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HAMILTONIAN ELLIPTIC SYSTEMS WITH NONLINEARITIES

OF ARBITRARY GROWTH

José A. Cardoso — João M. do Ó — Everaldo Medeiros

Abstract. We study the existence of standing wave solutions for the fol-

lowing class of elliptic Hamiltonian-type systems:{
−~2∆u + V (x)u = g(v) in RN ,

−~2∆v + V (x)v = f(u) in RN ,

with N ≥ 2, where ~ is a positive parameter and the nonlinearities f, g are

superlinear and can have arbitrary growth at infinity. This system is in
variational form and the associated energy functional is strongly indefinite.

Moreover, in view of unboundedness of the domain RN and the arbitrary

growth of nonlinearities we have lack of compactness. We use a dual vari-
ational approach in combination with a mountain-pass type procedure to

prove the existence of positive solution for ~ sufficiently small.

1. Introduction

This paper focuses on the existence of positive solutions for the elliptic Hamil-

tonian system of the form

(1.1)

−~2∆u+ V (x)u = g(v) in RN ,
−~2∆v + V (x)v = f(u) in RN ,
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where N ≥ 2 and ~ is a positive parameter. System (1.1) arises when one looks

for standing wave solutions of the system of Schrödinger equations of the form

(1.2)



i~
∂ψ

∂t
= − ~2

2m
∆ψ +W (x)ψ −Hϕ(ψ,ϕ), t ≥ 0, x ∈ RN ,

i~
∂ϕ

∂t
= − ~2

2m
∆ϕ+W (x)ϕ−Hψ(ψ,ϕ), t ≥ 0, x ∈ RN ,

φ(x, t), ψ(x, t) ∈ C,

which models a lot of phenomena in quantum mechanics. Here i denotes the

imaginary unit, ~ is the Plank constant, m is the particle’s mass, W is a contin-

uous potential, and H : R2 → R is an C1-function such that

Huj

(
eiθu1, e

iθu2

)
= eiθHuj (u1, u2), for all uj , θ ∈ R,

and H(u, v) = G(v) + F (u), where F and G are the primitives of f and g,

respectively. Explicitly, we look for solutions of (1.2) in the form

(1.3) ψ1(t, x) = ei(E/~)tu(x) and ψ2(t, x) = ei(E/~)tv(x).

Substituting the ansaz (1.3) into (1.2) and setting V (x) = W (x) − E ≥ 0 leads

to the time-independent coupled nonlinear Schrödinger equations (1.1). Other

examples where system (1.1) appears are the study of nonlinear optics and Bose–

Einstein condensates (see [15]), models of chemotaxis and activation-inhibition,

and models of population dynamics (see [18]). Over the last few decades, sev-

eral authors have studied nonlinear elliptic problems of type (1.1) motivated by

applications and richness of methods used to obtain existence and properties of

solutions. For the physical motivation we refer to [5], [8], [18], [22], [26] and

references therein.

When u = v and f ≡ g, the system (1.1) reduces to the scalar equation

(1.4) −~2∆u+ V (x)u = f(u) in RN .

There are many papers that study equation (1.4) under several assumptions on

the potential V and on the growth of the nonlinearity f (see for example [1],

[2], [5], [7], [13], [16], [19], [26]). In [19], P. Rabinowitz proved the existence of

solution with minimal energy for (1.4), for small ~ > 0, when f has subcritical

growth and lim inf
|x|→∞

V (x) > inf
x∈RN

V (x) ≡ V0 > 0. O. Miyagaki [16] studied the

critical growth case, namely f(s) = λ|s|q−1s + |s|p−1s, where 1 < q < p ≤
(N+2)/(N−2), when the potential V is coercive. Another advance in the study

of (1.4) was obtained by M. del Pino and P. Felmer [13] assuming f has subcritical

growth and V has a strict local minimum in a bounded set Λ ⊂ RN , that is,

inf
x∈Λ̄

V (x) < inf
x∈∂Λ

V (x). In fact, they have found a family u~ of solutions for

equation (1.4) which concentrates around the local minimum of V (see also [7]).

Similar results were obtained by C. Alves et al. [2] when f has critical growth.
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In this paper we consider system (1.1) when the potential V is a radial

function locally Hölder continuous satisfying:

(V0) The set Z = {x ∈ RN : V (x) = 0} has nonempty interior.

(V1) There is A > 0 such that the level set GA = {x ∈ RN : V (x) < A} has

finite Lebesgue measure.

As we have already mentioned, we are looking for positive solutions of (1.1),

and so, as usual, we set f(s) = g(s) = 0 for all s ≤ 0 and assume:

(H1) f, g ∈ C1(R) and f(0) = f ′(0) = 0 = g(0) = g′(0);

(H2) there exists δ′ > 0 such that

0 < (1 + δ′)f(s)s ≤ f ′(s)s2 and 0 < (1 + δ′)g(s)s ≤ g′(s)s2, for all s > 0.

Remark 1.1. Note that condition (H2) implies the so-called Ambrosetti–

Rabinowitz condition, namely

(1.5)

0 < (2 + δ′)F (s) :=

∫ s

0

f(t) dt ≤ f(s)s, for all s > 0,

0 < (2 + δ′)G(s) :=

∫ s

0

g(t) dt ≤ g(s)s, for all s > 0.

We observe that system (1.1) is in the variational form. Taking H(u, v) =

F (u) +G(v) is natural to consider the associated functional defined formally by

(1.6) I~(u, v) =

∫
RN

(~2∇u∇v + V (x)uv) dx−
∫
RN

H(u, v) dx,

since (1.1) is the system of Euler–Lagrange equations associated to I~. It should

be mentioned that (1.1) is a Hamiltonian system since Hu(u, v) = f(u) and

Hv(u, v) = g(v). This type of systems has been subject of intense study in recent

years. We refer the reader to the articles by Ph. Clément et al. [9], J. Hulshof

and R. Van der Vorst [14], and B. Sirakov and S.H.M. Soares [25], and see also

D. de Figueiredo [10], [11], and references therein for a more recent and complete

description of the subject.

