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A DEGREE THEORY FOR VARIATIONAL INEQUALITIES

WITH SUMS OF MAXIMAL MONOTONE

AND (S+) OPERATORS

In-Sook Kim — Martin Väth

Abstract. We develop a degree theory for variational inequalities which

contain multivalued (S+)-perturbations of maximal monotone operators.
The multivalued operators need not necessarily be convex-valued. The

result is simultaneously an extension of a degree theory for variational in-

equalities (developed by Benedetti, Obukhovskĭı and Zecca) and of the
Skrypnik–Browder degree and extensions thereof.

1. Introduction

Throughout, let X be a real Banach space with dual space X∗, the usual pair-

ing being denoted by 〈 · , · 〉 : X ×X∗ → R, i.e. 〈x, x∗〉 := x∗(x). Let K ⊆ X be

closed and convex. Given Φ: X → 2X
∗

and M ⊆ X, we denote by ineqM (Φ,K)

the set of all x ∈ M which satisfy the following variational inequality for some

y ∈ Φ(x):

(1.1) x ∈ K, 〈ξ − x, y〉 ≥ 0 for all ξ ∈ K.
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Note that in case K = X, this means ineqM (Φ, X) = {x ∈M : 0 ∈ Φ(x)}.
We are interested in a topological degree which for bounded open U ⊆ X

“counts” the number of elements of ineqU (Φ,K) in a certain sense which is

homotopically invariant. For the case K = X such a degree theory was developed

independently by Skrypnik [12] and Browder [7] if Φ is a single-valued map of

so-called type (S+). For K = X and Φ = T + S with a maximal monotone

map T satisfying 0 ∈ T (0) and a single-valued map S of type (S+) this was

generalized in [8], the condition 0 ∈ T (0) was dropped in [11]. All these results

were generalized to multivalued maps S with convex values [15] and, moreover,

to the case that S is only pseudomonotone. The most general result of such

a type which we know currently is [1] where many historical remarks can also be

found.

On the other hand, the case K 6= X is to our knowledge only studied in [2]

(see [3] for the finite-dimensional case), even for multivalued mappings Φ = S

which are of type (S+) and which need not necessarily have convex values S(x)

but e.g. can be written in the form ϕ ◦Φ where ϕ is single-valued and Φ belongs

to a certain class of approximable mappings, e.g. Φ is upper semicontinuous with

Φ(x) being an Rδ-set for every x. Recall that an Rδ-set is the intersection of

a decreasing sequence of compact contractible metrizable spaces.

It is the aim of our paper to obtain such a degree even for maps of the form

Φ = T + S where S is as above and T is maximal monotone. To our knowledge,

the results are new even in case K = X, since we do not require that S assumes

convex values and since we do not require that T = 0. It is somewhat amusing

that T (x) is convex (since T is maximal monotone) while even in case ϕ = id

the values S(x) are topologically “trivial” in a sense, but not convex in general,

so that the values of the (Minkowski) sum T (x) + S(x) are typically far from

being topologically trivial.

However, this is only a minor advantage since in most applications S will

also have convex values: The crucial advantage of the degree of our paper over

that from e.g. [1] is that we treat variational inequalities which seem to be really

new: The degree theory for inequalities from [2] cannot directly treat the case

that the considered operators assume empty or unbounded values which is in

many applications the case for maximal monotone operators T . Thus, as far as

we know, for the case K 6= X and with T 6= 0, our results are completely new.

It is probably possible to obtain a degree as in our paper also when S is

only pseudomonotone instead of class (S+), analogously to [1]. However, the

hypothesis concerning nondegeneracy on the boundary in [1] is already almost

impossible to check, and for variational inequalities it becomes even more tech-

nical and artificial so that we do not strive for this further generalization in this

paper. We note, however, that for T = 0 the case of pseudomonotone S does not



Degree Theory for Inequalities 407

cause this difficulty, and for this setting, the corresponding theory has already

been developed satisfactorily in [2].

2. Main results

We use the notation Φ: X ( Y to denote a multivalued map with values

in Y , that is, Φ(x) is for every x ∈ X a (possibly empty) subset of Y . We

put D(Φ) := {x ∈ X : Φ(x) 6= ∅}. Notationally, we do not distinguish further

between single- and multivalued maps (which is a slight misuse in notation, of

course). We put graph Φ := {(x, y) : y ∈ Φ(x)}, and denote by Φ−1 : Y ( X

the map with graph(Φ−1) = {(y, x) : (x, y) ∈ graph Φ}, that is, Φ−1(y) := {x :

y ∈ Φ(x)}. For a set M ⊆ X, we call as customary the set {Φ(x) : x ∈ M} the

values of Φ on M , and we denote the union of these values by Φ(M) and call it

the image of M under Φ. If Φ: X ( Y and ϕ : Y → Z then ϕ ◦ Φ: X ( Z is

defined by (ϕ ◦ Φ)(x) = ϕ
(
Φ(x)

)
.

Throughout, let X be a real separable reflexive Banach space with dual

space X∗, and let K ⊆ X be closed and convex. For M,N ⊆ X∗ we denote

by M +N := {u+ v : u ∈M , v ∈ N} the Minkowski sum, and in this sense we

also understand the sum of multivalued maps T, S : X ( X∗ as (T + S)(x) :=

T (x) + S(x).

A map T : X ( X∗ is called monotone if 〈x− y, u− v〉 ≥ 0 whenever u ∈
T (x), v ∈ T (y), and maximal monotone if its graph is maximal with respect to

the inclusion order of the family of all graphs of monotone maps, that is, if for

any x ∈ X and u ∈ X∗, 〈x− y, u− v〉 ≥ 0 whenever v ∈ T (y) imply u ∈ T (x).

Let M⊆X, we say that a family S : [0, 1]×X(X∗ belongs to S+([0, 1]×M)

if the following holds:

(1) S([0, 1]× (B ∩M)) is bounded for every bounded B ⊆ X.

