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CLASSICAL MORSE THEORY REVISITED – I

BACKWARD λ-LEMMA AND HOMOTOPY TYPE

Joa Weber

Abstract. We introduce two tools, dynamical thickening and flow selec-
tors, to overcome the infamous discontinuity of the gradient flow endpoint

map near non-degenerate critical points. More precisely, we interpret the

stable fibrations of certain Conley pairs (N,L), established in [2], as a dy-
namical thickening of the stable manifold. As a first application and to

illustrate efficiency of the concept we reprove a fundamental theorem of

classical Morse theory, Milnor’s homotopical cell attachment theorem [1].
Dynamical thickening leads to a conceptually simple and short proof.

Consider a connected smooth manifold M of finite dimension n. Suppose

f : M → R is a smooth function and x is a non-degenerate critical point of f

of Morse index k, that is dfx = 0 and in local coordinates the Hessian matrix

(∂2f/∂xi∂xj)i,j at x has precisely k negative eigenvalues, counting multiplicities,

and zero is not an eigenvalue. Set c := f(x) and assume for simplicity that the

level set {f = c} carries no critical point other than x.

Morse theory studies how the topology of sublevel sets Ma = {f ≤ a}
changes when a runs through a critical value c. A fundamental tool is the concept

of a flow, also called a 1-parameter group of diffeomorphisms of M . A common

choice is the downward gradient flow {ϕs}s∈R, namely the one generated by

the initial value problems d
dsϕs = −(∇f) ◦ ϕs with ϕ0 = idM . Existence is
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guaranteed, for instance, if the vector field is of compact support. Here ∇f
denotes the gradient vector field of f on M . It is uniquely determined by the

identity df( · ) = g(∇f, · ) after fixing an auxiliary Riemannian metric g on M .

Key properties of the downward gradient flow are that f decays along flow lines

s 7→ ϕsp, for p ∈ M , and that ∇f is orthogonal to level sets. Consequently

sublevel sets are forward flow invariant. As dfx = 0 if and only if (∇f)x = 0,

any critical point x is a fixed point of the flow and non-degeneracy translates

into hyperbolicity.

By non-degeneracy of x its unstable manifold Wu and descending disk Wu
ε ,

Wu =
{
p ∈M

∣∣∣ lim
s→−∞

ϕsp = x
}
, Wu

ε = Wu ∩ {f ≥ c− ε},

are embedded open, respectively closed, disks in M of dimension k = ind(x);

actually an embedding Wu
ε ↪→ M as a closed k-disk exists only for every suf-

ficiently small ε > 0 (use the Morse lemma). The boundary Suε := ∂Wu
ε is

called a descending sphere. Consider instead the limit s→ +∞ to get the stable

manifold W s and ascending disk W s
ε = W s ∩ {f ≤ c+ ε}. They have analogous

properties except that they are of codimension k.

In [2], see [3, Theorem. 5.1] for details in the present finite dimensional case,

we implemented the structure of a disk bundle on the compact neighbourhood

N = Nε,τ
x := {p ∈M | f(p) ≤ c+ ε, f(ϕτp) ≥ c− ε}connected component of x

of x whenever ε > 0 is small and τ > 0 is large. The fibers are codimension-k

disks with boundaries in the upper level set {f = c + ε} and parametrized by

their unique point of intersection, say qT , with the unstable manifold. The fiber

over x is W s
ε . Each point of a fiber N(qT ) reaches the lower level set {f = c− ε}

in time T under the downward gradient flow. Note that {f = c − ε} intersects

Wu in the descending (k−1)-sphere Suε = ∂Wu
ε . Choose a tubular neighborhood

D of Suε in {f = c − ε} to get a family of codimension-k disks Dq, one for each

q ∈ Suε .

