X) the problem

(4.2)

u′(t) ∈ Au(t) + h(t) for t ∈ R+,

u(t) = g(u)(t) for t ∈ [−τ, 0],

has a unique C0-solution uh ∈ Cb([−τ,+∞);D(A)) satisfying

(4.3) ‖uh‖Cb([−τ,+∞);X) ≤
eωa

eωa − 1
m0 +

2

ω
‖h‖L∞(R+;X),

where m0 = ‖g(0)‖C([−τ,0];X). Moreover, the mapping h 7→ uh is Lipschitz from

L∞(R+;X) to Cb([−τ,+∞);X) with Lipschitz constant 1/ω, i.e.,

(4.4) ‖uh − uh̃‖Cb([−τ,+∞);X) ≤
1

ω
‖h− h̃‖L∞(R+;X)

for each h, h̃ ∈ L∞(R+;X).

Proof. The existence and uniqueness part and the proof of (4.3) follow the

same lines as in the proof of Lemma 6.1 in Vrabie [41].

So, we will focus our attention only on the proof of (4.4). Let h and h̃ be

arbitrary in L∞(R+;X) and uh, uh̃ be the corresponding C0-solutions of (4.2).
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From (2.2), we deduce

‖uh(t)− uh̃(t)‖ ≤ e−ωt‖g(uh)(0)− g(uh̃)(0)‖+

∫ t

0

e−ω(t−s)‖h(s)− h̃(s)‖ ds

≤ e−ωt‖g(uh)− g(uh̃)‖C([−τ,0];X) +
1− e−ωt

ω
‖h− h̃‖L∞(R+;X)

for each t ∈ R+. Using (4.1), it follows

(4.5) ‖uh(t)− uh̃(t)‖ ≤ e−ωt‖uh− uh̃‖Cb([a,+∞);X) +
1− e−ωt

ω
‖h− h̃‖L∞(R+;X)

for each t ∈ R+. From the nonlocal initial condition and (4.1), we have

‖uh − uh̃‖C([−τ,0];X) ≤ ‖g(uh)− g(uh̃)‖C([−τ,0];X) ≤ ‖uh − uh̃‖Cb([a,+∞);X).

As far as ‖uh−uh̃‖Cb([−τ,+∞);X) is concerned, there are only three possible cases.

Case 1. There exists t ∈ [−τ, 0] such that

(4.6) ‖uh − uh̃‖Cb([−τ,+∞);X) = ‖uh(t)− uh̃(t)‖.

From the above inequality it follows

‖uh − uh̃‖Cb([−τ,+∞);X) = ‖uh − uh̃‖C([−τ,0];X) = ‖uh − uh̃‖Cb([a,+∞);X)

and so this case reduces to one of the following two.

Case 2. There exists t ∈ (0,+∞) satisfying (4.6). Using (4.5) with t replaced

by t, we get

‖uh−uh̃‖Cb([−τ,+∞);X) ≤ e−ωt‖uh−uh̃‖Cb([−τ,+∞);X)+
1− e−ωt

ω
‖h−h̃‖L∞(R+;X).

Hence

(1− e−ωt)‖uh − uh̃‖Cb([−τ,+∞);X) ≤
1− e−ωt

ω
‖h− h̃‖L∞(R+;X)

and so (4.4) holds true.

Case 3. There is no point t ∈ [−τ,+∞) such that (4.6) holds true. Then,

there exists (tk)k in (0,+∞) with limk tk = +∞ such that

lim
k
‖uh(tk)− uh̃(tk)‖ = ‖uh − uh̃‖Cb([−τ,+∞);X).

Substituting t by tk in (4.5), we deduce

‖uh(tk)− uh̃(tk)‖ ≤ e−ωtk‖uh − uh̃‖Cb([−τ,+∞);X) +
1− e−ωtk

ω
‖h− h̃‖L∞(R+;X),

and passing to the limit for k → +∞, we get (4.4). �
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Now, let us consider the system

(4.7)


u′(t) ∈ Au(t) + ϕ(t) for t ∈ R+,

v′(t) ∈ Bv(t) + ψ(t) for t ∈ R+,

u(t) = p(u, v)(t) for t ∈ [−τ1, 0],

v(t) = q(u, v)(t) for t ∈ [−τ2, 0],

where (ϕ,ψ) ∈ L∞(R+;X)× L∞(R+;Y ).

