
Topological Methods in Nonlinear Analysis
Volume 47, No. 1, 2016, 333–345

DOI: 10.12775/TMNA.2016.009

c© 2016 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University

REMETRIZATION RESULTS

FOR POSSIBLY INFINITE SELF-SIMILAR SYSTEMS

Radu Miculescu — Alexandru Mihail

Abstract. In this paper we introduce a concept of possibly infinite self-
similar system which generalizes the attractor of a possibly infinite itera-

ted function system whose constitutive functions are ϕ-contractions. We

prove that for a uniformly possibly infinite self-similar system there ex-
ists a remetrization which makes contractive all its constitutive functions.

Then, based on this result, we show that for such a system there exist

a comparison function ϕ and a remetrization of the system which makes
ϕ-contractive all its constitutive functions. Finally we point out that in the

case of a finite set of constitutive functions our concept of a possibly infi-

nite self-similar system coincides with Kameyama’s concept of a topological
self-similar system.

1. Introduction

In order to generalize the notion of the attractor of an iterated function

system A. Kameyama (see [10]) introduced the concepts of topological self-similar

set and self-similar topological system as follows:

Definition 1.1. A compact Hausdorff topological space K is called a topo-

logical self-similar set if there exist continuous functions f1, . . . , fN : K → K,

where N ∈ N∗ = {1, 2, . . .}, and a continuous surjection π : Λ → K, where
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Λ = {1, . . . , N}N∗ , such that the diagram

Λ
τi
//

π

��

Λ

π

��

K
fi

// K

commutes for all i ∈ {1, . . . , N}, where

τi(ω1 . . . ωmωm+1 . . .) = iω1 . . . ωmωm+1 . . . for each ω1 . . . ωmωm+1 . . . ∈ Λ.

We say that (K, {fi}i∈{1,...,N}), a topological self-similar set together with a set

of continuous maps as above, is a topological self-similar system.

He asked the following fundamental question (see [10]): Given a topological

self-similar system (K, {fi}i∈{1,...,N}), does there exist a metric on K compatible

to the topology such that all the functions fi are contractions? Such a metric is

called a self-similar metric. L. Janoš ([8] and [9]) settles the case N = 1.

On the one hand, Kameyama provided a topological self-similar set which

does not admit a self-similar metric and, on the other hand, he proved that every

totally disconnected self-similar set and every non-recurrent finitely ramified self-

similar set have a self-similar metric.

R. Atkins, M. Barnsley, A. Vince and D. Wilson [1] gave an affirmative

answer to the above question for self-similar sets derived from affine transforma-

tions on Rm (see also [12] for a generalization of this result for a Banach space

(X, ‖ · ‖) instead of the Banach space Rm and for an arbitrary set I instead of

the set {1, . . . , N}), M. Barnsley and A. Vince [4] for projectives functions and

A. Vince [14] for Möbius transformations.

The problem of the existence of a self-similar metric on a self-similar set was

also studied by K. Hveberg [7], M. Barnsley and K. Igudesman [3], T. Banakh,

W. Kubís, N. Novosad, M. Nowak and F. Strobin [2].

In [13], we modified Kameyama’s question (which, as we have seen, has

a negative answer for an arbitrary topological self-similar system) by weakening

the requirement that the functions in the topological self-similar system are

contractions to requiring that they are ϕ-contractions. More precisely, we gave

an affirmative answer to the following question: Given a topological self-similar

system (K, {fi}i∈{1,...,N}), does there exist a metric δ on K which is compatible

with the original topology and a comparison function ϕ such that fi : (K, δ) →
(K, δ) is ϕ-contraction for each i ∈ {1, . . . , N}?

