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ON THE TAIL PRESSURE

Yunhua Zhou

Abstract. In this paper, we give two equivalent definitions of tail pressure

involving open covers and establish a variational principle which exhibits

the relationship between tail pressure and measure-theoretic tail entropy.

1. Introduction

Topological tail entropy quantifies the complexity of a dynamical system

at arbitrarily small scales. It captures the entropy near any single orbit. This

quantity was first introduced by Misiurewicz in [9] and was thoroughly studied by

many others (e.g. see [1], [2], [5], [8]). (Historically, Misiurewicz and Buzzi called

it the topological conditional entropy and local entropy respectively.) It is well

known that the variational principle plays a fundamental role in ergodic theory

and dynamical systems. In [6], Ledrappier obtained a variational principle of

topological tail entropy, and Downarowicz ([5]) established a variational principle

between the topological tail entropy and the entropy structure. Later, Burguet

([1]) presented a direct proof of Downarowicz’s results and extended them to

a noninvertible case. Recently, there appeared some works which study the tail

entropy of dynamics of group actions (e.g. see [4], [15], [16]).

As a natural generalization of topological entropy, topological pressure is

a quantity which belongs to one of the concepts in thermodynamic formalism.

This generalization was first done by Rulle in [11] and next by many others (e.g.
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see [3], [10], [12], [14]). In [8], Li–Chen–Cheng extended the tail entropy to tail

pressure for continuous transformations. In fact, they proved a tail variational

principle which exhibits the relationship between the tail pressure and the tail

entropy function and gave some applications of tail pressure.

In this paper, we give two equivalent definitions of tail pressure involving

open covers and establish a variational principle which exhibits the relationship

between the tail pressure and the measure-theoretic tail entropy. Let (X, d) be

a compact metric space and T : X → X be a homeomorphism. For ε > 0, n ∈ N
and x ∈ X, the Bowen’s ball of order n, radius ε and center x is defined by

B(x, n, ε) = {y ∈ X : d(T k(x), T k(y)) < ε, for all k = 0, . . . , n− 1}.

Given K ⊂ X, a set E ⊂ X is said to be an (n, ε)-spanning subset for K if

K ⊂
⋃
x∈E

B(x, n, ε),

and an (n, ε)-separated subset of K if for all x 6= y ∈ E there is 0 ≤ k ≤ n − 1

such that d(T k(x), T k(y)) ≥ ε.
Now we recall the concept of tail pressure which was defined by Li–Chen–

Cheng in [8]. Let C(X,R) be the space of real-valued continuous functions of

X. For f ∈ C(X,R), denote by

(Snf)(x) =

n−1∑
i=0

f(T i(x)), for all x ∈ X.

Let f ∈ C(X,R), n ∈ N, ε > 0, δ > 0 and x ∈ X. Write

Qn(T, f, x, δ, ε) = inf

{∑
y∈F

e(Snf)(y) : F is an (n, δ)-spanning set for B(x, n, ε)

}
and

Pn(T, f, x, δ, ε) = sup

{∑
y∈E

e(Snf)(y) : E is an (n, δ)-separated set of B(x, n, ε)

}
.

The tail pressure P ∗(T, f) is defined by

P ∗(T, f) = lim
ε→0

lim
δ→0

lim sup
n→∞

1

n
sup
x∈X

lnPn(T, f, x, δ, ε).

Write

Q∗(T, f) = lim
ε→0

lim
δ→0

lim sup
n→∞

1

n
sup
x∈X

lnQn(T, f, x, δ, ε).

By Lemma 3.3 of [8],

(1.1) P ∗(T, f) = Q∗(T, f).
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2. Equivalent definitions of tail pressure

In this section, we define the tail pressure involving open covers and prove

that new definitions are equivalent to Li–Chen–Cheng’s definition.

2.1. Tail pressure involving open covers. For an open cover U of X,

a set K ⊂ X, f ∈ C(X,R) and n ∈ N, denote by

Nn(T, f,U ,K)

= inf

{ ∑
A∈U ′

sup
x∈A

e(Snf)(x) : U ′ is a finite subset of Un and K ⊂
⋃
U∈U ′

U

}
,

here

Un =

n−1∨
i=0

T−iU .