Lemma 4.2. If (HA), (HB), (p1), (p2) in (Hp) and (q1), (q2) in (Hq) are

satisfied, then for each (ϕ,ψ) ∈ L∞(R+;X) × L∞(R+;Y ), (4.7) has a unique

C0-solution (uϕ, vψ) ∈ Cb([−τ1,+∞);D(A)) × Cb([−τ2,+∞);D(B)). In addi-

tion, the mapping (ϕ,ψ) 7→ (uϕ, vψ) is Lipschitz continuous from L∞(R+;X)×
L∞(R+;Y ) to Cb([−τ1,+∞);D(A))×Cb([−τ2,+∞);D(B)), with Lipschitz con-

stant L = δ−1, where δ := min{ω, γ} > 0, both domain and range being endowed

with the max-norm of the corresponding factors.

Proof. We rewrite (4.7) as an evolution equation subject to nonlocal initial

conditions in the product space Z = X × Y endowed with the max-norm, i.e.,

‖(u, v)‖ := max{‖u‖, ‖v‖}. Namely, let us define A : D(A) ⊆ Z  Z byD(A) = D(A)×D(B),

A(u, v) = (Au,Bv), (u, v) ∈ D(A),

Since A and B are m-dissipative it follows that A is m-dissipative too. Moreover,

0 ∈ D(A), 0 ∈ A0, and A + δI is dissipative. Let h : R+ → Z be defined by

h(t) = (ϕ(t), ψ(t)) for each t ∈ R+.

Let us define the function g : Cb([0,+∞);D(A))→ D(A) by

g(u, v) = (p(u, v)(0), q(u, v)(0)) for each (u, v) ∈ Cb([0,+∞);D(A)).

Let z = (u, v) and let us consider the problem with nonlocal initial condition

(4.8)

{
z′(t) ∈ Az(t) + h(t), t ∈ R+,

z(0) = g(z).

Since p and q satisfy (p1) and (p2) in (Hp) and respectively (q1) and (q2) in

(Hq), we deduce that the function g satisfies hypothesis (4.1) in Lemma 4.1 with

τ = 0. Accordingly, the non-delay problem (4.8) has a unique C0-solution zh =

(ũ, ṽ) ∈ Cb([0,+∞);D(A)) and the mapping h 7→ zh is Lipschitz continuous

from L∞(R+;Z) to the space Cb([0,+∞);D(A)), with Lipschitz constant δ−1.

Let us define (u, v) ∈ Cb([−τ1,+∞);D(A))× Cb([−τ2,+∞);D(B)) by

u(t) =

p(ũ, ṽ)(t) for t ∈ [−τ1, 0),

ũ(t) for t ∈ [0,+∞),
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v(t) =

q(ũ, ṽ)(t) for t ∈ [−τ2, 0),

ṽ(t) for t ∈ [0,+∞).

From Remark 3.3, we deduce that p(ũ, ṽ) = p(u, v) and q(ũ, ṽ) = q(u, v). As

a consequence, (u, v) is the unique C0-solution of (4.7). Since h 7→ zh is Lipschitz

continuous from L∞(R+;Z) to Cb([0,+∞);D(A)), by (p2) in (Hp) and (q2) in

(Hq), we easily deduce that the mapping (ϕ,ψ) 7→ (u, v) is Lipschitz continuous

from L∞(R+;X)×L∞(R+;Y ) to Cb([−τ1,+∞);D(A))×Cb([−τ2,+∞);D(B)),

as claimed. �

We recall the next result which will be useful in the sequel.

Theorem 4.3. Let A : D(A) ⊆ X  X be an m-dissipative operator, with

0 ∈ D(A), 0 ∈ A0, let ω > 0 such that A + ωI is dissipative and let τ ≥ 0. Let

{fn : R+ × C([−τ, 0];D(A)) → X; n ∈ N} be a family of continuous functions

satisfying:

(h1) there exists ` ∈ (0, ω) such that ‖fn(t, x)−fn(t, y)‖ ≤ `‖x−y‖C([−τ,0];X)

for each n ∈ N, each t ∈ R+ and x, y ∈ C([−τ, 0];D(A));

(h2) there exists m > 0 such that ‖fn(t, 0)‖ ≤ m for each n ∈ N and each

t ∈ R+;

(h3) lim
n
fn(t, x) = f(t, x) uniformly for t ∈ R+ (for t in bounded intervals in

R+) and x in bounded subsets in C([−τ, 0];D(A)).