(2) For all sequences tn ∈ [0, 1], xn ∈ M , yn ∈ S(tn, xn), the assumptions

tn → t, xn⇀x, yn⇀y, and

(2.1) lim sup
n→∞

〈xn, yn〉 ≤ 〈x, y〉

imply that xn → x and y ∈ S(t, x).

Similarly, we say that S : X ( X belongs to S+(M) if the constant family

S(t, x) = S(x) belongs to S+([0, 1]×M).

Remark 2.1. Assumption (2.1) can equivalently be replaced by

(2.2) lim sup
n→∞

〈xn − x, yn〉 ≤ 0.

Indeed, 〈xn, yn〉 − 〈x, y〉 = 〈xn − x, yn〉 − 〈x, y − yn〉 with the last summand

tending to 0.
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Remark 2.2. In order to verify that S ∈ S+([0, 1]×M), it suffices to show

that [0, 1] 3 tn → t, M 3 xn⇀x, S(tn, xn) 3 yn⇀y and (2.1) or (2.2) imply

that y ∈ S(t, x) and that xnk
→ x for some subsequence xnk

. Indeed, if each

subsequence of xn contains a subsequence convergent to x then also xn → x.

Some admissible perturbations of the class S+(M) are described in the fol-

lowing result. We call T : I ×X ( X∗ a jointly monotone family if

〈x− y, u− v〉 ≥ 0 whenever u ∈ T (I × {x}), v ∈ T (I × {y}).

We call Φ: X ( X∗ sequentially demiclosed if graph Φ is sequentially closed in

X ×X∗ when X is equipped with the strong topology and X∗ is equipped with

the weak (i.e. weak∗) topology. Similarly, we call Φ: [0, 1]×X ( X∗ sequentially

demiclosed if graph Φ is sequentially closed in [0, 1]×X ×X∗.
In other words, Φ: [0, 1] × X ( X∗ is sequentially demiclosed if it follows

from tn ∈ [0, 1], xn ∈ X, tn → t, xn → x ∈ X, yn ∈ Φ(tn, xn), and yn⇀y that

y ∈ Φ(t, x).

Proposition 2.3. Let S ∈ S+([0, 1] × M). Let T : [0, 1] × X ( X∗ be

a jointly monotone family which assumes only nonempty values, and let C : [0, 1]×
X ( X∗ be such that for each bounded set B ⊆ X the set T ([0, 1]× (B ∩M)) is

bounded and C([0, 1]× (B ∩M)) is relatively compact. Assume furthermore that

T and C are sequentially demiclosed. Then Φ := T + S + C ∈ S+([0, 1] ×M).

An analogous assertion holds for S ∈ S+(M).

Proof. The boundedness hypothesis of Φ is trivially satisfied. Thus, let

sequences tn ∈ [0, 1], xn ∈ M , un ∈ T (tn, xn), vn ∈ S(tn, xn), wn ∈ C(tn, xn)

be given such that tn → t, xn⇀x, yn := un + vn + wn⇀y, and such that (2.2)

holds. Since X is reflexive and un, vn, wn are bounded or relatively compact,

respectively, we can assume in view of Remark 2.2 that un⇀u, vn⇀v, wn → w

with y = u+ v + w. The monotonicity of T implies for some z ∈ T (t, x) that

〈xn − x, yn〉 = 〈xn − x, un〉+ 〈xn − x, vn〉+ 〈xn − x,wn〉

≥ 〈xn − x, z〉+ 〈xn − x, vn〉+ 〈xn − x,w〉+ 〈xn − x,wn − w〉.

Since xn⇀x and wn → w, we thus obtain from (2.2) that lim sup
n→∞

〈xn−x, vn〉≤0.

From S ∈ S+([0, 1] × M), we conclude that xn → x and v ∈ S(t, x). Since

(tn, xn)→ (t, x), un⇀u, and wn⇀w, and since T and C are sequentially demi-

closed, we obtain that u ∈ T (t, x) and w ∈ C(t, x) and thus y ∈ Φ(t, x). There-

fore, we have shown that Φ ∈ S+([0, 1]×M). �

Recall that a multivalued map Φ: M ( Y in topological spaces is called up-

per semicontinuous at x0 ∈M if for each open set V ⊆ Y containing Φ(x0) there

is a neighbourhood U ⊆M of x0 with Φ(U) ⊆ V . If Φ is upper semicontinuous

at every point of M , we call Φ upper semicontinuous on M .
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Remark 2.4. If M ⊆ X is closed and Φ: M ( Y is upper semicontinuous

then we can extend Φ trivially to an upper semicontinuous map Φ: X ( Y by

putting Φ(x) = ∅ for x /∈ M . For this reason, it will be no restriction for us to

consider only maps Φ: X ( Y .

If Y is a Banach space, we call Φ: M ( Y upper demicontinuous if it is

upper semicontinuous when we equip Y with the weak topology.

Proposition 2.5. If S : X ( X∗ (or S : [0, 1] × X ( X∗) is upper demi-

continuous with weakly closed values then S is sequentially demiclosed.

Proof. By e.g. [13, Corollary 2.117], graph(S) is closed in X×X∗ (with the

norm topology on X and weak topology on X∗) and thus sequentially closed.�

Corollary 2.6. If S : X ( X∗ (or S : [0, 1]×X ( X∗) is upper semicon-

tinuous or upper demicontinuous and has compact values then S is sequentially

demiclosed.

Proof. If S is upper semicontinuous then it is upper demicontinuous. More-

over, compact sets are weakly compact and thus also weakly closed. �

Recall that a nonempty compact subset M of a topological space Γ is called

aspheric in Γ if every open set U ⊆ Γ with M ⊆ U contains an open set V ⊆ U
with M ⊆ V such that for every n = 1, 2, . . . every continuous map f from the

unit sphere Sn−1 ⊆ Rn with f(Sn−1) ⊆ V has a continuous extension f to the

closed unit ball Bn ⊆ Rn with f(Bn) ⊆ U . If Γ is an ANR, i.e. homeomorphic

to a retract of a (relatively) open subset of a finite union of closed convex subsets

of a normed space, then every Rδ subset of Γ is aspheric in Γ.