Definition 2.1. Let U and V be two open covers of X, f ∈ C(X,R) and

n ∈ N. Define

pn(T, f,U|V) = sup
V ∈Vn

Nn(T, f,U , V ),

p(T, f,U|V) = lim
n→∞

1

n
ln pn(T, f,U|V),

p(T, f |V) = lim
δ→0

sup
U
{p(T, f,U|V) : diam(U) ≤ δ},

p∗(T, f) = inf
V
p(T, f |V),

here diam(U) = sup{diam(U) : U ∈ U} is the diameter of U .

From the following lemma, we know that p(T, f,U|V) is well-defined.

Lemma 2.2. For any two open covers U and V of X and f ∈ C(X,R), the

limit lim
n→∞

(1/n) ln pn(T, f,U|V) exists and equals inf
n
{(1/n) ln pn(T, f,U|V)}.

Proof. By the Subadditive Theorem (Theorem 4.9 of [13]), it is enough to

prove

pn+m(T, f,U|V) ≤ pn(T, f,U|V) · pm(T, f,U|V), for all n,m ∈ N.

For any fixed V ∈ Vn+m, there are V1 ∈ Vn and V2 ∈ T−nVm such that V =

V1 ∩ V2. For any τ > 0, take finite sets U1 ⊂ Un and U2 ⊂ Um which cover V1
and Tn(V2) respectively, and satisfy∑

A∈U1

sup
x∈A

e(Snf)(x) ≤ (1 + τ) ·Nn(T, f,U , V1)

and ∑
A∈U2

sup
x∈A

e(Smf)(x) ≤ (1 + τ) ·Nm(T, f,U , Tn(V2)).
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Let U0 := U1 ∨ T−nU2. Then U0 is a finite open cover of V . Moreover,∑
A∈U0

sup
x∈A

e(Sn+mf)(x) =
∑

A∈U1∨T−nU2

sup
x∈A

e(Snf)(x)+(Smf)(T
nx)

≤
( ∑
A∈U1

sup
x∈A

e(Snf)(x)
)
·
( ∑
A∈T−nU2

sup
x∈A

e(Smf)(T
nx)

)

=

( ∑
A∈U1

sup
x∈A

e(Snf)(x)
)
·
( ∑
A∈U2

sup
x∈A

e(Smf)(x)
)

≤ (1 + τ)2 ·Nn(T, f,U , V1) ·Nm(T, f,U , Tn(V2)).

So

Nn+m(T, f,U , V ) ≤ (1 + τ)2 ·Nn(T, f,U , V1) ·Nm(T, f,U , Tn(V2))

≤ (1 + τ)2 · sup
V ∈Vn

Nn(T, f,U , V ) · sup
V ∈Vm

Nm(T, f,U , V )

= (1 + τ)2 · pn(T, f,U|V) · pm(T, f,U|V).

By the arbitrariness of V and τ , we have

pn+m(T, f,U|V) ≤ pn(T, f,U|V) · pm(T, f,U|V). �

For an open cover U of X, a set K ⊂ X, f ∈ C(X,R) and n ∈ N, denote by

Rn(T, f,U ,K)

= inf

{ ∑
A∈U ′

inf
x∈A

e(Snf)(x) : U ′ is a finite subset of Un and K ⊂
⋃
U∈U ′

U

}
.

Definition 2.3. Let U and V be two open covers of X, f ∈ C(X,R) and

n ∈ N. Define

qn(T, f,U|V) = sup
V ∈Vn

Rn(T, f,U , V ),

q(T, f,U|V) = lim sup
n→∞

1

n
ln qn(T, f,U|V),

q(T, f |V) = lim
δ→0

sup
U
{q(T, f,U|V) : diam(U) ≤ δ},

q∗(T, f) = inf
V
q(T, f |V),

and

q(T, f,U|V) = lim inf
n→∞

1

n
ln qn(T, f,U|V),

q(T, f |V) = lim
δ→0

sup
U
{q(T, f,U|V) : diam(U) ≤ δ},

q∗(T, f) = inf
V
q(T, f |V)

Theorem 2.4. For any f ∈ C(X,R), it holds that p∗(T, f) = q∗(T, f).
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Proof. From the definitions, it is obvious that p∗(T, f) ≥ q∗(T, f). We will

prove p∗(T, f) ≤ q∗(T, f) as follows. For any τ > 0, there is δ0 > 0 such that

(2.1) d(x, y) ≤ δ0 ⇒ |f(x)− f(y)| ≤ τ, for all x, y ∈ X.