Let {gn : Cb([−τ,+∞);D(A)) → C([−τ, 0];D(A)); n ∈ N} be a family of func-

tions satisfying:

(h4) there exists a > 0 such that for each n ∈ N and u, ũ ∈ Cb([−τ,+∞);D(A))

we have ‖gn(u)− gn(ũ)‖C([−τ,0];X) ≤ ‖u− ũ‖Cb([a,+∞);X);

(h5) lim
n
gn(u) = g(u) uniformly for u in bounded subsets in Cb([−τ,+∞);D(A))

(and g is continuous from C̃b([−τ,+∞);D(A)) to C([−τ, 0];D(A))).

Let (un)n be the sequence of C0-solutions of the problem

(4.9)

u′n(t) ∈ Aun(t) + fn(t, unt) for t ∈ R+,

un(t) = gn(un)(t) for t ∈ [−τ, 0].

Then lim
n
un = u in Cb([−τ,+∞);X) (in C̃b([−τ,+∞);X)), where u is the

unique C0-solution of the problemu′(t) ∈ Au(t) + f(t, ut) for t ∈ R+,

u(t) = g(u)(t) for t ∈ [−τ, 0].

The existence and uniqueness of C0-solutions of (4.9) were established by

Vrabie [41, Theorem 3.1] in the case in which the initial constraint functions
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have affine growth, i.e., there exists m0 > 0 such that

‖gn(u)‖C([−τ,0];X) ≤ ‖u‖Cb(R+;X) +m0,

for each n ∈ N and u ∈ Cb([−τ,+∞);D(A)), and by Burlică and Roşu [11,

Theorem 3.1] in the case m0 = 0. For the proof of the continuity result in the

Cb([−τ,+∞);X) case with m0 = 0 see Burlică, Roşu and Vrabie [13]. The

proof in the C̃b([−τ,+∞);X) case and m0 > 0 is very similar with that of the

preceding one and therefore we do not give details.

5. The proof of Theorem 3.1

We will use a fixed point technique coupled with some compactness argu-

ments. Let (u, v) be arbitrary but fixed in Cb([−τ1,+∞);D(A))×Cb([−τ2,+∞);

D(B)). For the beginning we will prove that the next auxiliary problem

(5.1)


ũ′(t) ∈ Aũ(t) + F (t, ũt, ṽt) for t ∈ R+,

ṽ′(t) ∈ Bṽ(t) +G(t, ut, vt) for t ∈ R+,

ũ(t) = p(ũ, ṽ)(t) for t ∈ [−τ1, 0],

ṽ(t) = q(u, ṽ)(t) for t ∈ [−τ2, 0],

has a unique C0-solution (ũ, ṽ) ∈ Cb([−τ1,+∞);D(A))×Cb([−τ2,+∞);D(B)).

To do this, we will use Lemma 4.1 and we deduce that the problemṽ′(t) ∈ Bṽ(t) +G(t, ut, vt) for t ∈ R+,

ṽ(t) = q(u, ṽ)(t) for t ∈ [−τ2, 0],

has a unique C0-solution ṽ ∈ Cb([−τ2,+∞);D(B)) satisfying

(5.2) ‖ṽ‖Cb([−τ2,+∞);Y ) ≤
eγa

eγa − 1
m+

2

γ
‖G( · , u( · ), v( · ))‖Cb(R+;Y ).

Now, let us consider the problem

(5.3)

ũ′(t) ∈ Aũ(t) + F (t, ũt, ṽt) for t ∈ R+,

ũ(t) = p(ũ, ṽ)(t) for t ∈ [−τ1, 0].

From Theorem 3.1, in Vrabie [41] we deduce that problem (5.3) has at least one

C0-solution ũ ∈ C̃b([−τ1,+∞);D(A)) satisfying

(5.4) ‖ũ‖Cb([−τ1,+∞);X) ≤
m

ω − `
+

[
ω

ω − `

(
1

eωa − 1
+
`

ω

)
+ 1

]
·m.

Hypotheses (F1) in (HF ) and (p2) in (Hp) prove the uniqueness of solution ũ of

(5.3). Thus, problem (5.1) has a unique C0-solution (ũ, ṽ).