The study of system (1.1) by using variational methods presents three main

difficulties. First, the apparent lack of compactness in view of unboundedness

of the domain RN . This feature has been treated in the scalar case in many

papers, see for example, W. Strauss [26], H. Berestycki and P. Lions [5], P. Rabi-

nowitz [19] and M. del Pino and P. Felmer [13]. For elliptic systems, this feature

has been studied by D. de Figueiredo and J. Yang [12], and B. Sirakov [23]. Here,

we recover the lack of compactness by exploring geometric conditions on the po-

tential V and working in an appropriate subspace of radial symmetric functions

H1
rad(RN ). Second, the arbitrary growth of the nonlinearities f and g prevents

the functional (1.6) to be well-defined in the usual Sobolev space. Here, once

again, thanks to the behavior of the potential V , we can perform a truncation
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argument to obtain an auxiliary system (see Section 2) whose associated func-

tional is well-defined. Third, the associated functional (1.6) is strongly indefinite.

To handle this fact, we will apply a dual variational approach used by M. Ramos

and J. Yang [21], and by M. Ramos and H. Tavares [20]. See also [4], [6] and

references therein. In addition, we refer the reader to A. Ávila and J. Yang [3]

for a related dual formulation used for elliptic systems. We also mention that

assumptions similar to (V0)–(V1) were used recently in the papers [1], [8], [17],

[24], [25].

1.1. Statement of main results. In our first result we prove the existence

of solutions for (1.1) when nonlinearities have polynomial arbitrary growth at

infinity.

Theorem 1.2. Assume (V0)–(V1) and (H1)–(H2). Furthermore, suppose

that

(H3) There exist p, q > 2 + δ′ and l1, l2 > 0 such that

lim
s→+∞

f(s)

sp−1
= l1 and lim

s→+∞

g(s)

sq−1
= l2.

Then, there exists ~0 > 0 such that (1.1) has a weak solution

(u~, v~) ∈ H1
rad(RN )×H1

rad(RN ), for all ~ ∈ (0, ~0].

Moreover, u~, v~ ∈ C2(RN ) are positive and u~(x), v~(x)→ 0, as |x| → ∞.

Next, in complement to the above result, we consider nonlinearities satisfying

a kind of global condition but not necessarily polynomial at infinity.

Theorem 1.3. Assume (V0)–(V1) and (H1)–(H2). Moreover, suppose that

(H4) for all ε > 0, there exists Cε > 0 such that

f(s)t+ g(t)s ≤ ε(s2 + t2) + Cε(f(s)s+ g(t)t), for all s, t ∈ R.

Then there exists ~0 > 0 such that (1.1) has a solution

(u~, v~) ∈ H1
rad(RN )×H1

rad(RN ), for all ~ ∈ (0, ~0].

Furthermore, u~, v~ ∈ C2(RN ) are positive and u~(x), v~(x)→ 0, as |x| → ∞.

Remark 1.4. Note that hypothesis (H3) is a growth condition at infinity,

but there are no restrictions on the values of p and q, that is, it can be allowed

in the range subcritical, critical or supercritical. We recall that if N ≥ 3, the

notion of criticality for (1.1) is related with the so-called critical hyperbola

1

p
+

1

q
= 1− 2

N
,

where p, q > 1, see Ph. Clément et al. [9] and J. Hulshof and R. Van der

Vorst [14].
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Example 1.5. One can see that nonlinearities

(a) f(s) = sp−1 with p > 2 + δ′ and g(s) = sq−1 + sr−1 with q ≥ r > 2 + δ′,

satisfy conditions (H1)–(H3), and satisfy (H4) if and only if p = q. Furthermore,

one can see easily that the pairs of nonlinearities

(b) f(s) = sp−1 and g(s) = s2es, with p > 2 + δ′,

(c) f(s) = s2es and g(s) = s2es
2

,

(d) f(s) = s3es
3

and g(s) = s3es
4

,

satisfy hypotheses (H1)–(H2) and (H4), however, do not satisfy (H3).

This paper is organized as follows. In the next section we modify nonlinear-

ities f and g to get an auxiliary Hamiltonian-type system with the associated

energy functional defined in a subspace of H1
rad(RN )×H1

rad(RN ). In Section 3,

we set up a dual variational formulation in order to obtain a new functional

suitable to apply the minimax procedure. Section 4 is devoted to proving the

Palais–Smale condition to the energy functional associated to the auxiliary sys-

tem. Finally, in Section 5, we prove the existence of solutions for the auxiliary

system of Section 3 and present the proof of the main results.

2. Auxiliary elliptic system

Our approach is based on the minimax method. The natural space for study-

ing weak solutions of system (1.1) is H1
V (RN )×H1

V (RN ) where

H1
V (RN ) =

{
u ∈ H1(RN ) :

∫
RN

V (x)u2 dx <∞
}

and the associated functional is defined by

(2.1) I~(u, v) =

∫
RN

(~2∇u∇v + V (x)uv) dx−
∫
RN

(F (u) +G(v) dx.

Note that, under assumptions (V0)–(V1), we have the continuous embedding

(2.2) H1
V (RN ) ↪→ H1(RN ) ↪→ Lr(RN ),

for all 2 ≤ r ≤ 2∗ (see [24] for more details). Then, we see that I~ is well-defined

provided that |F (s)| ≤ C|s|p and |G(s)| ≤ C|s|q with 2 ≤ p, q ≤ 2∗. As men-

tioned by Ph. Clément et al. [9], and J. Hulshof and R. Van der Vorst [14],

this type of assumptions is too restrictive. To study system (1.1) when nonlin-

earities have arbitrary growth, one cannot use variational methods based on the

functional (2.1) directly, because it is not well-defined in general. To overcome

this technical difficulty, inspired by papers [1], [13], [20], we make a convenient

modification of nonlinearities f and g so that we can consider a new system that

has a associated functional which is well-defined. Explicitly, using (H1)–(H2),

given ε > 0, we consider a1 > 0 such that

f ′(a1) ≤ ε and f ′(s) ≥ f ′(a1), for all s ≥ a1,
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and we define the function

(2.3) f̃(s) =

f(s) if s ≤ a1,

B1s+ B̂1 if s ≥ a1,

where B1 = f ′(a1) and B̂1 = f(a1)− f ′(a1)a1.