Take an open cover V of X and δ ≤ δ0 arbitrarily. Let U be an open cover of X

with diam(U) ≤ δ. For any A ∈ Un, there are x0, y0 ∈ A such that

sup
x∈A

e(Snf)(x) = e(Snf)(x0) and inf
x∈A

e(Snf)(x) = e(Snf)(y0)

and hence, by (2.1),

sup
x∈A

e(Snf)(x) = e(Snf)(x0) = e(Snf)(x0)−(Snf)(y0) · e(Snf)(y0)

= e[f(x0)−f(y0)]+...+[f(Tn−1(x0))−f(Tn−1(y0))] · e(Snf)(y0)

≤ enτ · inf
x∈A

e(Snf)(x).

So,

Nn(T, f,U , V ) ≤ enτ ·Rn(T, f,U , V ), for all V ∈ Vn

⇒ pn(T, f,U|V) ≤ enτ · qn(T, f,U|V)

⇒ p(T, f,U|V) ≤ q(T, f,U|V) + τ.

Note that the above inequalities hold for all open covers U of X with diam(U) ≤
δ ≤ δ0. We have p(T, f |V) ≤ q(T, f |V) + τ and hence p∗(T, f) ≤ q∗(T, f) by the

arbitrariness of τ and V. �

2.2. Equivalence of definitions of tail pressure. We will prove that

our definitions of tail pressure in the above subsection are equivalent to Li–

Chen–Cheng’s one recalled in this subsection. Given f ∈ C(X,R), and positive

numbers δ and ε, denote by

Q(T, f, δ, ε) = lim inf
n→∞

1

n
sup
x∈X

lnQn(T, f, x, δ, ε),

Q(T, f, ε) = lim
δ→0

Q(T, f, δ, ε),

Q∗(T, f) = lim
ε→0

Q(T, f, ε).

Lemma 2.5. For any f ∈ C(X,R), q∗(T, f) ≤ Q∗(T, f).

Proof. Take an arbitrary open cover U of X with the Lebesgue number

bigger than 2δ. For any ε > 0, select an open cover V of X with diam(V) < ε.

Then, for any n ∈ N and V ∈ Vn, there is xV ∈ X such that V ⊂ B(xV , n, ε).

For any V ∈ Vn and any (n, δ)-spanning set F for B(xV , n, ε), we have

Rn(T, f,U , V ) ≤
∑
y∈F

e(Snf)(y)
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since for each y ∈ F , there is an open cover U ∈ Un such that B(y, n, δ) ⊂ U .

Then

Rn(T, f,U , V ) ≤ Qn(T, f, xV , δ, ε) ≤ sup
x∈X

Qn(T, f, x, δ, ε).

The arbitrariness of V ∈ Vn implies that

qn(T, f,U|V) ≤ sup
x∈X

Qn(T, f, x, δ, ε)

and hence q(T, f,U|V) ≤ Q(T, f, δ, ε) ≤ Q(T, f, ε). Since the above inequalities

hold for any open cover U , it holds that

q∗(T, f) ≤ q(T, f |V) ≤ sup
U
q(T, f,U|V) ≤ Q(T, f, ε).

Let ε→ 0. We complete the proof. �

Lemma 2.6. For any f ∈ C(X,R), P ∗(T, f) ≤ p∗(T, f).

Proof. For any τ > 0, there is an open cover V of X such that p(T, f |V) ≤
p∗(T, f)+τ . Choose ε > 0 such that the Lebesgue number of V is bigger than 2ε.

Write

P (T, f, δ, ε) = lim sup
n→∞

1

n
sup
x∈X

lnPn(T, f, x, δ, ε), P (T, f, ε) = lim
δ→0

P (T, f, δ, ε).

If it holds that

(2.2) P (T, f, ε) ≤ p(T, f |V),

then P ∗(T, f) ≤ P (T, f, ε) ≤ p(T, f |V) ≤ p∗(T, f)+τ and we complete the proof

by the arbitrariness of τ .