In this paper we study the case of a possibly infinite family of functions

(fi)i∈I . We introduce the concept of possibly infinite self-similar system which

generalizes the notion of the attractor of a possibly infinite iterated function

system whose constitutive functions are ϕ-contractions (see Proposition 3.7).
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We prove that for a uniformly possibly infinite self-similar system there exists

a remetrization which makes contractive all its constitutive functions (see The-

orem 4.1). Then, based on this result, we show that for such a system there

exist a comparison function ϕ and a remetrization of the system which makes ϕ-

contractive all its constitutive functions (see Theorem 5.5). Finally we point out

that when the set I is finite the concepts of a possibly infinite self-similar system

and a topological self-similar system coincide. Consequently we obtain a gen-

eralization of the above mentioned affirmative answer to modified Kameyama’s

question.

2. Preliminaries

In the sequel, by N we mean the set {0, 1, . . .} and by N∗ the set {1, 2, . . .}.
Let I be an arbitrary set. By Λ(I) we mean the set IN

∗
and by Λn(I) we mean

the set I{1,...,n}. The elements of Λ(I) are written as ω = ω1 . . . ωmωm+1 . . . and

the elements of Λn(I) are written as words ω = ω1 . . . ωn, where ωi ∈ I. Hence

Λ(I) is the set of infinite words with letters from the alphabet I and Λn(I) is

the set of words of length n with letters from the alphabet I. By Λ∗(I) we

denote the set of all finite words, i.e. Λ∗(I) =
⋃

n∈N∗
Λn(I) ∪ {λ}, where by λ we

mean the empty word. If ω = ω1 . . . ωmωm+1 . . . ∈ Λ(I) or if ω = ω1 . . . ωn ∈
Λn(I), where m,n ∈ N∗, n ≥ m, then the word ω1 . . . ωm is denoted by [ω]m.

By |ω| we mean the length of ω. For two words α = α1 . . . αn ∈ Λn(I) and

β = β1 . . . βm ∈ Λm(I) or β = β1 . . . βmβm+1 . . . ∈ Λ(I), by αβ we mean the

concatenation of the words α and β, i.e. αβ = α1 . . . αnβ1 . . . βm and respectively,

αβ = α1 . . . αnβ1 . . . βmβm+1 . . . On Λ(I), we consider the metric

dΛ(α, β) =

∞∑
k=1

1− δβk
αk

3k
, where δyx =

1 if x = y,

0 if x 6= y,

α = α1 . . . αn+1αn+2 . . . and β = β1 . . . βn+1βn+2 . . .

Let (X, d) be a metric space and fi : X → X, i ∈ I. For ω = ω1 . . . ωm ∈
Λm(I), we consider fω = fω1

◦ . . . ◦ fωm
and, for a subset H of X, Hω = fω(H).

We also consider fλ = Id and Hλ = H.

For a subset A of a metric space (X, d), we denote by diam(A) the diameter

of A (or, if necessary, diamd(A)).

3. Possibly infinite self-similar systems

A possibly infinite self-similar system generalizes the concept of the attractor

of an infinite iterated function system containing ϕ-contractions (see [5] and [15]),

as Proposition 3.7 points out.
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Definition 3.1. A possibly infinite self-similar system (PISSS for short)

consists of a complete and bounded metric space (A, d) and a family of continuous

functions (fi)i∈I , where fi : A→ A, such that:

(a) A =
⋃
i∈I

Ai;

(b) lim
n→∞

sup
ω∈Λn(I)

diam(Aω) = 0.

We denote it by S = ((A, d), (fi)i∈I). If, in addition, the family of functions

(fi)i∈I is equicontinuous, then S is called uniformly possibly infinite self-similar

system (UPISSS for short).

Definition 3.2. Let (X, d) be a metric space. A family of functions (fi)i∈I ,

fi : X → X, is called bounded if the set
⋃
i∈I

fi(A) is bounded, for every bounded

subset A of X.

Definition 3.3. A function ϕ : [0,∞)→ [0,∞) is called a comparison func-

tion if it satisfies the following three properties:

(a) ϕ is increasing;

(b) ϕ(t) < t for any t > 0;

(c) ϕ is right-continuous.

Remark 3.4. Note that ϕ(0) = 0 for each comparison function ϕ.