Remark 2.1. Using the assumptions on the potential V we obtain that there

exist 0 < R1 < r1 < r2 < R2 and α > 0 such that

V (x) = 0, for all x ∈ Ar2r1 , and V (x) ≥ α > 0, for all x ∈ RN \AR2

R1
,

where Aρ2ρ1 denotes the annulus of radius 0 < ρ1 < ρ2, that is,

Aρ2ρ1 = {x ∈ RN : ρ1 < |x| < ρ2}.

Now we consider the auxiliary function f : RN × R→ R defined by

f(x, s) =

χAR2
R1

f(s) + (1− χ
A

R2
R1

)f̃(s) if s ≥ 0,

0 if s ≤ 0,

where χU denotes the characteristic function of the measurable set U ⊂ RN .

Similarly, we can find a2 > 0 and define the corresponding function g. The

primitives of f and g are respectively, F (x, s) =
∫ s

0
f(x, t) dt and G(x, s) =∫ s

0
g(x, t) dt.

Next, for an easy reference, we collect some properties of the function f

(resp. g).

Lemma 2.2. The function f is radially symmetric in x, that is, f(|x|, s) =

f(|y|, s) if |x| = |y|. Moreover, f satisfies:

(a) f(x, s) = f(s) = o(s), near the origin, uniformly in x ∈ RN ;

(b) f(x, s) ≤ f(s) and ∂f
∂s (x, s) ≥ 0 in RN × [0,∞);

(c) (c1) For all (x, s) ∈ AR2

R1
× (0,∞) ∪ (RN\AR2

R1
)× (−∞, a1],

(2.4) (1 + δ′)f(x, s)s ≤ ∂f

∂s
(x, s)s2.

(c2) For all (x, s) ∈ RN \AR2

R1
× (0,∞),

(2.5) f(x, s)s ≤ ∂f

∂s
(x, s)s2.

(c3) Moreover, for all (x, s) ∈ RN\AR2

R1
× (0,∞),

(2.6) 2F (x, s) ≤ f(x, s)s ≤ α

k
s2 ≤ 1

k
V (x)s2,

where k ≥ 1 and α > 0 is given in condition (V1).

(d) F ( · , u) ∈ L1(RN ) provided that u ∈ H1
rad(RN ).
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Proof. The proof of items (a)–(c) is an easy consequence of the definition

of f . To prove (d), if u ∈ H1
rad(RN ), by the Strauss lemma (see [26]),

(2.7) |u(x)| ≤ C|x|(1−N)/2‖u‖H1(RN ), for all x ∈ RN \ {0}.

Therefore,

|u(x)| ≤ C|R1|(1−N)/2‖u‖H1(RN ) = c1, for all x ∈ AR2

R1
.

From (2.6), it follows that∫
RN

F (x, u) dx ≤ max
s∈[0,c1]

F (s)|AR2

R1
|+
∫
RN\AR2

R1

α

k
u2 dx <∞,

where |U | denotes the Lebesgue measure of the measurable set U ⊂ RN . �

Now we consider the following auxiliary Hamiltonian system:

(2.8)

−~2∆u+ V (x)u = g(x, v) in RN ,
−~2∆v + V (x)v = f(x, u) in RN .

In order to study system (2.8) variationally, we consider the subspace ofH1
rad(RN)

H1
V,rad(RN ) =

{
u ∈ H1

rad(RN ) :

∫
RN

V (x)u2 dx <∞
}
,

which is a Hilbert space when endowed with the inner product

〈u, v〉 =

∫
RN

[∇u∇v + V (x)uv] dx, u, v ∈ H1
V,rad(RN ),

and its corresponding norm is ‖u‖ = 〈u, u〉1/2. Note that, under assumptions

(V0)–(V1), we have the continuous embedding

H1
V,rad(RN ) ↪→ H1

rad(RN ) ↪→ Lp(RN ),

for all 2 ≤ p < ∞, if N = 2, and 2 ≤ p ≤ 2∗ = 2N/(N − 2), if N ≥ 3. We

also recall that, due to W. Strauss [26], the last embedding is compact for all

2 < p <∞, if N = 2, and 2 < p < 2∗, if N ≥ 3. Given ~ > 0, we define

〈u, v〉~ =

∫
RN

[
~2∇u∇v + V (x)uv

]
dx, u, v ∈ H1

V,rad(RN ),

and Erad := H1
V,rad(RN )×H1

V,rad(RN ) endowed with the inner product

〈(u, v), (φ, ϕ)〉~ = 〈u, φ〉~ + 〈v, ϕ〉~, u, v, φ, ϕ ∈ H1
V,rad(RN ),

and its corresponding norm is ‖(u, v)‖~ = (‖u‖2~ + ‖v‖2~)1/2.

In view of Lemma 2.2 system (2.8) is variational, and the associated func-

tional I~ : Erad → R,

(2.9) I~(u, v) = 〈u, v〉~ −
∫
RN

(F (x, u) +G(x, v))dx
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is well-defined. Note that formally the Euler–Lagrange equations associated with

I~ are precisely the equations in (2.8). Furthermore, I~ ∈ C2(Erad,R) and the

first derivative is given by

(2.10) I ′~(u, v)(φ, ϕ) = 〈u, ϕ〉~ + 〈v, φ〉~ −
∫
RN

[f(x, u)φ+ g(x, v)ϕ] dx,

for all φ, ϕ ∈ H1
V,rad(RN ). The critical points of the functional I~ correspond to

nonnegative weak solutions of (2.8).