We say Φ ∈ J (M,Γ) if Φ: M ( Γ is upper semicontinuous and if Φ(x)

is aspheric in Γ for every x ∈ M . Similarly, we say Φ ∈ K(M,Γ) if Γ is an

ANR subset of a normed space, and Φ is upper semicontinuous with Φ(x) being

nonempty, convex, and compact for every x ∈M . Since every nonempty convex

compact set is an Rδ, we have clearly K(M,Γ) ⊆ J (M,Γ).

We consider actually a more general class of maps than these two: By

CJ (M,Y ) (or CK(M,Y )) we denote the class of all maps of the form ϕ ◦ Φ

for which there is a metric space Γ (or an ANR subset Γ of a normed space) such

that ϕ : Γ→ Y is continuous and Φ ∈ J (M,Γ) (or Φ ∈ K(M,Γ), respectively).

The classes CJ (M,Y ) and CK(M,Y ) are considerably larger than the classes

J (M,Y ) and K(M,Y ). Moreover, in contrast to J (M,Y ), the class CJ (M,Y )

has a nice additivity property:

Proposition 2.7. If Y is a normed space and S1, S2 ∈ CJ (M,Y ) then

S1 + S2 ∈ CJ (M,Y ). An analogous property holds for CK(M,Y ).
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Proof. By hypothesis, we find for i = 1, 2 metric spaces Γi, continuous

maps ϕi : Γi → Y and Φi ∈ J (M,Γi) (or Φi ∈ K(M,Γi)), respectively, such that

Si = ϕi ◦Φi. Putting Γ := Γ1×Γ2, we have the desired representation S1 +S2 =

ϕ ◦Φ with ϕ : Γ→ Y , ϕ(y1, y2) := ϕ1(y1) + ϕ2(y2), and Φ(x) := Φ1(x)×Φ2(x).

Note that the upper semicontinuity of Φ follows in view of the compactness of

the values Φi(x), see [13, Proposition 2.99]. �

From now on let a maximal monotone map T : X ( X∗ be fixed. We point

out that Proposition 2.7 does typically not apply for S1 = T , since T does often

not assume only nonempty compact values. This is why our subsequent degree

theory is a proper extension of that from [2].

We use the notation M̊ to denote the interior of a subset M ⊆ X.

For an open set U ⊆ X, we note that UK := U ∩K is open in K with relative

boundary ∂KUK := UK \ UK .

We will define a degree degK(T, S, U) ∈ Z for every open bounded set U ⊆
X and every map S ∈ CJ (UK , X

∗) with ineq∂KUK
(T + S,K) = ∅ under the

following hypotheses:

(1) UK ∩ V is locally contractible for every finite-dimensional subspace V ⊆
X, or S ∈ CK(UK , X

∗).

(2) S belongs to the class S+(UK).

(3) At least one of the following holds:

(2.3) K̊ ∩D(T ) 6= ∅ or K ∩ ˚D(T ) 6= ∅ or sup
x∈UK

T (x)6=∅

inf
x∗∈T (x)

‖x∗‖ <∞.

(Actually the class of maps for which the degree is defined will be slightly larger.)

The condition (2.3) may appear very strange, and in fact it is. However,

it is unknown to the authors whether it can be dropped: A hypothesis of such

a type appears to be crucial for our approach. Note that in the non-inequality

case K = X or in case T = 0 the first or second and third assertion of (2.3)

are automatically satisfied, respectively, so that it is not surprising that such

a hypothesis (2.3) was never needed in previous literature, since both extensions

were never considered simultaneously to our knowledge.

Theorem 2.8. The degree defined in this paper has the following properties

for every open bounded set U ⊆ X satisfying (2.3):

(a) (Homotopy invariance). Let H ∈ CJ ([0, 1]× U,X∗) ∩ S+([0, 1]× U) be

such that ineq∂KUK
(T + H(t, · ),K) = ∅ for every t ∈ [0, 1]. If either

UK ∩ V is locally contractible for every finite-dimensional subspace V ⊆
X or if H ∈ CK([0, 1]×U,X∗), then degK(T,H(t, · ), U) is independent

of t ∈ [0, 1].

(b) (Excision and Additivity). Let S ∈ J (U,X∗)∩S+(U), and let U1, U2 ⊆
U be open with U1 ∩ U2 = ∅ and ineqUK\(U1∪U2)

(T + S,K) = ∅. If
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UK ∩ V and Ui ∩K ∩ V (i = 1, 2) are locally contractible for each finite-

dimensional subspace V ⊆ X or if S assumes only convex values, then

degK(T, S, U) = degK(T, S, U1) + degK(T, S, U2).

(c) (Existence). degK(T, S, U) 6= 0 implies ineqU (T + S,K) 6= ∅.
(d) (Generalized Normalization Property). Let S ∈ CJ (UK , X

∗)∩ S+(UK)

satisfy ineq∂KUK
(T + S,K) = ∅. Assume in addition that UK ∩ V is

locally contractible for every finite-dimensional subspace V ⊆ X or that

S ∈ CK(UK , X
∗). If there is x0 ∈ UK with 0 ∈ T (x0) such that

(2.4) 〈x− x0, y〉 ≥ 0 for all x ∈ ∂KUK and all y ∈ S(x),

then degK(T, S, U) = 1.

Let us give a simple application of this degree theory:

Theorem 2.9 (Continuation Principle). Let U ⊆ X be open and bounded and

satisfy (2.3). Let S ∈ CJ (UK , X
∗) ∩ S+(UK), and let C ∈ CJ ([0, 1]× UK , X∗)

be such that C([0, 1]×UK) is relatively compact. Assume in addition that UK∩V
is locally contractible for every finite-dimensional subspace V ⊆ X or that S ∈
CK(UK , X

∗) and C ∈ CK([0, 1] × UK , X∗). If there is x0 ∈ UK with 0 ∈ T (x0)

such that 〈x− x0, y〉 ≥ 0 for all x ∈ ∂KUK and y ∈ S(x) +C(0, x), then at least

one of the following alternatives occurs:

(a) There is t ∈ [0, 1] such that ineq∂KUK
(T + S + C(t, · ),K) 6= ∅.