Remark 3.5 (see Remark 1 from [11]). Any function ϕ : [0,∞) → [0,∞)

satisfying (b) and (c) from the above definition has the following property:

lim
n→∞

ϕ[n](t) = 0

for any t > 0, where by ϕ[n] we mean the composition of ϕ by itself n times.

Definition 3.6. Let (X, d) be a metric space and a function ϕ : [0,∞) →
[0,∞). A function f : X → X is called ϕ-contraction if

d(f(x), f(y)) ≤ ϕ(d(x, y)), for every x, y ∈ X.

Proposition 3.7. Given a complete metric space (X, d) and a comparison

function ϕ : [0,∞) → [0,∞), if a bounded family of functions (fi)i∈I , where

fi : X → X, is such that each function fi is ϕ-contraction, then there exists

a unique bounded and closed subset A of X such that A =
⋃
i∈I

Ai and ((A, d),

(fi | A)i∈I) is a UPISSS.

Proof. We have:

(a) For the existence of the set A see Theorem 2.5 from [5].

(b) For each n ∈ N, we have

sup
ω∈Λn(I)

diam(Aω) ≤ ϕ[n](diam(A)).
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Consequently, taking into account Remarks 3.4 and 3.5, we get that

lim
n→∞

sup
ω∈Λn(I)

diam(Aω) = 0.

(c) Using Remark 3.4, we infer that d(fi(x), fi(y)) ≤ ϕ(d(x, y)) ≤ d(x, y), for

each x, y ∈ A and i ∈ I, and we conclude that the family of functions (fi)i∈I is

equicontinuous. �

The above proposition provides a large class of UPISSSs. In particular, as

the functions τi have Lipschitz constant less or equal to 1/3, ((Λ(I), dΛ), (τi)i∈I)

is a UPISSS having the property that (Λ(I), dΛ) is not compact, in case that I

is infinite.

The next two propositions emphasize a connection between the points of Λ(I)

and the elements of A.

Proposition 3.8. Let S = ((A, d), (fi)i∈I) be a PISSS. Then, for each ω ∈
Λ(I), the set

⋂
n∈N∗

A[ω]n has exactly one element.

Proof. Note that A[ω]n+1
⊆ A[ω]n , so A[ω]n+1

⊆ A[ω]n for each n ∈ N∗ and

lim
n→∞

diam(A[ω]n) = lim
n→∞

diam(A[ω]n) = 0.

Then, since A is a complete metric space, basing on Cantor’s intersection theo-

rem, we conclude that
⋂

n∈N∗
A[ω]n has one point. �

We denote by aω the element of
⋂

n∈N∗
A[ω]n , so {aω} =

⋂
n∈N∗

A[ω]n .

Proposition 3.9. Let S = ((A, d), (fi)i∈I) be a PISSS. Then, in the frame-

work of the previous proposition, for each a ∈ A and each ω ∈ Λ, we have

lim
n→∞

f[ω]n(a) = aω.

Moreover, the convergence is uniform with respect to a and ω, i.e. for each ε > 0

there exists nε ∈ N∗ such that the inequality d(f[ω]m(a), aω) < ε is valid for each

n ∈ N∗, n ≥ nε, a ∈ A and ω ∈ Λ(I).

Proof. Since, for every n ∈ N∗,

d(f[ω]n(a), aω) ≤ diam(A[ω]n) = diam(A[ω]n) ≤ sup
ω∈Λn(I)

diam(Aω),

and lim
n→∞

sup
ω∈Λn

diam(Aω) = 0, we infer that for every a ∈ A and every ω ∈ Λ(I),

we have lim
n→∞

f[ω]n(a) = aω uniformly with respect to a ∈ A and ω ∈ Λ(I). �
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4. A remetrization that makes contractive all the constitutive

functions of a UPISSS

In this section, given a UPISSS ((A, d), (fi)i∈I), we construct a metric ρ,

which is equivalent to d, having the property that all the functions fi : (A, ρ)→
(A, ρ) are contractive.