Now we prove (2.2). Let δ>0 and U be an open cover of X with diam(U)≤δ.
Since the Lebesgue number of V is bigger than 2ε, for each x ∈ X there is Vx ∈ Vn

such that B(x, n, ε) ⊂ Vx. Given an (n, δ)-separated subset E of B(x, n, ε) and

a finite set U ′ ⊂ Un which covers Vx, we have∑
y∈E

e(Snf)(y) ≤
∑
A∈U ′

sup
x∈A

e(Snf)(x),

because there is at most one point in E ∩ U for each U ∈ U ′. Then

Pn(T, f, x, δ, ε) ≤Nn(T, f,U , Vx), for all x ∈ X,

⇒Pn(T, f, x, δ, ε) ≤ sup
V ∈Vn

Nn(T, f,U , V ), for all x ∈ X,

⇒ sup
x∈X

Pn(T, f, x, δ, ε) ≤ sup
V ∈Vn

Nn(T, f,U , V ),

⇒P (T, f, δ, ε) ≤ p(T, f,U|V),

⇒P (T, f, δ, ε) ≤ sup
U
{p(T, f,U|V) : diam(U) ≤ δ},

⇒P (T, f, ε) ≤ p(T, f |V).

The last inequality is exactly (2.2). �
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Now we can get the equivalence of the definitions of tail pressure.

Theorem 2.7. For any f ∈ C(X,R), denote by

P ∗(T, f) = lim
ε→0

lim
δ→0

lim inf
n→∞

1

n
sup
x∈X

lnPn(T, f, x, δ, ε).

Then

q∗(T, f) = q∗(T, f) = Q∗(T, f) = Q∗(T, f) = P ∗(T, f) = P ∗(T, f) = p∗(T, f).

Proof. By the definitions, it is obvious that

q∗(T, f) ≤ q∗(T, f), P ∗(T, f) ≤ P ∗(T, f), Q∗(T, f) ≤ Q∗(T, f).

Noting equality (1.1), Lemmas 2.5 and 2.6, we have

q∗(T, f) ≤ Q∗(T, f) ≤ Q∗(T, f) = P ∗(T, f) ≤ p∗(T, f).

It is easy to check that Qn(T, f, x, δ, ε) ≤ Pn(T, f, x, δ, ε) for all n ∈ N, f ∈
C(X,R), x ∈ X and δ, ε > 0. So Q∗(T, f) ≤ P ∗(T, f) and then the conclusion

of this theorem holds by Theorem 2.4. �

We remark that, in Theorem 3.4 of [8], Li–Chen–Cheng proved Q∗(T, f) =

Q∗(T, f) = P ∗(T, f) = P ∗(T, f). However, their proof depends on the existence

of refining sequence of essential partitions (see the following section for its defi-

nition), which does not always exist. We give another proof of this theorem and

do not require the existence of a refining sequence of essential partitions.

3. Variational principle of tail pressure

The term of a partition in this paper means a finite Borel partition of X.

For two partitions ξ, η and a probability measure µ, recall that the conditional

entropy is defined by

Hµ(X, ξ|η) = −
∑
A∈ξ
B∈η

µ(A ∩B) ln
µ(A ∩B)

µ(B)
=
∑
B∈η

µ(B)HµB (ξ|B),

here µB is the conditional measure of µ on B. It is easy to see that

(3.1) Hµ(X, ξ1 ∨ ξ2|η1 ∨ η2) ≤ Hµ(X, ξ1|η1) +Hµ(X, ξ2|η2)

for partitions ξ1, ξ2, η1, η2 of X. The following measure-theoretic tail entropy

was first introduced in [15] for amenable group actions.

Definition 3.1. Let µ be a T -invariant probability measure on X and ξ, η

be two finite partitions of X, we define

hµ(X,T, ξ|η) = lim
n→∞

1

n
Hµ(X, ξn|ηn), hµ(X,T |η) = sup

ξ
hµ(X,T, ξ|η),

hµ(X,T, ε) = sup
diam(η)≤ε

hµ(X,T |η), h∗µ(X,T ) = lim
ε→0

hµ(X,T, ε).
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We call hµ(X,T, ε) and h∗µ(X,T ) the ε-local entropy and tail entropy of µ re-

spectively.

Let us note that hµ(X,T, ξ|η) is well-defined by (3.1) and the Subadditive

Theorem (Theorem 4.9 of [13]).

A partition ξ of X is called compact if there is at most one element of ξ which

is not compact. Denote by P and Pc the sets of all finite measurable partitions

and all compact finite measurable partitions of X respectively.

Lemma 3.2. For any partition β of X and T -invariant probability measure µ,

sup
ξ∈P

hµ(X,T, ξ|β) = sup
ξ∈Pc

hµ(X,T, ξ|β).