From (5.2), (5.4) and (G1), it readily follows that for each pair (u, v) be-

longing to the set Cb([−τ1,+∞);D(A))× Cb([−τ2,+∞);D(B)) the pair (ũ, ṽ),

defined as above, belongs to Cb([−τ1,+∞);D(A))× Cb([−τ2,+∞);D(B)).
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The considerations above show that we can define the operator Γ from the

locally convex space C̃b([−τ1,+∞);D(A))× C̃b([−τ2,+∞);D(B)) into itself by

(5.5) Γ(u, v) := (ũ, ṽ),

where (ũ, ṽ) is the unique C0-solution of (5.1). We will prove that Γ satisfies

the hypotheses of the Tychonoff Fixed Point Theorem 2.3 and thus it has at

least one fixed point which is a C0-solution of(5.1). More precisely we will prove

that Γ maps a suitably defined nonempty, closed, bounded and convex subset

C in C̃b([−τ1,+∞);D(A))× C̃b([−τ2,+∞);D(B)) into itself, is continuous and

compact. We do this with the help of next lemma.

Lemma 5.1. Let us assume that (HA), (HB), (HF ), (HG), (Hc), (Hp), and

(Hq) are satisfied and let us consider m̃ > 0 such that

(5.6)


`

(
eγa

eγa − 1
m+

m̃

γ

)
+m ≤ m̃,

r1 ≤ r2,

where

(5.7)


r1 :=

m

ω − `
+

[
ω

ω − `

(
1

eωa − 1
+
`

ω

)
+ 1

]
·m,

r2 :=
eγa

eγa − 1
m+

m̃

γ
.

Let us denote by W := C̃b([−τ1,+∞);D(A))× C̃b([−τ2,+∞);D(B)) and by

(5.8) C :=
{

(u, v) ∈W ; ‖u‖Cb([−τ1,+∞);X) ≤ r1, ‖v‖Cb([−τ2,+∞);Y ) ≤ r2

}
.

Then C is nonempty, closed, and convex in C̃b([−τ1,+∞);X)×C̃b([−τ2,+∞);Y ).

In addition, the operator Γ: W →W defined by (5.5) maps C into itself, is con-

tinuous and Γ(C) is relatively compact.

Proof. In view of (Hc), we can choose m̃ > 0 such that we have (5.6). Obvi-

ously, C given by (5.8) is a nonempty, closed and convex set in C̃b([−τ1,+∞);X)×
C̃b([−τ2,+∞);Y ). Let us prove that Γ maps C into itself. To do this, let

(u, v) ∈ C be arbitrary and (ũ, ṽ) = Γ(u, v). So, ṽ is the unique C0-solution of

the problem ṽ′(t) ∈ Bṽ(t) +G(t, ut, vt) for t ∈ R+,

ṽ(t) = q(u, ṽ)(t) for t ∈ [−τ2, 0],

and ũ is the unique C0-solution of the problemũ′(t) ∈ Aũ(t) + F (t, ũt, ṽt) for t ∈ R+,

ũ(t) = p(ũ, ṽ)(t) for t ∈ [−τ1, 0].
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From (5.4), we have

(5.9) ‖ũ‖Cb([−τ1,+∞);X) ≤
m

ω − `
+

[
ω

ω − `

(
1

eωa − 1
+
`

ω

)
+ 1

]
·m := r1.

From (G1), we get

(5.10) ‖G(t, ut, vt)‖ ≤ `max{r1, r2}+m ≤ `
(

eγa

eγa − 1
m+

m̃

γ

)
+m ≤ m̃

for each t ∈ R+. Let us remark that, in view of (2.3) in Theorem 2.1 and (5.10),

we obtain

‖ṽ(t)‖ ≤ e−γt‖ṽ(0)‖+

∫ t

0

e−γ(t−s)‖G(s, us, vs)‖ ds

≤ e−γt‖q(u, ṽ)‖C([−τ2,0];Y ) +
m̃

γ
( 1− e−γt)

for each t ∈ R+. Using (q1) and (q2), we deduce that

(5.11) ‖q(u, ṽ)‖C([−τ2,0];Y ) ≤ ‖ṽ‖Cb([a,+∞);Y ) +m.

So, for each t ∈ R+, we have

(5.12) ‖ṽ(t)‖ ≤ e−γt(‖ṽ‖Cb([a,+∞);Y ) +m) +
m̃

γ
( 1− e−γt).

From this inequality we conclude that

(5.13) ‖ṽ‖Cb([a,+∞);Y ) ≤
m

eγa − 1
+
m̃

γ
.

Indeed, we distinguish between next two possible cases.

Case 1. There exists t ∈ [a,+∞) such that

(5.14) ‖ṽ(t)‖ = ‖ṽ‖Cb([a,+∞);Y ).

Setting t = t in (5.12) and recalling that t ≥ a > 0, we deduce (5.13).