Theorem 4.1. Let ((A, d), (fi)i∈I) be a UPISSS. Then there exists a metric

ρ on A having the following three properties:

(a) ρ(fi(x), fi(y)) ≤ ρ(x, y), for each i ∈ I and each x, y ∈ A; consequently

ρ(fω(x), fω(y)) ≤ ρ(x, y), for each x, y ∈ A and each ω ∈ Λ∗(I).

(b) ρ is equivalent to d.

(c) The metric space (A, ρ) is complete and bounded.

Proof. Define ρ : A×A→ [0,∞) by

ρ(x, y) = sup
ω∈Λ∗(I)

d(fω(x), fω(y)), for every x, y ∈ A.

The function ρ attains finite values since d(fω(x), fω(y)) ≤ diam(A) for every

ω ∈ Λ∗(I) and every x, y ∈ A. Obviously, ρ is a bounded metric in A, satisfies

(a) and d ≤ ρ.

To establish (b) we only have to prove that if (an)n∈N is a sequence of ele-

ments from A and l ∈ A is such that lim
n→∞

d(an, l) = 0, then lim
n→∞

ρ(an, l) = 0.

Indeed, as lim
n→∞

sup
ω∈Λn(I)

diam(Aω) = 0, for every ε > 0 there exists mε ∈ N

such that sup
ω∈Λn(I)

diam(Aω) < ε/2 for every n ∈ N, n ≥ mε, so

d(fω(an), fω(l)) ≤ diam(Aω) ≤ sup
ω′∈Λ|ω|(I)

diam(Aω′ ) < ε/2

for every n ∈ N and every ω ∈ Λ∗(I) with |ω| ≥ mε. Since the family of functions

(fi)i∈I is equicontinuous, the family (fω)ω∈Λ∗(I), |ω|<mε
has the same property,

so, for every ε > 0 there exists nε ∈ N such that the inequality d(fω(an), fω(l)) <

ε/2 is valid for every n ∈ N, n ≥ nε and every ω ∈ Λ∗(I) such that |ω| < mε.

We showed that for every ε > 0 there exists nε ∈ N such that

ρ(an, l) = sup
ω∈Λ∗(I)

d(fω(an), fω(l)) ≤ ε/2 < ε

for every n ∈ N, n ≥ nε. Hence lim
n→∞

ρ(an, l) = 0.

Now we prove (c). The boundedness of (A, ρ) is obvious as ρ(x, y) ≤ diam(A)

for every x, y ∈ A. We claim that (A, ρ) is complete.

Indeed, if (an)n∈N is a ρ-Cauchy sequence of elements from A, then (an)n∈N
is also a d-Cauchy sequence. As (A, d) is complete, there exists l ∈ A such that

lim
n→∞

d(an, l) = 0 and therefore lim
n→∞

ρ(an, l) = 0. �

Proposition 4.2. In the above framework ((A, ρ), (fi)i∈I) is a PISSS.
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Proof. According to Theorem 4.1 (c), (A, ρ) is complete and bounded.

As the metrics d and ρ are equivalent, the function fi : (A, ρ) → (A, ρ) is

continuous for each i ∈ I (since fi : (A, d) → (A, d) is continuous) and the

equality A =
⋃
i∈I

Ai, which is valid for d, is also true for ρ.

Moreover, for every x, y ∈ A, n ∈ N and ω ∈ Λn(I), we have

ρ(fω(x), fω(y)) = sup
θ∈Λ∗(I)

d(fθ(fω(x)), fθ(fω(y))) = sup
θ∈Λ∗(I)

d(fθω(x)), fθω(y))

≤ sup
θ∈Λ∗(I)

diamd(Aθω) ≤ sup
θ∈Λ∗(I)

diamd(A[θω]n) ≤ sup
ω∈Λn(I)

diamd(Aω),

so

sup
ω∈Λn(I)

diamρ(Aω) ≤ sup
ω∈Λn(I)

diamd(Aω), for every n ∈ N.