Remark 2.3. For simplicity, in the next two sections, we will assume that

~ = 1 and we will use the following notations: 〈 · , · 〉 = 〈 · , · 〉1, ‖ · ‖ = ‖ · ‖1 and

I = I1.

3. Reduced functional

In this section, inspired by the approach of papers [6], [20], [21] allowing to

overcome the difficulty that the associated functional I is strongly indefinite, we

introduce a reduced functional. Explicitly, fixed w ∈ H1
V,rad(RN ), we consider

the functional F : H1
V,rad(RN )→ R defined by

F(ψ) = I(w + ψ,w − ψ).

Proposition 3.1. The functional F is bounded above and there exists a uni-

que ψw ∈ H1
V,rad(RN ) such that

I(w + ψw, w − ψw) = sup
ψ∈H1

V,rad(RN )

I(w + ψ,w − ψ).

Proof. Firstly, we observe that

F(ψ) = ‖w‖2 − ‖ψ‖2 −
∫
RN

[F (x,w + ψ) +G(x,w − ψ)] dx,

F ′′(ψ)(ϕ, φ) = −2〈ϕ, φ〉 −
∫
RN

[f ′(x,w + ψ) + g′(x,w − ψ)]ϕφdx,

which together with Lemma 2.2 implies

F ′′(ψ)(ϕ,ϕ) < 0, for all ψ,ϕ ∈ H1
V,rad(RN ), ϕ 6= 0.

Thus, F is a strictly concave functional. Furthermore, one can see that F is

weakly upper semi-continuous, so F achieves the maximum at a single point

ψ ∈ H1
V,rad(RN ). �

Remark 3.2. As a consequence of Proposition 3.1, for each w ∈ H1
V,rad(RN )

there is a unique ψw ∈ H1
V,rad(RN ) such that

(3.1) I ′(w + ψw, w − ψw)(φ,−φ) = 0, for all φ ∈ H1
V,rad(RN ).

In fact,

I ′(w + ψw, w − ψw)(φ,−φ) = −F ′(ψw)(φ), for all φ ∈ H1
V,rad(RN ).
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Moreover, ψw is the unique weak solution of the elliptic equation

(3.2) −2∆ψ + 2V (x)ψ = −f(x,w + ψ) + g(x,w − ψ) in RN .

Consequently, the map Φ: H1
V,rad(RN ) → H1

V,rad(RN ), Φ(w) = ψw is well-

defined.

Proposition 3.3. The map Φ belongs to C1(H1
V,rad(RN ), H1

V,rad(RN )).

Proof. Let (Erad)− := {(ψ,−ψ) : ψ ∈ H1
V,rad(RN )} and consider the maps:

τ : Erad × (Erad)− → Erad, ((u, v), (ψ,−ψ)) 7→ (u, v) + (ψ,−ψ),

I ′ : Erad → (Erad)′ ' Erad,

P : Erad → (Erad)−, (u, v) 7→
(
u− v

2
,−u− v

2

)
.

Thus, we can define the map G : Erad× (Erad)− → (Erad)−, G = P ◦ I ′ ◦ τ . Note

that G is C1 and

D2G((u, v), (ψ,−ψ))(φ,−φ) =P ◦ I ′′(τ((u, v), (ψ,−ψ)))(φ,−φ)

=P ◦ I ′′((ζ, η))(φ,−φ),

where (ζ, η) = (u, v) + (ψ,−ψ). Identifying (Erad)− = ((Erad)−)′ and defining

T = P ◦ I ′′((ζ, η)), we obtain

T (φ,−φ)(ϕ,−ϕ) = −2〈φ, ϕ〉 −
∫
RN

[f ′(x, ζ) + g′(x, η)]ϕφdx,

for all ϕ, φ ∈ H1
V,rad(RN ). We claim that T is one-to-one. In fact, if T (φ,−φ) =

(0, 0) then T (φ,−φ)(φ,−φ) = 0, which together with Lemma 2.2 implies

2‖φ‖2 = −
∫
RN

[f ′(x, ζ) + g′(x, η)]φ2 dx ≤ 0,

and so φ = 0. On the other hand, we have

(T + Id)(φ,−φ)(ϕ,−ϕ) = −
∫
RN

[f ′(x, ζ) + g′(x, η)]φϕdx,

where Id: (Erad)− → ((Erad)−)′, Id((φ,−φ))(ϕ,−ϕ) = 2〈φ, ϕ〉, for all φ, ϕ ∈
H1
V,rad(RN ). We claim that (T + Id) is a compact operator. For that we write

T + Id = S1 + S2, where S1, S2 : (Erad)− → (Erad)− = ((Erad)−)′ are defined by

S1(φ,−φ)(ϕ,−ϕ) =

∫
RN

f ′(x, ζ)φϕdx,

S2(φ,−φ)(ϕ,−ϕ) =

∫
RN

g′(x, η)φϕdx.

Using the Strauss lemma, we obtain

|ζ(x)| ≤ C‖ζ‖H1(RN )|R1|(1−N)/2 =: c2 in AR2

R1
.
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We can consider M2 = max
s∈[0,c2]

f ′(s) and M3 = max
s∈[0,a1]

f ′(s), a1 defined by (2.3).

If (φn,−φn) ⇀ (φ0,−φ0) in (Erad)− we have∫
RN

f ′(x, ζ)|(φn − φ0)ϕ| dx ≤ (M2 +M3 +B1)

∫
RN

|(φn − φ0)ϕ| dx,

which implies

‖S1(φn,−φn)− S1(φ0,−φ0)‖((Erad)−)′ → 0.

Similarly, we can prove that

‖S2(φn,−φn)− S2(φ0,−φ0)‖((Erad)−)′ → 0.