Case 2. If there is no t ∈ [a,+∞) such that (5.14) holds true, then there

exists (tn)n in [a,+∞) with lim
n
tn = +∞ and

‖ṽ‖Cb([a,+∞);Y ) = lim
n
‖ṽ(tn)‖.

Substituting t by tn in (5.12) and letting n→ +∞, we obtain again (5.13).

We prove next that

(5.15) ‖ṽ‖Cb([−τ2,+∞);Y ) ≤ r2,

where r2 is given by (5.7). If there exists t ∈ [−τ2, 0] such that ‖ṽ(t)‖ =

‖ṽ‖Cb([−τ2,+∞);Y ), from (5.11) and (5.13), we get

‖ṽ‖Cb([−τ2,+∞);Y ) ≤ ‖q(u, ṽ)‖C([−τ2,0];Y ) ≤
eγa

eγa − 1
m+

m̃

γ
= r2.



Nonlinear Delay Systems with Nonlocal Initial Conditions 385

If there exists t > 0 such that ‖ṽ(t)‖ = ‖ṽ‖Cb([−τ2,+∞);Y ), by (2.3) in Theo-

rem 2.1, we have

‖ṽ(t)‖ ≤ e−γt‖ṽ(0)‖+

∫ t

0

e−γ(t−s)‖G(s, us, vs)‖ ds

≤ e−γt‖ṽ‖Cb([−τ2,+∞);Y ) +
m̃

γ
(1− e−γt).

Since t > 0, we get ‖ṽ‖Cb([−τ2,+∞);Y ) ≤ m̃/γ ≤ r2.

If for each t ∈ [−τ2,+∞) we have ‖ṽ(t)‖ ≤ ‖ṽ‖Cb([−τ2,+∞);Y ), then there

exists (tn)n in (0,+∞) with lim
n
tn = +∞ and ‖ṽ‖Cb([−τ2,+∞);Y ) = lim

n
‖ṽ(tn)‖.

Setting t = tn in (5.12) and passing to the limit for n → +∞, we obtain again

‖ṽ‖Cb([−τ2,+∞);Y ) ≤ m̃/γ ≤ r2. From (5.9) and (5.15), it follows that Γ maps C

into itself.

In the next step we prove that Γ is continuous. Let ((un, vn))n be an arbitrary

sequence in C and let (ũn, ṽn) = Γ(un, vn) for each n ∈ N. So, for each n ∈ N,

ṽn is the unique C0-solution of the problem

(5.16)

ṽ′n(t) ∈ Bṽn(t) +G(t, unt
, vnt

) for t ∈ R+,

ṽn(t) = q(un, ṽn)(t) for t ∈ [−τ2, 0],

while ũn is the unique C0-solution of the problem

(5.17)

ũ′n(t) ∈ Aũn(t) + F (t, ũnt
, ṽnt

) for t ∈ R+,

ũn(t) = p(ũn, ṽn)(t) for t ∈ [−τ1, 0].

We suppose that

(5.18)

lim
n
un = u in C̃b([−τ1,+∞);X),

lim
n
vn = v in C̃b([−τ2,+∞);Y ).

Then, for each T > 0, lim
n
unt

= ut in C([−τ1, 0];X),

lim
n
vnt

= vt in C([−τ2, 0];Y ),

uniformly for t ∈ [0, T ]. Taking into account that, by (G2), the family of func-

tions {G(t, · , · ); t ∈ [0, T ]} is uniformly equicontinuous on C([−τ1, 0];D(A)) ×
C([−τ2, 0];D(B)), we deduce that

lim
n
G(t, unt

, vnt
) = G(t, ut, vt) uniformly for t ∈ [0, T ].

As the sequence ((un, vn))n is bounded in the space Cb([−τ1,+∞);X) ×
Cb([−τ2,+∞);Y ) (see (5.18)), from (G1) we conclude that the family {G( · ,
un( · ) , vn( · ));n ∈ N} is uniformly bounded in Cb(R+;Y ), and so it is uniformly

integrable in L1(0, k;Y ) for each k = 1, 2, . . .
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On the other hand, since (un, ṽn) ∈ C for each n ∈ N, by (q1), it fol-

lows that the set {q(un, ṽn);n ∈ N} is bounded in C([−τ2, 0];Y ). Therefore

{q(un, ṽn)(0); n ∈ N} is bounded in Y . Since the operator B generates a com-

pact semigroup, from Theorem 2.2 we deduce that the set of solutions {ṽn;n ∈ N}
of problem (5.16) is relatively compact in C([δ, k];Y ) for each k = 1, 2, . . . and