Su
ε = ∂Wu

εq

τ : time t to reach level

GT
q

(GT
q )−1

W s
ε in C1, as T → ∞

ϕs

Wu

N(qT ) −→

c := f(x)
qT := ϕ−T q

{f = c+ ε} ∞T T

{f = c− ε}

DDq

x

N

θsp

p

τ

qT

N+

Figure 1. Dynamical thickening (N, θ) of the local stable manifold (W s
ε , ϕ|).
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By [2], [3] we get a Lipschitz continuous (C0,1) disk bundle

N = W s
ε

⋃̇
T≥τ,q∈Su

ε

N(qT ), N(qT ) = ϕT
−1(Dq) ∩ {f ≤ c+ ε},

over ϕ−τW
u
ε which is C1,1 away from the ascending disk W s

ε . It is a key fact

that the fibers are diffeomorphic to W s
ε via C1 maps GTq : W s

ε → N(qT ) which

converge in C1 to the identity on W s
ε , as T →∞. Furthermore, the fibration is

forward flow invariant in the sense that ϕs maps a fiber N(qT ) into N(ϕsq
T ).

Figure 1 illustrates the fibration and the qualitative behavior of the forward

flow which is transverse to all fibers except the one over x which is invariant.

Conjugation by the diffeomorphism GTq provides on each fiber N(qT ) a copy θs
of the forward flow ϕs on W s

ε .

Now we reprove the cell attachment theorem.

Theorem (Milnor [1, I Theorem.3.2]). Let f : M → R be a smooth function,

and let x be a non-degenerate critical point with Morse index k. Setting f(x) = c,

suppose that f−1[c− ε, c+ ε] is compact and contains no critical point of f other

than x, for some ε > 0. Then, for all sufficiently small ε, the set M c+ε has the

homotopy type of M c−ε with a k-cell attached.

Proof. Fix a Riemannian metric on M . Without loss of generality assume

that −∇f is of compact support (1), so it generates a flow {ϕs}s∈R on M . Pick

constants ε > 0 small and τ > 0 large in order to meet the assumptions in [3] of

Theorem 5.1 (existence of the invariant fibration N = Nε,τ
x ) and Definition 5.6

(induced fiberwise semi-flow θ). Figure 2 illustrates the proof: First deform

N ⊂M c+ε along θ towards the flow selector S+ and Wu
ε , then deform along ϕ.

Definition of flow selector (hypersurface transverse to two flows). View

S+ := {ϕ−s◦t−(p)p | p ∈ S−} ⊂ N

as the graph of a function s ◦ t− over an open subset S− ⊂ f−1(c − ε) where

the coordinate lines are backward flow lines of ϕ starting at S− with coordinate

the backward time. By the flow box theorem this makes sense, as there is no

singularity of ∇f on S−. By the graph property ϕ will be transverse to S+.

By [3, Theorem. 1.2] there is a C0 time label function t : N → [τ,∞], of

class C1 as a function N× := N \ W s → [τ,∞), which assigns to each point

p the time it takes to reach the lower level set f−1(c − ε) under the gradient

flow ϕ. The hypersurface N+ := {p ∈ N ∩ f−1(c + ε) | t(p) > τ} is called

the entrance set of N and N+
× := N+ \W s its regularization; see Figure 1. As

each point of N+
× hits f−1(c − ε) under ϕ precisely once and transversely, the

(1) Otherwise, substitute for −ρ∇f where ρ : M → R is a smooth compactly supported

cut-off function with ρ ≡ 1 on the compact set K := f−1[c− ε, c+ ε].
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corresponding subset S−× ⊂ f−1(c − ε) is diffeomorphic to N+
× . The time label

function t− : S−× → (τ,∞) is defined by transferring the time labels of N+
× . It is

of class C1. Add the descending disk Suε to define

S− := S−× ∪̇Suε = {p ∈ f−1(c− ε) | N+ ∩ ϕRp 6= ∅} ∪̇Suε , S−×
ϕ∼= N+

× ,

as an open subset of f−1(c− ε); see Figure 2. Set t− =∞ on Suε .

The function

s : (τ,∞)→ (τ, 2τ), t 7→ 2τ − τ2/t,

is smooth and extends continuously to [τ,∞] so that s(τ) = τ with s′(τ) = 1

and s(∞) = 2τ with s′(∞) = 0; see Figure 2 for the corresponding graph S+.

Observe that critical points of s correspond precisely to tangencies of θ to the

hypersurface S+× := S+ \Wu. But s admits no critical points on (τ,∞), so θ is

transverse to S+× . This proves that S+× is a flow selector with respect to ϕ and θ.