Proof. It is sufficient to prove that sup
ξ∈P

hµ(X,T, ξ|β) ≤ sup
ξ∈Pc

hµ(X,T, ξ|β).

For any ξ = {Ai}ki=1 ∈ P and any ε > 0, one can choose η = {Bj}kj=0 ∈ Pc such

that Hµ(ξ|η) ≤ ε. Then

hµ(X,T, ξ|β) ≤ hµ(X,T, η|β) +Hµ(X, ξ|η)

≤ hµ(X,T, η|β) + ε ≤ sup
η∈Pc

hµ(X,T, η|β) + ε

and thus we complete the proof by the arbitrariness of ε and ξ. �

Lemma 3.3. For any k ∈ N and T -invariant probability measure µ,

kh∗µ(X,T ) ≤ h∗µ(X,T k).

Proof. For a partition ξ, we set

η(ξ) = ξk =

k−1∨
i=0

T−iξ.

Then

Hµ

(
X,

n−1∨
i=0

T−kiη(ξ1)

∣∣∣∣ n−1∨
i=0

T−kiη(ξ2)

)

=
∑

B∈
n−1∨
i=0

T−kiη(ξ2)

µ(B)HµB

(
X,

n−1∨
i=0

T−kiη(ξ1)

∣∣∣∣B)

=
∑

B∈
kn−1∨
i=0

T−iξ2

µ(B)HµB

(
X,

kn−1∨
i=0

T−iξ1

∣∣∣∣B) = Hµ(X, ξkn1 |ξkn2 ).

Thus, hµ(X,T k, η(ξ1)|η(ξ2)) = khµ(X,T, ξ1|ξ2) and hence

khµ(X,T |ξ2) = k sup
ξ1

hµ(X,T, ξ1|ξ2) ≤ sup
η
hµ(X,T k, η|η(ξ2)) = hµ(X,T k|η(ξ2)).
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Note that diam(η(ξ)) ≤ diam(ξ), for all ξ ∈ P. For any ξ2 with diam(ξ2) ≤ ε,

khµ(X,T |ξ2) ≤ hµ(X,T k, ε).

This means that kh∗µ(X,T ) ≤ khµ(X,T, ε) ≤ hµ(X,T k, ε). By the arbitrariness

of ε, we complete the proof. �

The following theorem is a variational principle which exhibits the connection

between tail pressure and measure-theoretic tail entropy.

Theorem 3.4. Let T : X → X be a homeomorphism on a compact metric

space and f ∈ C(X,R). Denote byM(X,T ) the set of all T -invariant probability

measures. Then:

(a) sup
µ∈M(X,T )

{
h∗µ(X,T ) +

∫
X

f dµ

}
≤ P ∗(T, f).

(b) If T has finite topological entropy and admits an infinite minimal factor,

then

sup
µ∈M(X,T )

{
h∗µ(X,T ) +

∫
X

f dµ

}
= P ∗(T, f)

and the supremum is achieved.

Before presenting the proof of Theorem 3.4, we recall the concept of a refining

sequence of essential partitions which will be used in the following. A sequence

of partitions {Pk} of X is refining, if Pk+1 is finer than Pk for all k and if

the diameter of Pk, dk = max
p∈Pk
{diam(p)}, goes to zero when k goes to infinity.

For a system (X,T ), a partition is said to be essential if the boundaries of its

elements have zero measure for all T -invariant probability measures.

In [7], Lindenstrauss gave some conditions to insure the existence of a refining

sequence of essential partitions.

Lemma 3.5 ([7]). If T is a homeomorphism of finite topological entropy ad-

mitting an infinite minimal factor, then there exists a refining sequence of essen-

tial partitions.

Proof of Theorem 3.4. (a) Let ε > 0 and µ ∈ M(X,T ). Take two

partitions η and ξ = {A0, . . . , Al} of X such that diam(η) ≤ ε and Ai are

compact for i = 1, . . . , l.