(b) ineqUK
(T + S + C(t, · ),K) 6= ∅ for every t ∈ [0, 1].

Proof. By Propositions 2.3 and 2.7, the map H(t, · ) := S+C(t, · ) belongs

to S+([0, 1] × UK) ∩ CJ ([0, 1] × UK , X
∗) (or to CK([0, 1] × UK , X

∗), respec-

tively). Hence, if the first alternative fails, the homotopy invariance implies

that degK(T,H(t, · ), U) is independent of t, and by the normalization property,

this degree is 1. Thus, the assertion of the second alternative follows from the

existence property. �

We use the notation: Br(x0) = {x ∈ X : ‖x− x0‖ < r}.

Corollary 2.10 (Leray–Schauder Alternative). Assume that (2.3) holds

with UK := K ∩ Br(0). Let S ∈ CJ (Br(0), X∗) ∩ S+(Br(0)), and let C ∈
CJ (Br(0), X∗) be such that C(Br(0)) is relatively compact. If there is x0 ∈
K ∩ Br(0) with 0 ∈ T (x0) such that 〈x− x0, y〉 ≥ 0 for all x ∈ K with ‖x‖ = r

and all y ∈ S(x), then at least one of the following alternatives occurs:

(a) There are t ∈ [0, 1], x ∈ D(T ) with ‖x‖ = r, and y ∈ (T +S)(x) + tC(x)

with (1.1).

(b) For every t ∈ [0, 1] there are x ∈ D(T )∩Br(0) and y ∈ (T+S)(x)+tC(x)

with (1.1).
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In particular, there are x ∈ D(T ) with ‖x‖ ≤ r, and y ∈ T (x) +S(x) with (1.1);

moreover, if this is not the case when ‖x‖ = r, then at least one of the following

alternatives occurs:

(c) There are λ > 1, x ∈ D(T ) with ‖x‖ = r, and y ∈ λ(T + S)(x) + C(x)

with (1.1).

(d) There are x ∈ D(T ) with ‖x‖ ≤ r, and y ∈ (T + S + C)(x) with (1.1).

Proof. The first assertion is the special case U = Br(0), C(t, x) = tC(x)

of Theorem 2.9, and the second assertion follows from the first with C = 0 or

λ = 1/t, respectively. �

The first specialization (C = 0) of Corollary 2.10 can be considered as a vari-

ant of a Rothe-type fixed point theorem for variational inequalities with respect

to a maximal monotone operator T : Note that in case K = X the assertion

means 0 ∈ T (x) + S(x).

The second specialization is an analogue to the Leray–Schauder alternative:

Note that concerning C only general topological assumptions (compactness and

C ∈ CJ (Br(0), X∗)) are made, and this allows us to obtain assertions concerning

inequalities with T + S and C. For applications, one can perhaps verify by a-

priori estimates that all solutions of (1.1) with y ∈ (T + S)(x) or y ∈ λ(T +

S)(x) + C(x) (λ > 1) have large ‖x‖ and then can conclude that (for large r)

(1.1) has a solution with y ∈ (T + S + C)(x).

We point out once more that in case K = X, the assertion is a statement

about zeroes of maps; for instance, the first case of the alternative means then

0 ∈ (T+S)(x)+tC(x) with ‖x‖ = r which (for single-valued C) means in a sense

that t is a “nonlinear eigenvalue” of T + S with respect to C.

3. Construction of the degree

Since X is reflexive and X∗ is also reflexive and thus weakly compactly

generated, there is an equivalent norm on X such that X as well as X∗ become

locally uniformly convex, see e.g. [10, Chapter VII]. Since none of the assertions

of Section 2 changes when we pass to an equivalent norm, we may assume this

in the following.

However, unless explicitly stated otherwise, we will assume only that X is

reflexive and locally uniformly convex and that X∗ is strictly convex: The reason

is that such an equivalent norm is for separable spaces much easier to obtain,

see e.g. [9].

A function f : M → Y from a metric space M into a Banach space Y is

called demicontinuous on M ⊆ X if for any sequence xn ∈M with xn → x ∈M
it follows that f(xn)⇀f(x). Since M is metric and thus first countable this is

equivalent to saying that f : M → Y is continuous if Y is equipped with the
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weak topology. For the particular case Y = X∗ note that our hypothesis that X

is reflexive implies that the weak and weak∗ topologies coincide.

Since X∗ is strictly convex, the duality mapping J : X ( X∗,

J(x) := {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x∗‖ ‖x‖ and ‖x∗‖ = ‖x‖},

becomes actually single-valued (and D(J) = X by the Hahn–Banach extension

theorem); it satisfies

(3.1) J(λx) = λJ(x) for all λ ∈ R,

and J : X → X∗ is demicontinuous, see e.g. [14, Proposition 32.22]. Since X∗∗ =

X is also strictly convex, applying the same observation on X∗, we obtain that

J−1 : X∗( X is demicontinuous.

Remark 3.1. A Banach space is said to have the Kadec–Klee property if

(xn⇀x and ‖xn‖ → ‖x‖)⇒ ‖xn − x‖ → 0.

It follows straightforwardly from the lower semicontinuity of the norm that every

locally uniformly convex Banach space has the Kadec–Klee property. Since we

assume that X is locally uniformly convex and thus has the Kadec–Klee prop-

erty and since J and thus J−1 are norm-preserving, it follows even that J−1

is continuous. If we would assume that X∗ is also locally uniformly convex (or

at least has the Kadec–Klee property) then by the same argument J would be

continuous.

Recall that T is maximal monotone if and only if T is monotone and T + εJ

is onto X∗ for every ε > 0. If T is maximal monotone (and since X and X∗ are

strictly convex and reflexive), we can define the Yosida approximations

(3.2) Yε(T ) := (T−1 + εJ−1)−1 for all ε > 0.

We summarize some results about Yε(T ) in the following lemma.