Since lim
n→∞

sup
ω∈Λn(I)

diamd(Aω) = 0, from the previous inequality it follows that

lim
n→∞

sup
ω∈Λn(I)

diamρ(Aω) = 0. We conclude that ((A, ρ), (fi)i∈I) is a PISSS. �

Remark 4.3. According to Propositions 3.9 and 4.2, for each ε > 0 there

exists nε ∈ N∗ such that the inequality ρ(f[ω]n(a), aω) < ε is valid for every

n ∈ N∗, n ≥ nε, a ∈ A and ω ∈ Λ(I).

Using the method of mathematical induction, we get a strictly increasing

sequence of natural numbers (mk)k∈N∗ such that the inequality

ρ(f[ω]n(a), aω) <
5k−1

24k

is valid for every k ∈ N∗, n ∈ N∗, n ≥ mk, a ∈ A and ω ∈ Λ(I).

Note that, using the triangle inequality, we get that

ρ(f[ω]n(a1), f[ω]n(a2)) <
5k−1

24k−1

for each k ∈ N∗, n ∈ N∗, n ≥ mk, a1, a2 ∈ A and ω ∈ Λ(I).

5. A remetrization that makes ϕ-contractions

all the constitutive functions of a UPISSS

In this section, given a UPISSS ((A, d), (fi)i∈I), we construct a comparison

function ϕ and a metric δ, which is equivalent to d, such that all the functions

fi : (A, δ)→ (A, δ) are ϕ-contractions.

We mention that in the sequel:

• By L we mean lim
n→∞

Ln, where Ln =
n+1∏
k=1

(1 + 2−k) for every n ∈ N. Note

that, since

lnLn = ln

n+1∏
k=1

(1 + 2−k) =

n+1∑
k=1

ln(1 + 2−k) ≤
n+1∑
k=1

2−k < 1
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for every n ∈ N, the sequence (Ln)n∈N is bounded. As it is clear that it

is also increasing, we infer that it is convergent.

• xk = 5k−1/24k−1 for every k ∈ N∗.
• (mk)k∈N∗ is the sequence from Remark 4.3 and yk = Lmk

/Lmk
+ 1 =

2mk+2/2mk+2 + 1 for every k ∈ N∗.
Given a UPISSS ((A, d), (fi)i∈I), we consider the function δ : A×A→ [0,∞]

given by

δ(x, y) = sup
ω∈Λ∗(I)

L|ω|ρ(fω(x), fω(y)),

for every x, y ∈ A, where ρ is the metric introduced in Theorem 4.1.

Proposition 5.1. In the above framework, the inequality

3

2
ρ(x, y) ≤ δ(x, y) ≤ Lρ(x, y),

is valid for every x, y ∈ A.

Proof. On the one hand, for every x, y ∈ A, we have

3

2
ρ(x, y) = L|λ|ρ(fλ(x), fλ(y)) ≤ δ(x, y).

On the other hand, since by Theorem 4.1 (a) the inequality

L|ω|ρ(fω(x), fω(y)) ≤ L|ω|ρ(x, y) ≤ Lρ(x, y)

is valid for every ω ∈ Λ∗(I), x, y ∈ A, we get that

δ(x, y) = sup
ω∈Λ∗(I)

L|ω|ρ(fω(x), fω(y)) ≤ Lρ(x, y),

for every x, y ∈ A. �

Hence δ : A×A→ [0,∞) and it is a metric which is equivalent to ρ, so to d,

as the reader can routinely verify.

Proposition 5.2. In the above framework, the inequality

δ(fi(x), fi(y)) ≤ δ(x, y),

is valid for every x, y ∈ A and every i ∈ I.

Proof. We have

L|ω|ρ(fω(fi(x)), fω(fi(y))) = L|ω|ρ(fωi(x), fωi(y))

≤ L|ωi|ρ(fωi(x), fωi(y)) ≤ sup
ω∈Λ∗(I)

L|ω|ρ(fω(x), fω(y)) = δ(x, y)

for every x, y ∈ A, i ∈ I and ω ∈ Λ∗(I), so

δ(fi(x), fi(y)) = sup
ω∈Λ∗(I)

L|ω|ρ(fω(fi(x)), fω(fi(y))) ≤ δ(x, y),

for every x, y ∈ A and every i ∈ I. �
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Proposition 5.3. In the above framework, the inequality

δ(fi(x), fi(y)) ≤ max

{
sup

ω∈Λ∗(I), |ω|<mk

L|ω|ρ(fωi(x), fωi(y)), Lxk

}
is valid for every x, y ∈ A, i ∈ I and k ∈ N∗.