for each δ ∈ ( 0, k]. So, {ṽn;n ∈ N} is relatively compact in C̃b([δ,+∞);Y ) for

each δ > 0 and so in C̃b([a,+∞);Y ). Since, by (q3), the set {q(un, ṽn); n ∈ N}
is relatively compact in C([−τ2, 0];Y ), we get that {q(un, ṽn)(0); n ∈ N} is rela-

tively compact in Y . Now, from the second part in Theorem 2.2, we deduce that

{ṽn;n ∈ N} is relatively compact in C̃b(R+;Y ). Consequently, by (q2) in (Hq),

we easily conclude that it is relatively compact in C̃b([−τ2,+∞);Y ). Then it

follows that there exists ṽ ∈ Cb([−τ2,+∞);D(B)) such that on a subsequence,

at least, we have lim
n
ṽn = ṽ in C̃b([−τ2,+∞);Y ). Furthermore, we can pass to

the limit for n→ +∞ in (5.16) and we deduce that ṽ is the unique C0-solution

of the problem ṽ′(t) ∈ Bṽ(t) +G(t, ut, vt) for t ∈ R+,

ṽ(t) = q(u, ṽ)(t) for t ∈ [−τ2, 0].

From Theorem 4.3 (the C̃b([−τ1,+∞);X) case) withfn(t, · ) := F (t, · , ṽnt
),

gn( · ) = p( · , ṽn)

for each n ∈ N, we deduce that there exists ũ ∈ C̃b([−τ1,+∞);D(A)) such that

the sequence of C0-solutions of (5.17) satisfies lim
n
ũn = ũ in C̃b([−τ1,+∞);X),

where ũ is the unique C0-solution of the problemũ′(t) ∈ Aũ(t) + F (t, ũt, ṽt) for t ∈ R+,

ũ(t) = p(ũ, ṽ)(t) for t ∈ [−τ1, 0].

Hence lim
n

(ũn, ṽn) = (ũ, ṽ) in C̃b([−τ1,+∞);X)× C̃b([−τ2,+∞);Y ) and so Γ is

continuous.

In the next step, we will prove that Γ(C) is relatively compact. Let ((un, vn))n
be an arbitrary sequence in C and let (ũn, ṽn) = Γ(un, vn) for each n ∈ N. As be-

fore, we deduce that the set {ṽn;n ∈ N} is relatively compact in C̃b([a,+∞);Y ).

By (q3) in (Hq), {q(un, ṽn); n ∈ N} is relatively compact in C([−τ2, 0];Y ),

which means that there exists w ∈ C([−τ2, 0];D(B)) such that lim
n
q(un, ṽn) = w

in C([−τ2, 0];Y ). Clearly this shows that {q(un, ṽn)(0); n ∈ N} is relatively

compact. Reasoning as before, by Theorem 1.7.7, {ṽn; n ∈ N} is relatively com-

pact in C̃b([−τ2,+∞);Y ). So, there exists ṽ ∈ Cb([−τ2,+∞);D(B)) such that

on a subsequence, at least, we have lim
n
ṽn = ṽ in C̃b([−τ2,+∞);Y ). By virtue
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of Theorem 4.3, it follows that there exists ũ ∈ C̃b([−τ1,+∞);D(A)) such that

lim
n
ũn = ũ in C̃b([−τ1,+∞);X) and this completes the proof. �

We continue with the proof of Theorem 3.1.

Proof. By Lemma 5.1, it follows that C is a nonempty, convex and closed

subset in a separated local convex space and Γ: C → C is a continuous oper-

ator, such that Γ(C) is relatively compact. So, by the Tychonoff Fixed Point

Theorem 2.3, Γ has at least one fixed point (u, v) ∈ C, which means that

Γ(u, v) = (u, v). Clearly, (u, v) is a C0-solution of the problem (1.1). Since

‖u‖Cb([−τ1,+∞);X) ≤ r1 in Lemma 5.1, we deduce the first estimate in (3.1),

while the second one follows the very same lines as those in Vrabie [41, Theo-

rem 3.1]. �

6. Application to a reaction-diffusion system in L2(Ω)

Let Ω be a nonempty, bounded domain in Rk, k ≥ 2, with C1 boundary Σ

and let τi ≥ 0, i = 1, 2, ω, γ > 0. We denote by Q+ = R+ × Ω, Σ+ = R+ × Σ,

Qτi = [−τi, 0] × Ω, i = 1, 2. Let us consider two maximal-monotone operators

α : D(α) ⊆ R  R and β : D(β) ⊆ R  R satisfying 0 ∈ α(0), 0 ∈ β(0) and

let F,G : R+ × C([−τ1, 0];L2(Ω)) × C([−τ2, 0];L2(Ω)) → L2(Ω) be continuous.