Lemma 3.2. Yε(T ) : X ( X∗ is actually single-valued with D(Yε(T )) = X,

i.e. Yε(T ) : X → X∗. Moreover, for every x ∈ X the elements x∗ε = Yε(T )(x)

and

xε = Xε(T )(x) := x− εJ−1(x∗ε)

are the unique solutions of the system

(3.3) x∗ε ∈ T (xε), J(xε − x) + εx∗ε = 0.

Yε(T ) is monotone, and Yε(T ) and Xε(T ) are bounded; more precisely,

(3.4)
⋃

ε∈[ε1,ε2]

Yε(T )(B) ∪
⋃

ε∈(0,ε2]

Xε(T )(B)

is bounded for bounded B ⊆ X and 0 < ε1 ≤ ε2.
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We have the estimate

(3.5) ‖Yε(T )(x)‖ ≤ inf{‖x∗‖ : x∗ ∈ T (x)} if x ∈ D(T ),

and the equalities

(3.6) Yε(T )(x) = Yδ(T )
(
x+(δ−ε)J−1(Yε(T )(x))

)
for all x ∈ X and δ, ε > 0,

and the map (ε, x) 7→ Yε(T )(x) is demicontinuous. The “resolvent map” Xε(T ) :

X → X is continuous for every ε > 0.

Proof. Since T−1 is maximal monotone and J−1 is the duality map X∗(

X∗∗ = X, it follows that T−1 + εJ−1 is onto X, i.e. D(Yε(T )) = X. Since, as al-

ready observed in [5], system (3.3) has a unique solution (xε, x
∗
ε) by [6], and since

one sees by inserting the definitions of Yε(T )(x) and Xε(T )(x) and using (3.1)

that any x∗ε ∈ Yε(T )(x) with corresponding xε = Xε(T )(x) solves (3.3), it follows

that Yε(T )(x) is single-valued and together with Xε(T )(x) indeed characterized

by (3.3). Now [5, Lemma 1.3 (a)] shows that Yε(T ) is a monotone map defined on

all of X, and thus Xε(T ) is also a map defined on X∗. From [5, Lemma 1.3 (d)],

we obtain the estimate (3.5). To prove (3.4), we argue as in [5, Lemma 1.3 (b)]:

Fixing u∗ ∈ T (u) and multiplying (3.3) by Xε(T )(x)−u and using the definition

of J , we obtain that

ε〈u−Xε(T )(x), u∗〉 = 〈Xε(T )(x)− u, J
(
Xε(T )(x)− x

)
〉

= ‖Xε(T )(x)− x‖2 + 〈x− u, J
(
Xε(T )(x)− x

)
〉.

For (x, ε) from a bounded set the left-hand side can grow at most affinely with

‖Xε(T )(x)‖ while the right-hand side grows quadratically. This implies that

Xε(T )(x) remains bounded for bounded x and ε. Using (3.3) and that J is

norm-preserving, we thus obtain (3.4).

Using (3.3), we have x− εJ−1(x∗ε) = xε ∈ T−1(x∗ε) and hence

x+ (δ − ε)J−1(x∗ε) ∈ T−1(x∗ε) + δJ−1(x∗ε)

for every δ > 0. Applying Yδ(T ) = (T−1 + δJ−1)−1 in (3.2) on both sides, we

obtain (3.6).

We note further by [5, Lemma 1.3 (c)] that Xε(T ) and Yε(T ) are demicon-

tinuous. Moreover, since X has the Kadec–Klee property, it follows from [5,

Remark 1 after Lemma 1.3] that Xε(T ) is even continuous.

The demicontinuity of (ε, x) 7→ Yε(T )(x) follows by letting (ε, x) → (δ, x0)

in (3.6), using the uniform boundedness (3.4) and the demicontinuity of Yδ(T )

at x0. �

Remark 3.3. If our general assumption that X is locally uniformly convex

is replaced by the requirement that X is strictly convex, our proof shows that

all assertions of Lemma 3.7 except for the last remain true: The last assertion
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remains true if X has at least the Kadec–Klee property; otherwise we can claim

only that Xε(T ) : X → X is demicontinuous.

Remark 3.4. If we require that X is reflexive and that both X and X∗

are strictly convex with the Kadec–Klee property then we can claim even that

(ε, x)→ Yε(T )(x) is norm continuous as a map (0,∞)×X → X∗.

Indeed, by Remark 3.3 we still obtain the continuity of Xε(T ), and since J

is also continuous by Remark 3.1, we obtain the norm continuity of Yε(T ) by

solving (3.3) for Yε(T ). As in the proof of Lemma 3.2, this implies the continuity

of (ε, x) 7→ Yε(T )(x) by using (3.4) and (3.6).

Remark 3.5. In the proof of the (demi)continuity of (ε, x) 7→ Yε(T )(x), we

used the ideas from [1, Lemma 6]. Since this continuity was not known in case

0 /∈ T (0), the requirement 0 ∈ T (0) was made in the first approaches to degree

theory for maximal monotone operators.

The idea of (Xε(T ), Yε(T )) is of course that they approximate T in some

graph sense. This is usually made precise by using the following lemma:

Lemma 3.6 (Brezis, Crandall, Pazy). If yn ∈ T (xn), xn⇀x, yn⇀y, and

lim sup
n→∞

〈xn − x, yn − y〉 ≤ 0,

then xn → x, yn → y, and y ∈ T (x).

Proof. This is [5, Lemma 1.2(1.3)]. �

Equipped with Lemma 3.6, we can now prove the fundamental step in the

construction of our degree.

Lemma 3.7. Let T : X ( X∗ be maximal monotone, M ⊆ X be bounded,

and S ∈ S+([0, 1]×M) such that ineqM (T + S(t, · ),K) = ∅ for every t ∈ [0, 1].

Assume that

(3.7) K̊ ∩D(T ) 6= ∅ or K ∩ ˚D(T ) 6= ∅ or C := sup
x∈M
T (x)6=∅

inf
x∗∈T (x)

‖x∗‖ <∞.

Then there is a positive number ε0 such that

ineqM
(
Yε(T ) + S(t, · ),K

)
= ∅ for all ε ∈ (0, ε0] and all t ∈ [0, 1].