Proof. We have

δ(fi(x), fi(y)) = sup
ω∈Λ∗(I)

L|ω|ρ(fω(fi(x)), fω(fi(y)))

= max

{
sup

ω∈Λ∗(I),|ω|<mk

L|ω|ρ(fωi(x), fωi(y)), sup
ω∈Λ∗(I),|ω|≥mk

L|ω|ρ(fωi(x), fωi(y))

}
Remark 4.3
≤ max

{
sup

ω∈Λ∗(I),|ω|<mk

L|ω|ρ(fωi(x), fωi(y)), Lxk

}
,

for every x, y ∈ A, i ∈ I and k ∈ N∗. �

Proposition 5.4. In the above framework, for every k ∈ N, x, y ∈ A and

i ∈ I, we have δ(fi(x), fi(y)) ≤ ykδ(x, y), provided that Lxk < δ(fi(x), fi(y)).

Proof. Let us consider k ∈ N, x, y ∈ A and i ∈ I such that Lxk <

δ(fi(x), fi(y)). Then, taking into account Proposition 5.3, we have

Lxk < δ(fi(x), fi(y)) ≤ max

{
sup

ω∈Λ∗(I),|ω|<mk

L|ω|ρ(fωi(x), fωi(y)), Lxk

}
,

so,

δ(fi(x), fi(y)) ≤ sup
ω∈Λ∗(I),|ω|<mk

L|ω|ρ(fωi(x), fωi(y)).

Then, for every ε > 0 there exists ωε ∈ Λ∗(I), |ωε| < mk such that

δ(fi(x), fi(y))− ε < L|ωε|ρ(fωεi(x), fωεi(y))

and consequently, as the sequence (Ln/Ln+1)n∈N∗ is increasing, we get

δ(fi(x), fi(y))− ε < L|ωεi|ρ(fωεi(x), fωεi(y))
L|ωε|

L|ωεi|
≤

L|ωε|

L|ωεi|
δ(x, y) ≤ ykδ(x, y),

for every ε > 0. Therefore δ(fi(x), fi(y)) ≤ ykδ(x, y). �

Theorem 5.5. Let ((A, d), (fi)i∈I) be a UPISSS. Then there exist a compar-

ison function ϕ and a metric δ, which is equivalent to d, such that

δ(fi(x), fi(y)) ≤ ϕ(δ(x, y)),

for every x, y ∈ A and i ∈ I, i.e. the function fi : (A, δ)→ (A, δ) is ϕ-contraction

for every i ∈ I.
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Proof. Note that, in the above framework, the strictly decreasing sequence

(xk)k∈N∗ of positive reals converges to 0 and the strictly increasing sequence

(yk)k∈N∗ of reals greater or equal to 1/2 converges to 1.

With the notation zk = 2Lxk, one can easily check that, for every k ∈ N∗,
zk ≤ zk−1/2 and zkyk+1 ≤ zk−1yk. Moreover, we have

(∗) ∀ i ∈ I ∀ k ∈ N∗ ∀x, y ∈ A δ(x, y) > zk ⇒ δ(fi(x), fi(y)) ≤ ykδ(x, y).

Indeed, if δ(fi(x), fi(y)) ≤ zk/2, then we have δ(fi(x), fi(y)) ≤ zk/2 < δ(x, y)/2

≤ ykδ(x, y) and if δ(fi(x), fi(y)) > zk/2, we just use Proposition 5.4.