Let d > b > τ1 > 0, let µi, i = 1, 2, be two positive σ-finite and complete

measures on [b − τi,+∞) with suppµ1 ⊆ [b − τ1, d] and let ki : R+ → R+ be in

L2(R+;µi,R+) with ‖ki‖L2(R+;µi,R+) ≤ 1, i = 1, 2. Also, let Wi : R → R with

Wi(0) = 0, i = 1, 2, be two nonexpansive functions, let C : L2(Ω) → R be linear

and continuous and let ξi, i = 1, 2, be bounded in C([−τi, 0];L2(Ω)).

We consider the following reaction-diffusion system:

(6.1)



∂u

∂t
(t, x) = ∆u(t, x)− ωu(t, x) + F (t, ut, vt)(x) in Q+,

∂v

∂t
(t, x) = ∆v(t, x)− γv(t, x) +G(t, ut, vt)(x) in Q+,

−∂u
∂ν

(t, x) ∈ α(u(t, x)), −∂v
∂ν

(t, x) ∈ β(v(t, x)) on Σ+,

u(t, x) =

∫ ∞
b

k1(s)W1(v(t+ s, x))u(t+ s, x) dµ1(s)+ξ1(t)(x) in Qτ1 ,

v(t, x) =

∫ ∞
b

k2(s)W2(v(t+ s, x))Cu(t+ s, · ) dµ2(s)+ξ2(t)(x) in Qτ2 ,

where, as usual, ∆ is the Laplace operator in the sense of distributions over Ω

and ∂u/∂ν is the outer normal derivative of u on Σ.
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Remark 6.1. The nonlocal conditions in (6.1) are very general and include

some important specific cases. Namely, let a := b − τ1 and let (tn)n be an in-

creasing sequence in [b,+∞), let (an)n be a sequence of positive numbers with

∞∑
n=0

a2
n ≤ 1

and let the kernel k2 : [a,+∞)→ R+ be defined by

k2(s) := an for s ∈ [tn, tn+1) and n = 0, 1, . . .

We define the operator C : L2(Ω)→ R by

Cz :=
1

|Ω|

∫
Ω

z(y) dy

for each z ∈ L2(Ω), and the positive σ-finite and complete measure µ2 from B,

the class of Borel measurable subsets in [a,+∞) to R, by

µ2(E) := Card ({n ∈ N; tn ∈ E}).

Here, as usual, Card (S) denotes the cardinal of the set S. Then the nonlocal

condition for v

v(t, x) =
1

|Ω|

∞∑
n=0

anW2(v(t+ tn, x))

∫
Ω

u(t+ tn, y) dy + ξ2(t)(x), (t, x) ∈ Qτ2 ,

rewrites as

v(t, x) =

∫ ∞
b

k2(s)W2(v(t+ s, x))Cu(t+ s, ·) dµ2(s) + ξ2(t)(x), (t, x) ∈ Qτ2 .

Likewise, in the case of the nonlocal condition for u, we may consider a similar

nonlocal condition except that, in this case, one should assume that (tn)n is an

increasing sequence in [a, d] with d > a.

The next theorem, which cannot be obtained from Theorem 3.1 in Burlică,

Roşu and Vrabie [14] and which is the main result concerning system (6.1), is

a consequence of Theorem 3.1.

Theorem 6.2. Let Ω be a nonempty, bounded, open subset in Rk, k ≥ 2,

with C1 boundary Σ, let τi ≥ 0, i = 1, 2, ω, γ > 0, d > b > τ1 > 0 and let

a = b− τ1 be given constants. Let α : D(α) ⊆ R R and β : D(β) ⊆ R R be

two maximal monotone operators with 0 ∈ D(α) ∩ D(β), 0 ∈ α(0) ∩ β(0). Let

F,G : R+ × C([−τ1, 0];L2(Ω)) × C([−τ2, 0];L2(Ω)) → L2(Ω) be continuous and

let C : L2(Ω) → R be a linear continuous functional. Let µi, i = 1, 2, be two

positive σ-finite and complete measures defined on the class of Borel measurable

sets in [a,+∞), let ki ∈ L2(R+;µi,R+), let Wi : R→ R with Wi(0) = 0 and let

ξi ∈ C([−τi, 0];L2(Ω)), i = 1, 2. Let us assume that

(h1) suppµ1 ⊆ [a, d];
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(h2) there exist ` > 0 and m ≥ 0 such that