Proof. Assume by contradiction that there are sequences εn > 0 with εn →
0, tn ∈ [0, 1], and xn ∈ ineqM (Yεn(T ) + S(tn, · ),K), that is, xn ∈M , and there

are vn ∈ S(tn, xn) such that

(3.8) xn ∈ K, 〈ξ − xn, Yεn(T )(xn) + vn〉 ≥ 0 for all ξ ∈ K.

Since M and S([0, 1]×M) are bounded and X is reflexive, we can assume without

loss of generality that tn → t ∈ [0, 1], xn⇀x ∈ K, and vn⇀v. Moreover, each

of the three hypotheses in (3.7) implies that un := Yεn(T )(xn) is bounded.
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Indeed, in the last case C < ∞ in (3.7), we have ‖un‖ ≤ inf{‖x∗‖ : x∗ ∈
T (xn)} ≤ C by (3.5).

In the first case of (3.7), there are x0 ∈ D(T ) and r > 0 such that Br(x0) ⊆
K. Inserting ξ = x0 + y with y ∈ Br(0) into (3.8), we find that

0 ≤〈x0 − xn, Yεn(T )(xn)− Yεn(T )(x0)〉

+ 〈x0 − xn, Yεn(T )(x0)〉+ 〈x0 − xn, vn〉+ 〈y, un + vn〉

≤ ‖x0 − xn‖ (‖Yεn(T )(x0)‖+ ‖vn‖) + 〈y, un + vn〉.

Since vn and xn are bounded and ‖Yεn(T )(x0)‖ is bounded by (3.5), we obtain

that there is some C0 ∈ [0,∞) such that

〈y, un + vn〉 ≥ −C0 for all n and all y ∈ Br(0).

The latter implies that ‖un‖ ≤ ‖vn‖+ C0/r is bounded, as claimed.

Finally, in the second case of (3.7), there are r > 0 and x0 ∈ K with Br(x0) ⊆
D(T ). By [14, Proposition 32.33], we can assume that T

(
Br(x0)

)
is bounded

by some constant C1. It follows from (3.5) that Yεn(T )(z) is bounded for all

n and all z ∈ Br(x0) by the same constant C1. Since Yεn(T ) is monotone by

Lemma 3.2, we obtain that

〈z − xn, un〉 ≤ 〈z − xn, Yεn(T )(z)〉 ≤ ‖z − xn‖C1 ≤ C2

is uniformly bounded from above for all z ∈ Br(x0) and all n. Choosing ξ = x0
in (3.8), we find that

0 ≤ 〈x0 − xn, un + vn〉 ≤ 〈x0 − xn, un〉+ C3,

where C3 ∈ [0,∞) is independent of n. Hence, for every y ∈ Br(0) we find,

putting z := x0 + y, that

〈y, un〉 = 〈z − xn, un〉+ 〈xn − x0, un〉 ≤ C2 + C3.

Hence, ‖un‖ ≤ (C2 + C3)/r is bounded, as claimed.

Thus we can assume that un⇀u. Using (3.8) with ξ = x, we find that

(3.9) 0 ≥ 〈xn − x, un + vn〉 = 〈xn − x, un〉+ 〈xn − x, vn〉.

We can assume that both summands converge (possibly improperly). If the

limit of the last summand is nonpositive then it is zero, because xn → x since

S ∈ S+([0, 1] ×M). Hence, the limit of the last summand is nonnegative, and

so

lim
n→∞

〈xn − x, un − u〉 = lim
n→∞

〈xn − x, un〉 ≤ 0.

Putting x̃n := Xεn(T )(xn) = xn − εnJ−1(un), we have un ∈ T (x̃n) by (3.3).

Since J−1(un) is bounded, we have xn − x̃n → 0, and so

lim
n→∞

〈x̃n − x, un − u〉 ≤ 0.
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Since un ∈ T (x̃n), this implies with Lemma 3.6 that u ∈ T (x), un → u, and

x̃n → x, in particular, xn → x. From S ∈ S+([0, 1] ×M), we now obtain that

v ∈ S(t, x). Passing for fixed ξ ∈ K to the limit in (3.8), we conclude that

〈ξ − x, u+ v〉 ≥ 0 for all ξ ∈ K.

Since x ∈ M ∩ K, u ∈ T (x), and v ∈ S(t, x), we obtain that x ∈ ineqM (T +

S(t, · ),K), which is a contradiction to the hypothesis. �

In the last part of the previous proof, we used some techniques from the

proof of [1, Lemma 9].

Now we come to a rather technical definition. Let M and Γ be metric spaces,

and Φ: M ( Γ. Then a single-valued continuous map f : M → Γ is called an

ε-approximation of Φ if for every x ∈ M there exists y ∈ M with d(x, y) < ε

and z ∈ Φ(y) with d(f(x), z) < ε. We denote by A(M,Γ) the family of all maps

Φ: M ( Γ with the following properties:

(1) Φ is upper semicontinuous with nonempty compact values on M .

(2) For every ε > 0 there is an ε-approximation of Φ on M .

(3) For every δ > 0 there exists ε > 0 such that every two ε-approximations

f0, f1 : M → Γ are homotopic in the sense that there is a continuous

h : [0, 1] ×M → Γ with h(i, · ) = fi (i = 0, 1) such that h(t, · ) is a δ-

approximation for every t ∈ [0, 1].

According to the remarks in [2], we have the following important examples

of maps from A(M,Γ):

Proposition 3.8. If Φ ∈ J (M,Γ) then Φ ∈ A(M,Γ) if one of the following

holds:

(a) M is an ANR (if M is contained in a finite-dimensional Euclidean space,

it is equivalent to require that M is locally contractible [4]), or

(b) Γ is a subset of a normed space and Φ assumes convex values.

Let now U ⊆ X be open and bounded, UK := U∩K, and ∂KUK := UK \UK .

Definition 3.9. C(UK) denotes the class of all maps S = ϕ ◦ Φ with the

property that there is a metric space Γ such that ϕ : Γ→ X∗ is continuous and

Φ: X ( Γ is such that Φ|UK∩V ∈ A(UK ∩ V ,Γ) for every finite-dimensional

linear subspace V ⊆ X.