This proves that T + Id is a compact operator. From the Fredholm alternative

we conclude that T is an isomorphism. Finally, from (3.1), it follows that

G((w,w), (Φ(w),−Φ(w))) = P ◦ I ′((w + Φ(w), w − Φ(w))) = 0,

for all w ∈ H1
V,rad(RN ). Then, by using the Implicit function theorem, we

conclude that Φ is C1. �

By Proposition 3.1, we can consider the reduced functional J :H1
V,rad(RN )→R

defined by

J(w) = I(w + ψw, w − ψw)

= ‖w‖2 − ‖ψw‖2 −
∫
RN

[F (x,w + ψw) +G(x,w − ψw)] dx.

Using the chain rule and (3.1), we obtain

J ′(w)(φ) = I ′(w + ψw, w − ψw)(φ, φ), for all φ ∈ H1
V,rad(RN ).

Setting KJ := {w ∈ H1
V,rad(RN ) : J ′(w) = 0} and KI := {(u, v) ∈ Erad :

I ′(u, v) = 0}, we have the following result (see [6, Proposition 2]).

Proposition 3.4. The map h : KJ → KI defined by h(w) = (w+ψw, w−ψw)

is a homeomorphism between critical points of J and critical points of I whose

inverse h−1 : KI → KJ is given by h−1(u, v) = (u+ v)/2.

In view of the previous proposition, we will obtain the existence of solutions

for the modified system (2.8) via critical points of the functional J . The next

result shows that J has the mountain-pass geometry.

Lemma 3.5. Assume (V0)–(V1) and (H1)–(H2) hold. Then, the functional

J satisfies:

(a) there exist β, ρ > 0 such that J(w) ≥ β for ‖w‖ = ρ;

(b) there exists e ∈ H1
V,rad(RN ), with ‖e‖ > ρ, such that J(e) < 0.
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Proof. (a) From (H2), given ε > 0, there exists δ > 0 such that, for all

x ∈ RN ,

F (x, s) ≤ ε

2
s2 and G(x, s) ≤ ε

2
s2, for all |s| ≤ δ.

From (2.7) we can choose ρ sufficiently small such that for ‖w‖ ≤ ρ,∫
A

R2
R1

F (x,w) dx ≤ ε

2

∫
A

R2
R1

w2 dx and

∫
A

R2
R1

G(x,w) dx ≤ ε

2

∫
A

R2
R1

w2 dx.

Since J(w) = I(w + ψw, w − ψw) ≥ I(w,w), by (2.6), we obtain

J(w) ≥‖w‖2 −
∫
RN

[F (x,w) +G(x,w)] dx

≥‖w‖2 − ε
∫
A

R2
R1

w2 dx− 1

k

∫
RN\AR2

R1

V (x)w2 dx

≥
∫
RN

[
|∇w|2 +

(
1− 1

k

)
V (x)w2

]
dx− ε

∫
A

R2
R1

w2 dx.

Now, using that ∫
A

R2
R1

w2 dx ≤ C
∫
RN

[
|∇w|2 + V (x)w2

]
dx,

for some C > 0, we conclude that J(w) ≥ C1‖w‖2, which proves (a).

In order to prove (b) we consider φ ∈ C∞0 (AR2

R1
) such that φ(x) ≥ a0 > 0 for

all x ∈ K, where K ⊂ supp(φ). For t ≥ 0, it follows from (1.5) that

J(tφ) ≤ t2‖φ‖2 −
∫
K

F (x, tφ+ ψtφ) dx−
∫
K

G(x, tφ− ψtφ) dx

≤ t2‖φ‖2 − C
(∫

K

((tφ+ ψtφ)+)2+δ′ dx+

∫
K

((tφ− ψtφ)+)2+δ′ dx

)
+ C,

for some constants C,C > 0. Since

(2tφ)2+δ′ ≤ 22+δ′
[
((tφ+ ψtφ)+)2+δ′ + ((tφ− ψtφ)+)2+δ′

]
,

we get

J(tφ) ≤ t2‖φ‖2 − t2+δ′C

∫
K

φ2+δ′ dx+ C,

which implies (b) and this completes the proof. �

4. Palais–Smale condition

In this section we study the Palais–Smale condition for the functional I =

I1 : Erad → R defined in (2.9) (see Remark 2.3). Let X be a Banach space,

I ∈ C1(X,R) and c ∈ R. We recall that a functional I satisfies the (PS)c
condition if any sequence (wn)n ⊂ X (called a (PS)c sequence) such that

I(wn)→ c and ‖I ′(wn)‖X′ → 0,

has a convergent subsequence.



604 J.A. Cardoso — J.M. do Ó — E. Medeiros

Remark 4.1. One can see that if I satisfies the (PS)c condition then J also

satisfies the (PS)c condition.

Lemma 4.2. Assume (V0)–(V1) and (H1)–(H2) hold. Under condition (H3)

or (H4) all (PS)c sequences for I are bounded.

Proof. First, assume (H3). Invoking (2.10), we get

(4.1) ‖un‖2 + ‖vn‖2 =

∫
RN

[f(x, un)vn + g(x, vn)un] dx+ εn‖(un, vn)‖,

where εn denotes a sequence of positive numbers such that εn → 0 as n → 0.

Since

2I(un, vn)− I ′(un, vn)(un, vn) =

∫
RN

(f(x, un)un − 2F (x, un)) dx

+

∫
RN

(g(x, vn)vn − 2G(x, vn)) dx,

using (2.4)–(2.6), we conclude that∫
A

R2
R1

(f(x, un)un + g(x, vn)vn) dx ≤ 2 + δ′

δ′
|2I(un, vn)− I ′(un, vn)(un, vn)|

≤C + Cεn(‖(un, vn)‖).

From (H1) and (H3), given ε > 0, there exist δε > 0 and Cε > 0 such that

f(s) ≤ εs, 0 ≤ s ≤ δε, and f(s) ≤ Cεsp−1 s ≥ δε.