‖F (t, 0, 0)‖L2(Ω) ≤m,

‖F (t, u, v)− F (t, ũ, ṽ)‖L2(Ω)

≤ `max{‖u− ũ‖C([−τ1,0];L2(Ω)), ‖v − ṽ‖C([−τ2,0];L2(Ω))},

‖G(t, u, v)‖L2(Ω) ≤ `max{‖u‖C([−τ1,0];L2(Ω)), ‖v‖C([−τ2,0];L2(Ω))}+m

for each (t, u, v), (t, ũ, ṽ) ∈ R+×C([−τ1, 0];L2(Ω))×C([−τ2, 0];L2(Ω));

(h3) the family of functions {G(t, · , · ); t ∈ R+} is uniformly equicontinuous

on C([−τ1, 0];L2(Ω))× C([−τ2, 0];L2(Ω));

(h4) ‖ki‖L2(R+;µi,R) ≤ 1, i = 1, 2;

(h5) |Wi(v)−Wi(ṽ)| ≤ |v − ṽ| for each v, ṽ ∈ R, i = 1, 2;

(h6) ‖ξi‖C([−τi,0];L2(Ω)) ≤ m for i = 1, 2;

(h7) ‖C‖ ≤ 1.

Let us assume also that ` < min{ω, γ}. Then, (6.1) has at least one C0-solution.

Proof. We rewrite system (6.1) in the abstract form (1.1) in X = Y =

L2(Ω) and then we apply Theorem 3.1. Let us define A : D(A)⊆L2(Ω)→L2(Ω)

by D(A) :=

{
u ∈ H2(Ω) ∩H1(Ω); −∂u

∂ν
∈ α(u) on Σ+

}
,

Au := ∆u− ωu for u ∈ D(A),

and B : D(B) ⊆ L2(Ω)→ L2(Ω) byD(B) :=

{
v ∈ H2(Ω) ∩H1(Ω); −∂v

∂ν
∈ β(v) on Σ+

}
,

Bv := ∆v − γv for v ∈ D(B).

Since 0 ∈ α(0) and 0 ∈ β(0), it follows that C∞0 (Ω) ⊆ D(A) and C∞0 (Ω) ⊆
D(B). So, D(A) = D(B) = L2(Ω). Next, from Vrabie [36, Theorem 2.8.2,

p. 77] we deduce that A,A+ ωI,B and B + γI are m-dissipative on L2(Ω), 0 ∈
D(A)∩D(B), 0 = A(0) = B(0) and A and B generate compact semigroups. So,

hypotheses (HA) and (HB) in Theorem 3.1 are satisfied. Further, assumptions

(h2), (h3) and (h7) ensure that F and G satisfy (HF ) and respectively (HG).

We define the nonlocal initial constraint functions

p : Cb([−τ1,+∞);L2(Ω))× Cb([−τ2,+∞);L2(Ω))→ C([−τ1, 0];L2(Ω)),

p(u, v)(t)(x) :=

∫ ∞
b

k1(s)W1(v(t+ s, x))u(t+ s, x) dµ(s) + ξ1(t)(x)

for each (u, v) ∈ Cb([−τ1,+∞);L2(Ω)) × Cb([−τ2,+∞);L2(Ω)), for each t ∈
[−τ1,+∞) and for almost every for x ∈ Ω and

q : Cb([−τ1,+∞);L2(Ω))× Cb([−τ2,+∞);L2(Ω))→ C([−τ2, 0];L2(Ω)),
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q(u, v)(t)(x) :=

∫ ∞
b

k2(s)W2(v(t+ s, x))Cu(t+ s, · ) dµ(s) + ξ2(t)(x)

for each (u, v) ∈ Cb([−τ1,+∞);L2(Ω)) × Cb([−τ2,+∞);L2(Ω)), for each t ∈
[−τ2,+∞) and for almost every x ∈ Ω. From (h4)–(h7), we deduce that p and

q satisfy (Hp) and (Hq). So, Theorem 3.1 applies, wherefrom the conclusion

follows. �
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[4] P. Baras, Compacité de l’opérateur definissant la solution d’une équation d’évolution
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