Topological Methods in Nonlinear Analysis Volume 47, No. 2, 2016, 641–646 DOI: 10.12775/TMNA.2016.020

O2016 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University

## CLASSICAL MORSE THEORY REVISITED – I BACKWARD $\lambda$ -LEMMA AND HOMOTOPY TYPE

JOA WEBER

ABSTRACT. We introduce two tools, dynamical thickening and flow selectors, to overcome the infamous discontinuity of the gradient flow endpoint map near non-degenerate critical points. More precisely, we interpret the stable fibrations of certain Conley pairs (N, L), established in [2], as a *dynamical thickening of the stable manifold*. As a first application and to illustrate efficiency of the concept we reprove a fundamental theorem of classical Morse theory, Milnor's homotopical cell attachment theorem [1]. Dynamical thickening leads to a conceptually simple and short proof.

Consider a connected smooth manifold M of finite dimension n. Suppose  $f: M \to \mathbb{R}$  is a smooth function and x is a non-degenerate critical point of f of Morse index k, that is  $df_x = 0$  and in local coordinates the Hessian matrix  $(\partial^2 f/\partial x^i \partial x^j)_{i,j}$  at x has precisely k negative eigenvalues, counting multiplicities, and zero is not an eigenvalue. Set c := f(x) and assume for simplicity that the level set  $\{f = c\}$  carries no critical point other than x.

Morse theory studies how the topology of sublevel sets  $M^a = \{f \leq a\}$  changes when a runs through a critical value c. A fundamental tool is the concept of a flow, also called a 1-parameter group of diffeomorphisms of M. A common choice is the downward gradient flow  $\{\varphi_s\}_{s\in\mathbb{R}}$ , namely the one generated by the initial value problems  $\frac{d}{ds}\varphi_s = -(\nabla f) \circ \varphi_s$  with  $\varphi_0 = \mathrm{id}_M$ . Existence is

<sup>2010</sup> Mathematics Subject Classification. 37Dxx, 58E05.

Key words and phrases. Morse theory; homotopy type; flow selector.

Financial support: FAPESP grant 2013/20912-4, FAEPEX grant 1135/2013, and CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico – Brasil.

J. Weber

guaranteed, for instance, if the vector field is of compact support. Here  $\nabla f$  denotes the gradient vector field of f on M. It is uniquely determined by the identity  $df(\cdot) = g(\nabla f, \cdot)$  after fixing an auxiliary Riemannian metric g on M. Key properties of the downward gradient flow are that f decays along flow lines  $s \mapsto \varphi_s p$ , for  $p \in M$ , and that  $\nabla f$  is orthogonal to level sets. Consequently sublevel sets are forward flow invariant. As  $df_x = 0$  if and only if  $(\nabla f)_x = 0$ , any critical point x is a fixed point of the flow and non-degeneracy translates into hyperbolicity.

By non-degeneracy of x its unstable manifold  $W^u$  and descending disk  $W^u_{\varepsilon}$ ,

$$W^{u} = \left\{ p \in M \ \Big| \ \lim_{s \to -\infty} \varphi_{s} p = x \right\}, \qquad W^{u}_{\varepsilon} = W^{u} \cap \{ f \ge c - \varepsilon \},$$

are embedded open, respectively closed, disks in M of dimension  $k = \operatorname{ind}(x)$ ; actually an embedding  $W_{\varepsilon}^{u} \hookrightarrow M$  as a closed k-disk exists only for every sufficiently small  $\varepsilon > 0$  (use the Morse lemma). The boundary  $S_{\varepsilon}^{u} := \partial W_{\varepsilon}^{u}$  is called a descending sphere. Consider instead the limit  $s \to +\infty$  to get the stable manifold  $W^{s}$  and ascending disk  $W_{\varepsilon}^{s} = W^{s} \cap \{f \leq c + \varepsilon\}$ . They have analogous properties except that they are of codimension k.

In [2], see [3, Theorem. 5.1] for details in the present finite dimensional case, we implemented the structure of a disk bundle on the compact neighbourhood

 $N = N_x^{\varepsilon,\tau} := \{ p \in M \mid f(p) \le c + \varepsilon, \ f(\varphi_\tau p) \ge c - \varepsilon \}_{\text{connected component of } x}$ 

of x whenever  $\varepsilon > 0$  is small and  $\tau > 0$  is large. The fibers are codimension-k disks with boundaries in the upper level set  $\{f = c + \varepsilon\}$  and parametrized by their unique point of intersection, say  $q^T$ , with the unstable manifold. The fiber over x is  $W^s_{\varepsilon}$ . Each point of a fiber  $N(q^T)$  reaches the lower level set  $\{f = c - \varepsilon\}$  in time T under the downward gradient flow. Note that  $\{f = c - \varepsilon\}$  intersects  $W^u$  in the descending (k-1)-sphere  $S^u_{\varepsilon} = \partial W^u_{\varepsilon}$ . Choose a tubular neighborhood  $\mathcal{D}$  of  $S^u_{\varepsilon}$  in  $\{f = c - \varepsilon\}$  to get a family of codimension-k disks  $\mathcal{D}_q$ , one for each  $q \in S^u_{\varepsilon}$ .



FIGURE 1. Dynamical thickening  $(N, \theta)$  of the local stable manifold  $(W^s_{\varepsilon}, \varphi|)$ .