Now, using (2.7), we have∫
A

R2
R1
∩{un≥δε}

f(un)vn dx

≤
(∫

A
R2
R1
∩{un≥δε}

f(un)p/(p−1) dx

)(p−1)/p(∫
A

R2
R1

|vn|p dx
)1/p

≤C‖vn‖
(∫

A
R2
R1
∩{un≥δε}

f(un)f(un)1/(p−1) dx

)(p−1)/p

≤Cε‖vn‖
(∫

A
R2
R1
∩{un≥δε}

f(un)un dx

)(p−1)/p

,

for some Cε > 0. Then, we obtain

(4.2)

∫
A

R2
R1

f(x, un)vn dx

≤ ε
∫
A

R2
R1

(u2
n + v2

n) dx+ Cε‖(un, vn)‖(C + εn(‖(un, vn)‖))(p−1)/p.
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Similarly, we have

(4.3)

∫
A

R2
R1

g(x, vn)un dx

≤ ε
∫
A

R2
R1

t(u2
n + v2

n) dx+ Cε‖(un, vn)‖(C + εn‖(un, vn)‖)(q−1)/q.

From (2.6), we get

(4.4)

∫
RN\AR2

R1

(f(x, un)vn + g(x, vn)un) dx ≤ 1

k

∫
RN\AR2

R1

V (x)(u2
n + v2

n) dx.

Thus, from (4.1)–(4.4), we deduce that

‖un‖2 + ‖vn‖2 ≤
(

2Cε+
1

k

)
(‖un‖2 + ‖vn‖2) + (2Cε + εn)‖(un, vn)‖

+ Cεεn‖(un, vn)‖(p−1)/p+1 + Cεεn‖(un, vn)‖(q−1)/q+1.

Considering ε > 0 and k > 1 such that (2Cε + 1/k) < 1, since (2p − 1)/p < 2

and (2q − 1)/q < 2, we conclude that (un, vn) is bounded in Erad.

Now assume that (H4) holds. Given ε > 0, from (4.1) and (H4) we have

‖un‖2 + ‖vn‖2 ≤ ε
∫
A

R2
R1

(u2
n + v2

n) dx+ Cε

∫
A

R2
R1

(f(x, un)un + g(x, vn)vn) dx

+

∫
RN\AR2

R1

(f(x, un)vn + g(x, vn)un) dx+ εn‖(un, vn)‖.

Using (4.2) and (4.4), we obtain

‖un‖2 + ‖vn‖2 ≤
(

2Cε+
1

k

)
(‖un‖2 + ‖vn‖2) + Cε + Cεεn‖(un, vn)‖.

Choosing ε > 0 and k > 1 such that (2Cε+ 1/k) < 1, we conclude that (un, vn)

is bounded in Erad. �

Following the paper of M. del Pino and P. Felmer [13], in order to obtain the

Palais–Smale condition, the next result plays an important role.

Lemma 4.3. Assume (V0)–(V1) and (H1)–(H2) hold. Let (un, vn)n ⊂ Erad

be a bounded sequence such that

‖I ′(un, vn)‖(Erad)′ → 0, n→∞.

Then, given ε > 0, there exists R0 > 0 such that for all R > R0 it holds

lim sup
n→∞

∫
{|x|>R}

[
|∇un|2 + V (x)u2

n

]
dx < ε (respectively, vn).
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Proof. Let R > 4R2 (R2 from hypotheses (V1)), consider a cut-off function

ηR ∈ C∞0 (RN , [0, 1]) defined by

ηR(x) =

0 if |x| ≤ R/2,
1 if |x| ≥ R,

and |∇ηR| ≤ c/R, for some c > 0. Here we will use the following notation:

‖un‖2ηR =

∫
RN

[|∇un|2 + V (x)u2
n]ηR dx (respectively, vn).

Since (un, vn) is bounded in Erad, we have I ′(un, vn)(ηRvn, ηRun) = on(1),

that is,

(4.5) ‖un‖2ηR + ‖vn‖2ηR =

∫
RN

(f(x, un)vn + g(x, vn)un)ηR dx

−
∫
RN

un∇un · ∇ηR −
∫
RN

vn∇vn · ∇ηR + on(1).

From (2.6), we conclude that∫
RN

(f(x, un)vn + g(x, vn)un)ηR dx ≤
1

k
(‖un‖2ηR + ‖vn‖2ηR).

Then, by (4.5), we obtain(
1− 1

k

)
(‖un‖2ηR + ‖vn‖2ηR) ≤ c

R
(‖un‖L2‖∇un‖L2 + ‖vn‖L2‖∇vn‖L2) + on(1).

Since (un, vn) is bounded, choosing R sufficiently large we obtain the desired

result. �

Remark 4.4. One can see that if (un, vn)n ⇀ (u, v) weakly in Erad so that

‖I ′(un, vn)‖ = on(1) then (u, v) is a critical point of I.

Lemma 4.5. Assume (V0)–(V1), (H1)–(H2) and (H3) (or (H4)) hold. Then

the functional I satisfies the (PS)c condition for all c ∈ R.

Proof. Let (un, vn) ⊂ Erad be a (PS)c sequence for the functional I. By

Lemma 4.2, we have ‖(un, vn)‖ ≤ C. Then, up to a subsequence,

un ⇀ u and vn ⇀ v in H1
V,rad(RN ).

Since I ′(un, vn)(vn, un) = on(1) = I ′(un, vn)(v, u) and I ′(u, v)(vn, un) = 0 =

I ′(u, v)(v, u), we obtain

(4.6) ‖un − u‖2 + ‖vn − v‖2 =

∫
RN

(f(x, un)− f(x, u))vn dx

+

∫
RN

(g(x, vn)− g(x, v))un dx+

∫
RN

(f(x, u)− f(x, un))v dx

+

∫
RN

(g(x, v)− g(x, vn))u dx+ on(1).
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We claim that∫
RN

(f(x, un)− f(x, u))vn dx→ 0, n→∞.

In fact, we consider a ball BR = BR(0) with radius sufficiently large such that

AR2

R1
⊂ BR. Then, using (2.6) and Lemma 4.3, there exists R > 0 sufficiently

large such that

(4.7)

∫
RN\BR

(f(x, un)− f(x, u))vn dx = on(1).