For any τ > 0, take δ ∈ (0,min{d(Ai, Aj) : i, j = 1, . . . , l; i 6= j}/2) satisfy-

ing

(3.2) d(x, y) ≤ δ ⇒ |f(x)− f(y)| < τ, for all x, y ∈ X.
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Then

Hµ(X, ξn|ηn) +

∫
Snf dµ =

∑
B∈ηn

µ(B)

(
HµB (X, ξn|B) +

∫
B

Snf dµB

)

≤
∑
B∈ηn

µ(B)

( ∑
A∈ξn

µB(A)(− lnµB(A) + α(A ∩B))

)

≤
∑
B∈ηn

µ(B) ln

( ∑
A∈ξn

eα(A∩B)

)
≤ sup
B∈ηn

ln

( ∑
A∈ξn

eα(A∩B)

)
,

here α(A ∩ B) = sup{(Snf)(x) : x ∈ A ∩ B}. For any A ∈ ξn and x ∈ X, if

A∩B(x, n, 2ε) 6= ∅, choose yA,x ∈ A ∩B(x, n, 2ε) such that α(A∩B(x, n, 2ε)) =

(Snf)(yA,x). Take an (n, δ)-spanning set Ex for B(x, n, 2ε) such that∑
y∈Ex

e(Snf)(y) ≤ 2Qn(T, f, x, δ, 2ε) ≤ 2Pn(T, f, x, δ, 2ε).

By the choice of δ, for each z ∈ Ex, there are at most 2n yA,x such that

d(T i(z), T i(yA,x)) < δ for i = 0, . . . , n− 1. So, noting (3.2),∑
A∈ξn

eα(A∩B(x,n,2ε))−nτ ≤ 2n ·
∑
z∈Ex

e(Snf)(z) ≤ 2n+1 · Pn(T, f, x, δ, 2ε)

and hence

ln

( ∑
A∈ξn

eα(A∩B(x,n,2ε))

)
≤ nτ + (n+ 1) ln 2 + lnPn(T, f, x, δ, 2ε).

Since for any B ∈ ηn there is x ∈ X such that B ⊂ B(x, n, 2ε), it holds that

sup
B∈ηn

ln

( ∑
A∈ξn

eα(A∩B)

)
≤ sup
x∈X

ln

( ∑
A∈ξn

eα(A∩B(x,n,2ε))

)
.

Then

hµ(X,T, ξ|η) +

∫
f dµ = lim

n→∞

1

n

(
Hµ(X, ξn|ηn) +

∫
Snf dµ

)
≤ τ + ln 2 + P (T, f, δ, 2ε)

and hence

hµ(X,T, ξ|η) +

∫
f dµ ≤ τ + ln 2 + P (T, f, 2ε).

By Lemma 3.2, we have

hµ(X,T |η) +

∫
f dµ ≤ τ + ln 2 + P (T, f, 2ε),

for any η with diam(η) ≤ ε. So,

hµ(X,T, ε) +

∫
f dµ ≤ τ + ln 2 + P (T, f, 2ε).
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Letting ε→ 0,

(3.3) h∗µ(X,T ) +

∫
f dµ ≤ τ + ln 2 + P ∗(T, f).

Furthermore, by Theorem 3.5 (1) of [8],

(3.4) P ∗(T k, Skf) = kP ∗(T, f), for all k ∈ N.

Combing (3.3) and (3.4) with Lemma 3.3, we have

k

(
h∗µ(X,T ) +

∫
f dµ

)
≤ τ + ln 2 + kP ∗(T, f), for all k ∈ N.

Thus

h∗µ(X,T ) +

∫
f dµ ≤ P ∗(T, f).

(b) By Lemma 3.5, there exists a refining sequence of essential partitions

P = {Pk}k∈N. It is easy to check that

h∗ν(X,T ) ≥ lim
k→∞

lim
l→∞

hν(X,T, Pl|Pk), for all ν ∈M(X,T ).

For natural numbers k and l with l > k, set

L(T, f, Pl|Pk) = lim sup
n→∞

1

n
sup
A∈Pnk

ln

( ∑
B⊂A
B∈Pn

l

inf
x∈B

e(Snf)(x)

)
.

By Theorem 3.2 of [8], lim
k→∞

lim
l→∞

L(T, f, Pl|Pk) = P ∗(T, f). Furthermore, part (2)

of the proof of Theorem 4.1 (line 12, p. 1414) of [8] implies that there is µ ∈
M(X,T ) such that

hµ(X,T, Pl|Pk) +

∫
f dµ ≥ L(T, f, Pl|Pk).

This means that

h∗µ(X,T ) +

∫
f dµ ≥ P ∗(T, f). �
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