We define C([0, 1]× UK) in the analogous way by requiring Φ|[0,1]×(UK∩V ) ∈
A([0, 1]× (UK ∩ V ),Γ) for every finite-dimensional linear subspace V ⊆ X.

Remark 3.10. For the special case Γ = Γ1×Γ2, Φ(x) = Φ1(x)×Φ2(x), and

ϕ(x1, x2) = ϕ1(x1)+ϕ2(x2), the condition Φ|UK∩V ∈ A(UK ∩ V ,Γ) is satisfied if

(3.10) Φi|UK∩V ∈ A(UK ∩ V ,Γ) for i = 1, 2.
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However, in the special case Γ2 = X∗, ϕ2(x2) = x2, we relax the definition

of C(UK) by allowing additionally that condition (3.10) for i = 2 be replaced

by the hypothesis that Φ2 : X ( X∗ is single-valued and demicontinuous on

D(Φ2) ⊇ UK ∩ V .

This special extension may appear somewhat artificial, but it is necessary

to make and was apparently forgotten in [2]. In fact, without such an exten-

sion, the argument given in the proof of [2, Proposition 3.29] is faulty, since J

is in general only demicontinuous, because X∗ need not necessarily be locally

uniformly convex and thus may fail to have the Kadec–Klee property.

Remark 3.11. The reader who does not want to extend the definition of

C(UK) in the technical manner sketched above can instead assume from now

on that X∗ is locally uniformly convex: As remarked earlier, this is no loss of

generality, anyway, and by doing so the maps J and (ε, x) 7→ Yε(T )(x) become

even continuous with respect to the norm topology so that the subsequent con-

sideration of demicontinuous functions will actually not be necessary at all.

The main intention of the previous remarks is the validity of the following

observation even if S2 is only single-valued and demicontinuous on UK .

Proposition 3.12. If S1, S2 ∈ C(UK) then S1 + S2 ∈ C(UK). An analogous

assertion holds for CK([0, 1]× UK).

Proof. In view of [2, Theorem 2.2], the same construction as in Proposi-

tion 2.7 can be used. �

We define S+K(U) := S+(UK) ∩ C(UK) and S+K([0, 1] × U) := S+([0, 1] ×
UK) ∩ C([0, 1]× UK).

Remark 3.13. So far, we never needed in this section that X is separable.

In fact, we use that X is separable only in order to use the degree from [2]

where this assumption was made. Since we consider this degree from now on,

we assume from here that X is separable.

The degree developed in [2] is defined for maps S ∈ S+(UK) which satisfy

ineq∂KUK
(S,K) = ∅. (In fact, it is straightforward to check that our technical

extension of the class S+(UK) due to Remark 3.10 does not influence the con-

struction.) It is an integer number which is called Ind(S,UK ,K, 0) in [2]; we

prefer to call it a degree,

(3.11) degK(S,U) := Ind(S,UK ,K, 0),

since in case K = X it is related with the zeroes of S (and not with any fixed

points which is usually suggested by an index).

In our opinion it is convenient to define the degree for open bounded sets

U ⊆ X, although in fact it depends only on UK = U ∩K, that is, in fact it is



Degree Theory for Inequalities 419

a relative degree on K: Our attitude corresponds to the fact that in a separable

Hilbert space X and if S = id − A with a completely continuous map A, this

degree corresponds to the Leray–Schauder degree

(3.12) deg(id− (PK ◦A), U, 0),

where PK denotes the metric projection onto K (i.e. PK(x) is that element of

K with closest distance to x). Of course, (3.12) is nothing else than the relative

fixed point index indK(PK ◦ A,UK) so that the notion Ind in (3.11) has some

justification. Anyway, to point out the relation with the Browder–Skrypnik

degree, we will keep the notion degK from (3.11).

The degree degK has all the natural properties which one expects from a de-

gree like homotopic invariance (under homotopies H from the class S+K([0, 1]×U)

which satisfy ineq∂KUK
(H(t, · ),K) = ∅ for all t ∈ [0, 1]), excision, additivity, and

the following normalization property:

Proposition 3.14. If U ⊆ X is open and bounded, S ∈ S+K(U) satisfies

ineq∂KUK
(S,K) = ∅, and if there is x0 ∈ UK such that 〈x− x0, y〉 ≥ 0 for all

x ∈ ∂KUK and all y ∈ S(x) then degK(S,U) = 1.

Proof. This is shown implicitly in the proof of [2, Theorem 3.23]. �

Now let a maximal monotone operator T : X ( X∗ be fixed.

Lemma 3.15. If S ∈ C(UK) then Yε(T ) + S ∈ C(UK) for every ε > 0. An

analogous result holds for C([0, 1]× UK).

Proof. Recall that the map Yε(T ) is demicontinuous by Lemma 3.2. Hence,

the assertion follows from Proposition 3.12 in view of Remark 3.10. �

Lemma 3.16. If S ∈ S+(M) then Yε(T ) + S ∈ S+(M) for every ε > 0. An

analogous result holds for S+([0, 1]×M).

Proof. Lemma 3.2 implies that Yε(T ) is defined on all of X, single-valued,

bounded, monotone, and demicontinuous. We obtain from Corollary 2.6 that it is

also sequentially demiclosed, and so the assertion follows from Proposition 2.3.�

Corollary 3.17. S ∈ S+K(U) implies Yε(T ) + S ∈ S+K(U) for every ε > 0.

An analogous result holds for S+K([0, 1]× U).

Proof. The assertion is the combination of Lemmas 3.15 and 3.16 with

M = UK . �

From now on, we assume in addition that X∗ has the Kadec–Klee property.

We recall that this is the case, in particular, if X∗ is locally uniformly convex,

and thus we can assume this without loss of generality.
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We denote by U(T,K) the family of all bounded open subsets U ⊆ X satis-

fying (2.3). Given S ∈ S+K(U) with ineq∂KUK
(T + S,K) = ∅, we define

degK(T, S, U) := lim
ε→0+

degK(Yε(T ) + S,U),

where the degree on the right-hand side denotes the degree (3.11).