The Sobolev embedding together with (2.6) implies∫
BR\A

R2
R1

(f(x, un)− f(x, u))2 dx→ 0, n→∞.

Since (vn) is bounded in L2(RN ), we obtain

(4.8)

∫
BR\A

R2
R1

(f(x, un)− f(x, u))vn dx = on(1).

Moreover, using (2.7) and Lemma 4.2, we have |un(x)| ≤ C1 and |vn(x)| ≤ C2,

for almost every x ∈ AR2

R1
, for some constants C1, C2 > 0, and we conclude that

(4.9)

∫
A

R2
R1

(f(x, un)− f(x, u))vn dx = on(1).

Hence, by (4.7)–(4.9), the claim is proved. Finally, an analogous claim with

similar terms of (4.6) holds. Therefore, the proof of the lemma is complete. �

5. Proof of Theorems 1.2 and 1.3

Firstly we will prove the existence of solution for the modified system (2.8).

In fact we will show that this solution is also a solution of (1.1). For each ~ > 0

and w ∈ H1
V,rad(RN ), we get

J~(w) = I~(w + ψw, w − ψw)

= ‖w‖2~ − ‖ψw‖2~ −
∫
RN

[F (x,w + ψw) +G(x,w − ψw)] dx.

Moreover, for all ϕ ∈ H1
V,rad(RN ), we have

J ′~(w)(ϕ) = I ′~(w + ψw, w − ψw)(ϕ,ϕ)

= 2〈w,ϕ〉~ −
∫
RN

[f(x,w + ψw) + g(x,w − ψw)]ϕdx.

Proposition 5.1. Assume (V0)–(V1), (H1)–(H2) and (H3) (or (H4)) hold.

Then, for each ~ > 0, the functional J~ possesses a nontrivial critical point

w~ ∈ H1
rad(RN ) such that

(5.1) J~(w~) = c~ = inf
γ∈Γ

max
t∈[0,1]

J~(γ(t)) > 0,
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where Γ = {γ ∈ C([0, 1], H1
V,rad(RN )) : γ(0) = 0 and J~(γ(1)) < 0}. Moreover,

(u~, v~) := (w~ +ψw~ , w~−ψw~) is a C2(RN ) positive solution of (2.8) such that

I~(u~, v~) = c~.

Proof. Invoking Lemmas 3.5, 4.5 and the mountain-pass theorem, we obtain

a critical point w~ of J~. In view of Proposition 3.4 we obtain that (w~+ψw~ , w~−
ψw~) is a critical point of I~. Denoting u~ = w~ + ψw~ and v~ = w~ − ψw~ and

considering u−~ = min{0, u~}, we have I ′~(u~, v~)(0, u−~ ) = 0, that is,

−
∫
RN

(~2|∇u−~ |
2 + V (x)(u−~ )2) dx =

∫
RN

g(x, v~)u−~ dx ≥ 0.

Therefore, u~ ≥ 0. Similarly, we obtain v~ ≥ 0 and, using the maximum princi-

ple, we conclude that u~ and v~ are positive. �

Remark 5.2. Using standard elliptic regularity, one can see that w~, ψw~ ∈
C2(RN ), u~ = w~ + ψw~ and v~ = w~ − ψw~ are positive. Indeed, adding the

equations of (1.1) we obtain

(5.2) −~2∆w~ + V (x)w~ = f(x, u~) + g(x, v~) in RN .

Then, we can apply classical regularity theory to equations (3.2) and (5.2) using

properties of f and g.

Lemma 5.3. The minimax level c~ defined in (5.1) satisfies

c~ = o(~2), as ~→ 0.

Proof. Consider φ ∈ C∞0,rad(Ar2r1) such that φ(x) ≥ 0, for all x ∈ RN ,

and φ(x) ≥ a0 > 0, for all x ∈ K, where K ⊂ supp(φ) has positive measure.

Following the same arguments as in the proof of Lemma 3.5, we obtain J~(tφ)→
−∞ as t→∞. Thus,

c~ ≤ max
t≥0

J~(tφ) = J~(t~φ),

for some t~ > 0. Since V (x) = 0, for all x ∈ Ar2r1 , we deduce that

(5.3) c~ ≤ J~(t~φ) ≤ t2~
∫
A

r2
r1

~2|∇φ|2 dx.

On the other hand, from J ′~(t~φ)(φ) = 0, we have

t~

∫
A

r2
r1

~2|∇φ|2 dx =

∫
RN

[f(x, t~φ+ ψt~φ) + g(x, t~φ− ψt~φ)]φdx(5.4)

≥
∫
K

[f(t~φ+ ψt~φ) + g(t~φ− ψt~φ)]φdx.
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Now observe that either there exists K1 ⊂ K, with positive measure, such that

ψt~φ ≥ 0 in K1, or there exists K2 ⊂ K, also with positive measure, such that

ψt~φ ≤ 0 in K2. In the first case, since f(s) is increasing for s > 0, we obtain

t~

∫
A

r2
r1

~2|∇φ|2 dx ≥
∫
K1

f(t~φ+ ψt~φ)φdx ≥
∫
K1

f(t~φ)φdx ≥ a2
0

∫
K1

f(t~φ)

φ
dx.

Now, since f(s)/s also is increasing and lim
s→∞

f(s)/s = ∞, we conclude that

t~ → 0 as ~ → 0. On the other hand, if ψt~φ ≤ 0 in K2 then −ψt~φ ≥ 0 in K2.

Since g(s) is increasing, by (5.4), we have that

t~

∫
A

r2
r1

~2|∇φ|2 dx ≥
∫
K2

g(t~φ− ψt~φ)φdx ≥ a2
0

∫
K2

g(t~φ)

φ
dx.