Now we define the function ϕ : [0,∞)→ [0,∞) in the following way:

ϕ(0) = 0, ϕ(t) = t− z1(1− y2)

for t ∈ (z1,∞) and

ϕ(t) =

(
t− zk

zk−1 − zk

)
zk−1yk +

(
zk−1 − t
zk−1 − zk

)
zkyk+1,

for every k ∈ N, k ≥ 2 and every t ∈ (zk, zk−1]. It is clear that ϕ is a comparison

function.

Now we prove that δ(fi(x), fi(y)) ≤ ϕ(δ(x, y)), for every x, y ∈ A and i ∈ I.

Since the above inequality is obvious if δ(x, y) = 0, we shall treat the following

two cases:

(i) δ(x, y) ∈ (z1,∞);

(ii) δ(x, y) ∈ (zk, zk−1] for some k ∈ N, k ≥ 2.

In the first case, from (∗), we infer that δ(fi(x), fi(y)) ≤ y1δ(x, y) for every

i ∈ I. As z1 < δ(x, y) and y1 ≤ y2, we obtain

y1δ(x, y) ≤ δ(x, y)− z1(1− y2) = ϕ(δ(x, y))

and we conclude that δ(fi(x), fi(y)) ≤ ϕ(δ(x, y)) for every i ∈ I.

In the second case, using again (∗), we get δ(fi(x), fi(y)) ≤ ykδ(x, y) for

every i ∈ I. As zk < δ(x, y) ≤ zk−1, we obtain

ykδ(x, y) ≤
(
δ(x, y)− zk
zk−1 − zk

)
zk−1yk +

(
zk−1 − δ(x, y)

zk−1 − zk

)
zkyk+1 = ϕ(δ(x, y)),

and we conclude that δ(fi(x), fi(y)) ≤ ϕ(δ(x, y)) for every i ∈ I. �

Definition 5.6. Given a metric space (X, d), a possibly infinite iterated

function system is a pair S = ((X, d), (fi)i∈I), where fi : X → X is continuous

for every i ∈ I.

Definition 5.7. Given a comparison function ϕ : [0,∞)→ [0,∞), a possibly

infinite iterated function system S = ((X, d), (fi)i∈I) is called ϕ-hyperbolic if

there exists a metric δ on X, equivalent to d, such that the function fi : (X, δ)→
(X, δ) is ϕ-contraction for every i ∈ I.
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Now, Theorem 5.5 could be restated in the following way:

Theorem 5.8. Let ((A, d), (fi)i∈I) be a UPISSS. Then there exists a com-

parison function ϕ such that the possibly infinite iterated function system S =

((A, d), (fi)i∈I) is ϕ-hyperbolic.

Remark 5.9. Taking into account Proposition 3.7, which states that each

possibly infinite iterated function system whose constitutive functions form a

bounded family of ϕ-contractions generates a uniformly possibly infinite self-

similar system, and Theorem 5.8, that says that for each uniformly possibly

infinite self-similar system there exists a comparison function ϕ such that it

becomes a ϕ-hyperbolic possibly infinite iterated function system, we conclude

that there exists a strong connection between uniformly possibly infinite self-

similar systems and ϕ-hyperbolic possibly infinite iterated function systems.

6. Kameyama’s topological self-similar systems

are particular cases of possibly infinite self-similar systems

Proposition 6.1. In the framework of Definition 1.1, we have

K =
N⋃
i=1

Ki.

Proof. Indeed, for each x ∈ K = π(Λ) there exists ω = ω1 . . . ωmωm+1 . . .

in Λ such that x=π(ω)=π(ω1ω
′
)=fω1

(π(ω
′
))∈Kω1

, where ω
′
=ω2 . . . ωm+1 . . .,

so x ∈
N⋃
i=1

Ki. Thus K ⊆
N⋃
i=1

Ki ⊆ K, so K =
N⋃
i=1

Ki. As K is compact, we infer

that K =
N⋃
i=1

Ki. �

Theorem 6.2 (see [10, Theorem 5.1]). A topological self-similar set is metriz-

able.