A

f−1(c+ ε)

XX

X X

Wu

ϕτ

θ

τ 2τ ∞
ϕTA

ϕτ

ϕτ

∞

τ
2τ

S−
S+

Wu
ε

ϕ2τ

S

ϕTA
ϕTA

ϕTA

ϕτ

t−: A = Mc−ε

N0

N

W s
N+

∂A = f−1(c− ε)

Figure 2. Flow selector S+× = S+ \Wu with transverse flows θ and ϕ.

I. Strong deformation retraction. r : M c+ε →M c−ε∪Wu
ε ∪X via θ: Let

S be the region under the graph of S+, that is the region bounded by S− and S+

and the hypersurfaces indicated by dashed arrows in Figure 2. The arrows are

dashed to indicate that they do not belong to S, but to the closure S. Consider

the compact set X :=
(
f−1[c− ε, c+ ε] \N

)
∪ S whose boundary is given by

f−1(c− ε) and
(
f−1(c+ ε) \N+

)
∪S+. Deforming N \ S along the flow lines of

θ until the flow line hits either the flow selector S+ or the descending disk Wu
ε ,

while not moving the other points of M c+ε at all, defines the required strong

deformation retraction r. Continuity of r holds since θ is transverse to S+× and

S+ \ S+× = S+ ∩Wu
ε is reached under θ in infinite time just as is Wu

ε \ S.
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II. Homotopy equivalence. M c−ε ∪Wu
ε ∪X ∼M c−ε ∪Wu

ε via ϕ: Given

the pair of closed sets A := M c−ε ⊂ (X∪A), consider the entrance time function

TA : X ∪ A → [0,∞) which assigns to each point p ∈ X ∪ A the time it takes

to reach A under ϕ. To see that TA is well-defined note that A and X ∪ A are

both forward flow invariant under ϕ. Indeed ∂A is a level set along which −∇f
is downward, hence inward, pointing. The (topological) boundary of X ∪ A is(
f−1(c+ ε) \N+

)
∪ S+ and −∇f points inward along both pieces.

Given that ϕ is transverse to ∂X, the function TA is lower and upper semi-

continuous, hence continuous, because the subset A of X ∪ A is closed and

forward flow invariant, respectively; cf. [2, Proof of Theorem B]. Since X is

compact without critical points TA is bounded. The map h : [0, 1] × Z → Z

given by

h(λ, p) =


p if p ∈ A = M c−ε,

ϕλTA(p)p if p ∈ X,
ϕλ4τ2/t(p)p if p ∈Wu

ε \ S = ϕ−2τW
u
ε ,

is continuous as it is defined by three continuous parts which agree on overlaps:

TA = 0 on A ∩X and TA = 4τ2/t = 2τ on ϕ−2τS
u
ε . The inclusion ι : A ∪Wu

ε =:

B ↪→ Z := X ∪ A ∪Wu
ε and h1 := h(1, · ) : Z → B are reciprocal homotopy

inverses. Indeed ι ◦ h1 = h1 ∼ h0 = idZ and h1 ◦ ι = h1|B ∼ h0|B = idB . �

Part two of h1 unfortunately eliminates an outer piece of Wu
ε which we

recover by ϕ4τ2/t( · )( · ) : ϕ−2τW
u
ε →Wu

ε . So h1 does not restrict to the identity

on Wu
ε , hence h is not a deformation retraction of X ∪A ∪Wu

ε onto A ∪Wu
ε .

Perspectives. In the history of Morse theory discontinuity of the flow tra-

jectory end point map ϕ∞ obstructed to carry out, in a simple fashion, various

constructions suggested by geometry, for instance, to extend continuously the

inclusion map of an unstable manifold towards the closure. It will be a future

research project to investigate the role of dynamical thickening and flow selectors

in such cases. By [2] dynamical thickening can be defined in infinite dimensional

contexts.

Added in proof. Flow selector was added to correct the discontinuity in the

previous version. Flow selectors arose in cooperation with Pietro Majer (2015)

in two flavors — via Conley blocks and via carving. Here we use a version of the

Conley block technique.
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