Topological Methods in Nonlinear Analysis Volume 47, No. 2, 2016, 693–713 DOI: 10.12775/TMNA.2016.026

O 2016 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University

STUDY OF A LOGISTIC EQUATION WITH LOCAL AND NON-LOCAL REACTION TERMS

Manuel Delgado — Giovany M. Figueiredo Marcos T.O. Pimenta — Antonio Suárez

(Submitted by J. Mawhin)

ABSTRACT. We examine a logistic equation with local and non-local reaction terms both for time dependent and steady-state problems. Mainly, we use bifurcation and monotonicity methods to prove the existence of positive solutions for the steady-state equation and sub-supersolution method for the long time behavior for the time dependent problem. The results depend strongly on the size and sign of the parameters on the local and non-local terms.

1. Introduction

In this paper we study the non-local parabolic problem

(1.1) $\begin{cases} u_t - \Delta u = u \left(\lambda + b \int_{\Omega} u^r \, dx - u \right) & \text{in } \Omega \times (0, \infty), \\ u = 0 & \text{on } \partial\Omega \times (0, \infty), \\ u(x, 0) = u_0(x) \ge 0 & \text{in } \Omega, \end{cases}$

²⁰¹⁰ Mathematics Subject Classification. Primary: 35R09, 45K05; Secondary: 35J60, 35K35, 35A25.

Key words and phrases. Logistic equation; local and non-local terms; bifurcation methods. M. Delgado and A. Suárez were supported by FEDER and Ministerio de Economía y Competitividad (Spain) under grant under grant MTM2012-31304.

G. Figueiredo was supported by CNPQ/PQ 301242/2011-9 and 200237/2012-8.

M. Pimenta was supported by FAPESP, Brazil, 2012/20160-0 and 2014/16136-1 and CNPQ 442520/2014-0.

and the corresponding steady-state problem

(1.2)
$$\begin{cases} -\Delta u = u(\lambda + b \int_{\Omega} u^r dx - u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ is a bounded and smooth domain, $\lambda, b \in \mathbb{R}$, r > 0 and u_0 is a regular positive function. In (1.1), u(x, t) represents the density of a species in time t > 0 and a habitat surrounded by inhospitable areas at the point $x \in \Omega$. Here, λ is the growth rate of species, the term -u describes the limiting effect of crowding in the population, that is, the competition of individuals of species for resources of the environment. In (1.1) we have included a non-local term with different meanings. When b < 0 we are assuming that this limiting effect depends not only on the value of u at the point x, but on the value of u in the whole domain. When b > 0 individuals cooperate globally to survive. When b = 0, (1.1) is the classical logistic equation.

Observe that when b > 0, problem (1.1) can be regarded as a superlinear indefinite problem with non-local superlinear term, similar to the classical superlinear problem

(1.3)
$$\begin{cases} u_t - \Delta u = u(\lambda + ba^+ u^r - a^- u^r) & \text{in } \Omega \times (0, \infty), \\ u = 0 & \text{on } \partial\Omega \times (0, \infty), \\ u(x, 0) = u_0(x) \ge 0 & \text{in } \Omega, \end{cases}$$

where $a \in C^1(\overline{\Omega})$, $a^+ := \max\{a(x), 0\}$, $a^- := \max\{-a(x), 0\}$. The latter has been studied in detail in [14], [15], [17], see also references therein. This class of local problems has been considered also with other boundary conditions, for example, non-homogeneous Dirichlet boundary conditions, see [9] and [18], where multiplicity results are shown. We do not consider the non-local counterpart in this paper.

The introduction of non-local terms in the equation and in the boundary conditions has shown to be useful for modelling a number of processes in different fields such as mathematical physics, mechanics of deformable solids, mathematical biology and many others. For examples of its application in population dynamics, see, for instance, [8], [7] and [11].

Let us summarize our main results. Denote by λ_1 the principal eigenvalue of the Laplacian subject to homogeneous Dirichlet boundary conditions and by φ_1 the positive eigenfunction associated to λ_1 such that $\|\varphi_1\|_{\infty} = 1$.

Regarding parabolic problem (1.1), first we prove the existence and uniqueness of positive local in time solution. Next, we analyze the long time behaviour of the solution. In particular:

(1) If b < 0 the solution of (1.1) is global in time and bounded. Moreover, the solution goes to zero as $\lambda < \lambda_1$.