Proposition 3.18. The above definition is correct. More precisely, there is

ε0 > 0 such that for all ε ∈ (0, ε0] the degree degK(Yε(T ) + S,U) is defined. For

every such ε0, the value of this degree is independent of the choice of ε.

Proof. The first assertion follows from Corollary 3.17 and from Lemma 3.7

with M := ∂KUK . For the second assertion, it suffices to show in view of the

homotopy invariance of the degree (3.11) that

H(t, x) := Yλ(t)(T )(x) + S(x)

belongs to S+K([0, 1] × U), where λ : [0, 1] → [ε, ε0] is a homeomorphism with

λ(1) = ε0. Lemma 3.2 implies that (t, x) 7→ Yλ(t)(T )(x) is demicontinuous and

by Remark 3.4 even continuous. Hence, Proposition 3.12 implies that H ∈
C([0, 1]× UK).

It remains to show that H belongs to S+([0, 1]× UK). The boundedness is

clear in view of (3.4). However, for the rest of the argument we cannot directly

use Proposition 2.3, because we do not know whether (t, x) 7→ Yλ(t)(T )(x) is

a jointly monotone family. For this reason, we actually use the (norm) continuity

of Yλ( · )(T )(x) in the following argument.

Let sequences tn ∈ [0, 1], xn ∈ M , yn ∈ H(tn, xn) be given which satisfy

tn → t, xn⇀x, yn⇀y, and (2.2). We are to show that y ∈ H(t, x) and xn → x

for some subsequence (recall Remark 2.2).

We put un := Yλ(tn)(T )(xn) and vn := yn−un. Then vn ∈ S(xn) is bounded,

and passing to a subsequence if necessary, we may thus assume that vn⇀v.

Hence, we have un⇀u := y − v. The monotonicity of Yλ(tn)(T ) implies that

(3.13) 〈xn − x, yn〉 = 〈xn − x, un〉+ 〈xn − x, vn〉 ≥ 〈xn − x, zn〉+ 〈xn − x, vn〉

with zn := Yλ(tn)(T )(x). Since X∗ has the Kadec–Klee property, we obtain

from Remark 3.4 that zn → z := Yλ(t)(T )(x), and so xn⇀x implies that

〈xn − x, zn〉 → 0. Using this in (3.13), we thus obtain from (2.2) that

lim sup
n→∞

〈xn − x, vn〉 ≤ 0.

Since S ∈ S+(UK), we find that xn → x and v ∈ S(x). From Lemma 3.2, we

conclude that un⇀z, hence u = z, i.e. y = u+ v = z+ v ∈ H(t, x), as required.

Thus, we have shown that H ∈ S+([0, 1] × UK). Consequently, H belongs to

S+K([0, 1]× U). �



Degree Theory for Inequalities 421

Theorem 3.19. The degree defined above has the following properties for

every open bounded set U ⊆ X satisfying (2.3):

(a) (Homotopy invariance). If H ∈ S+K([0, 1]×U) is such that ineq∂KUK
(T+

H(t, · ),K) = ∅ for all t ∈ [0, 1], then

degK(T,H(t, · ), U) is independent of t ∈ [0, 1].

(b) (Excision and Additivity). If S ∈ S+K(U) and U1, U2 ⊆ U are open with

U1 ∩ U2 = ∅ and ineqU\(U1∪U2)
(T + S,K) = ∅, then

degK(T, S, U) = degK(T, S, U1) + degK(T, S, U2).

(c) (Existence). degK(T, S, U) 6= 0 implies ineqU (T + S,K) 6= ∅.
(d) (Generalized Normalization Property). Let S ∈ S+K(U) satisfy

ineq∂KUK
(T + S,K) = ∅.

If there is x0 ∈ UK with 0 ∈ T (x0) such that (2.4) holds, then

degK(T, S, U) = 1.

Proof. The homotopy invariance follows directly from the definition and

from the homotopy invariance of the degree (3.11), since by Lemma 3.7 the

number ε0 in the definition of degK(T,H(t, · ), U) can be chosen independently

of t.

Similarly, applying Lemma 3.7 with the closed set M := UK \ (U1 ∪ U2), we

can choose ε0 > 0 so small that ineqM (Yε(T ) + S,K) = ∅ for all ε ∈ (0, ε0],

and so the excision/additivity follows from the corresponding property of the

degree (3.11).

The existence property is the special case U1 = U2 = ∅ of the excision/addi-

tivity.

In order to prove the normalization property, it suffices to show that

degK(Yε(T ) + S,U) = 1 for all ε > 0

satisfying ineq∂KUK
(Yε(T ) + S,K) = ∅ (by Proposition 3.18 we know that the

latter holds at least for small ε > 0). To see this, we use Proposition 3.14 with

S̃ := Yε(T ) +S. Hence, we are to show that for every x ∈ ∂KUK the inequalities

〈x− x0, y〉 ≥ 0 for all y ∈ S̃(x)

hold. In view of (2.4), it suffices to prove

(3.14) 〈x− x0, Yε(T )(x)〉 ≥ 0.

To see (3.14), we note that in view of 0 ∈ T (x0) system (3.3) has the solution

(xε, x
∗
ε) = (x0, 0), and so Lemma 3.2 implies Yε(T )(x0) = 0. Now (3.14) follows

from the monotonicity of Yε(T ) (Lemma 3.2). �
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In view of Proposition 3.8, the degree described in Section 2 is a special case

of our degree, and Theorem 2.8 is a special case of Theorem 3.19.
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[2] I. Benedetti and V.V. Obukhovskĭı, On the index of solvability for variational inequal-

ities in Banach spaces, Set-Valued Anal. 16 (2008), 67–92.

[3] I. Benedetti and P. Zecca, Relative topological degree and variational inequalities,

Mediter. J. Math. 3 (2006), 47–65.

[4] K. Borsuk, Theory of Retracts, Polish Scientific Publ., Warszawa, 1967.
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