Thus, we obtain that t~ → 0 as ~ → 0. Therefore, by (5.3), the proof is

complete. �

Lemma 5.4. Assume (V0)–(V1) and (H1)–(H3) hold. If (u~, v~) = (w~+ψw~ ,

w~ − ψw~) is a solution of (2.8), obtained in Proposition 5.1, then

‖(u~, v~)‖H1×H1 = o(~r), as ~→ 0,

where r = min{(p− 2)/p, (q − 2)/q} > 0.

Proof. Note that

(5.5) ‖u~‖2~ + ‖v~‖2~ =

∫
RN

(f(x, u~)v~ + g(x, v~)u~) dx

and

2I~(u~, v~)− I ′~(u~, v~)(u~, v~) =

∫
RN

(f(x, u~)u~ − 2F (x, u~)) dx

+

∫
RN

(g(x, v~)v~ − 2G(x, v~)) dx.

From (2.6), we obtain∫
A

R2
R1

(f(x, u~)u~ − 2F (x, u~)) dx+

∫
A

R2
R1

(g(x, v~)v~ − 2G(x, v~)) dx ≤ 2c~.

By (2.4)–(2.6), we deduce that

(5.6)

∫
A

R2
R1

(f(x, u~)u~ + g(x, v~)v~) dx ≤ 2 + δ′

δ′
2c~.

Now, analogously to (4.2), we have

(5.7)

∫
A

R2
R1

f(x, u~)v~ dx ≤ ε
∫
A

R2
R1

(u2
~ + v2

~) dx+ Cc
(p−1)/p
~ ‖(u~, v~)‖~,

and

(5.8)

∫
A

R2
R1

g(x, v~)u~ dx ≤ ε
∫
A

R2
R1

(u2
~ + v2

~) dx+ Cc
(q−1)/q
~ ‖(u~, v~)‖~,
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where C = C(ε) > 0. Then, using (2.6), (5.5) and (5.7)–(5.8), we conclude that

‖u~‖2~ + ‖v~‖2~ ≤
(

2Cε+
1

k

)
(‖u~‖2~ + ‖v~‖2~)

+ 2Cε‖(u~, v~)‖~
(
c
(p−1)/p
~ + c

(q−1)/q
~

)
.

Considering ε > 0 and k > 1 such that (2Cε+ 1/k) < 1/2, we obtain

~‖(u~, v~)‖H1×H1 ≤ C1‖(u~, v~)‖~ ≤ 4C̃
(
c
(p−1)/p
~ + c

(q−1)/q
~

)
.

Applying Lemma 5.3, we obtain the desired result. �

Lemma 5.5. Assume (V0)–(V1), (H1)–(H2) and (H4) hold. If (u~, v~) =

(w~ + ψw~ , w~ − ψw~) is a solution of (2.8), obtained in Proposition 5.1, then

‖(u~, v~)‖H1×H1 = o~(1), as ~→ 0.

Proof. From (5.5) and (H4), given ε > 0, there exists Cε > 0 such that

‖u~‖2~ + ‖v~‖2~ ≤ ε
∫
A

R2
R1

(u2
~ + v2

~) dx+ Cε

∫
A

R2
R1

(f(x, u~)u~ + g(x, v~)v~) dx∫
RN\AR2

R1

(f(x, u~)v~ + g(x, v~)u~) dx.

Using (2.6) and (5.6), we get

‖u~‖2~ + ‖v~‖2~ ≤
(
Cε+

1

k

)
(‖u~‖2~ + ‖v~‖2~) + 2Cε

2 + δ′

δ′
c~.

Now, choosing ε > 0 and k > 1 such that (Cε + 1/k) < 1/2 and assuming that

~ ≤ 1, we obtain

~2

2
(‖u~‖2H1 + ‖v~‖2H1) ≤ 1

2
(‖u~‖2~ + ‖v~‖2~) ≤ C̃c~,

where C̃ > 0 is independent of ~. Applying Lemma 5.3, we complete the proof.�

Proof of Theorem 1.2. For each ~ > 0, we consider (u~, v~) a solution of

(2.8), obtained in Proposition 5.1. By (2.7), we have

(5.9) u~(x) ≤ C‖u~‖H1

|x|(N−1)/2
and v~(x) ≤ C‖v~‖H1

|x|(N−1)/2

almost everywhere in RN \ {0}. We denote

m~ = max

{
max

x∈∂AR2
R1

u~(x), max
x∈∂AR2

R1

v~(x)

}
.

From (5.9) and Lemma 5.4, it follows that lim~→0m~ = 0. Thus, given a > 0,

let ~0 > 0 be such that m~ < a/2, for all ~ ∈ (0, ~0]. Then, (u~ + v~ − a)+ = 0

in ∂AR2

R1
. Since u~ + v~ satisfies the equation

−~2∆(u+ v) + V (x)(u+ v) = f(x, u) + g(x, v) in RN ,
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we obtain∫
D

~2|∇(u~ + v~ − a)+|2 dx =

∫
D

[−V (x)u~ + f(x, u~)](u~ + v~ − a)+ dx

+

∫
D

[−V (x)v~ + g(x, v~)](u~ + v~ − a)+ dx,

where D = RN \AR2

R1
. By (2.6), we have

−V (x)s+ f(x, s) ≤ 0 and − V (x)s+ g(x, s) ≤ 0,

for all x ∈ RN \AR2

R1
and s ≥ 0. Thus,∫

D

~2|∇(u~ + v~ − a)+|2 dx ≤ 0.

Hence, u~ + v~ − a ≤ 0 in RN \ AR2

R1
. Now, choosing a = min{a1, a2}, where a1

and a2 were defined in (2.3), we conclude that u~ ≤ a1 and v~ ≤ a2 in RN \AR2

R1
.

Then,

f(x, u~) = f(u~) and g(x, v~) = g(v~) in RN \AR2

R1
.

Therefore, (u~, v~) is a solution of (1.1) for all ~ ∈ (0, ~0]. �

Proof of Theorem 1.3. The proof is analogous to the proof of Theo-

rem 1.2 with Lemma 5.4 replaced by Lemma 5.5. �
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