Proposition 6.3 (see [10, Lemma 1.6]). Let (K, {fi}i∈{1,...,N}) be a topo-

logical self-similar system and d any metric on K which is compatible with the

original topology. Then

lim
n→∞

(
max

ω∈Λn({1,...,N})
diam(Kω)

)
= 0.

Remark 6.4. From Proposition 6.1 and Proposition 6.3, we infer that if

(K, {fi}i∈{1,...,N}) is a topological self-similar system and d any metric on K

which is compatible with the original topology, then S = ((K, d), (fi)i∈I), where

I = {1, . . . , N}, is a PISSS. In addition, since the functions fi are continuous

and the set I is finite, S is a UPISSS. Consequently Kameyama’s topological

self-similar systems are particular cases of possibly infinite self-similar systems
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and Theorem 5.5 is a generalization of our result from [13] stating that given

a topological self-similar system (K, (fi)i∈{1,...,N}) there exist a metric δ on K

which is compatible with the original topology and a comparison function ϕ such

that fi : (K, δ)→ (K, δ) is ϕ-contraction for every i ∈ {1, . . . , N}.

Now let us consider a PISSS S =((A, d), (fi)i∈I) for which the set I is finite.

Proposition 6.5. In the above framework, (A, d) is a compact Hausdorff

topological space.

Proof. From the definition of a PISSS we have A =
⋃
i∈I
Ai, so

Aj = fj

(⋃
i∈I
Ai

)
=
⋃
i∈I
fj(Ai)

fj continuous

⊆
⋃
i∈I
fj(Ai) =

⋃
i,j∈I

Aji

for every j ∈ I. Hence A =
⋃
j∈I

Aj ⊆
⋃
i,j∈I

Aji ⊆ A, so A =
⋃

ω∈Λ2(I)

Aω. In a similar

way we can prove that

(∗) A =
⋃

ω∈Λn(I)

Aω for every n ∈ N.

As lim
n→∞

sup
ω∈Λn(I)

diam(Aω)= lim
n→∞

sup
ω∈Λn(I)

diam(Aω)=0 and Λn(I) is finite, from (∗)

we infer that A is totally bounded. Since it is also complete, we conclude that

it is compact. �

Theorem 5.5 assures us that there exist a comparison function ϕ and a met-

ric δ, which is equivalent to d, such that all the functions fi : (A, δ)→ (A, δ) are

ϕ-contractions. Since A =
⋃
i∈I
fi(A), we come to the conclusion that the attrac-

tor of the iterated function system ((A, δ), (fi)i∈I) is A. Note that, taking into

account Proposition 3.8, we can consider the function π : Λ(I)→ A given by

π(ω) = aω for every ω ∈ Λ(I).

Then, from the standard properties of such iterated function systems (see, for

example, [6], where the more general case of iterated function systems consisting

of Meir–Keeler functions is treated) we obtain the following result:

Proposition 6.6. In the above framework, the function π has the following

properties:

(a) it is onto;

(b) π ◦ τi = fi ◦ π for every i ∈ I;

(c) it is continuous.

Remark 6.7. From Propositions 6.5 and 6.6, we conclude that a PISSS

S = ((A, d), (fi)i∈I) for which the set I is finite is a topological self-similar

system, hence the concepts of PISSS and topological self-similar system coincide

for finite sets I.
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[9] L. Janoš, H.-M. Ko and K.-K. Tan, Edelstein’s contractivity and attractors, Proc. Amer.

Math. Soc. 76 (1979), 339–344.

[10] A. Kameyama, Distances on topological self-similar sets and the kneading determinants,

J. Math. Kyoto Univ. 40 (2000), 603–674.

[11] J. Matkowski, Fixed point theorems for mappings with a contractive iterate at a point,

Proc. Amer. Math. Soc. 62 (1977), 344–348.

[12] R. Miculescu and A. Mihail, Alternative characterization of hyperbolic affine infinite

iterated function systems, J. Math. Anal. Appl. 407 (2013), 56–68.

[13] , On a question of A. Kameyama concerning self-similar metrics, J. Math. Anal.

Appl. 422 (2015), 265–271.
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