Topological **M**ethods in **N**onlinear **A**nalysis Volume 47, No. 1, 2016, 333–345 DOI: 10.12775/TMNA.2016.009

O 2016 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University

REMETRIZATION RESULTS FOR POSSIBLY INFINITE SELF-SIMILAR SYSTEMS

Radu Miculescu — Alexandru Mihail

ABSTRACT. In this paper we introduce a concept of possibly infinite selfsimilar system which generalizes the attractor of a possibly infinite iterated function system whose constitutive functions are φ -contractions. We prove that for a uniformly possibly infinite self-similar system there exists a remetrization which makes contractive all its constitutive functions. Then, based on this result, we show that for such a system there exist a comparison function φ and a remetrization of the system which makes φ -contractive all its constitutive functions. Finally we point out that in the case of a finite set of constitutive functions our concept of a possibly infinite self-similar system coincides with Kameyama's concept of a topological self-similar system.

1. Introduction

In order to generalize the notion of the attractor of an iterated function system A. Kameyama (see [10]) introduced the concepts of topological self-similar set and self-similar topological system as follows:

DEFINITION 1.1. A compact Hausdorff topological space K is called a topological self-similar set if there exist continuous functions $f_1, \ldots, f_N \colon K \to K$, where $N \in \mathbb{N}^* = \{1, 2, \ldots\}$, and a continuous surjection $\pi \colon \Lambda \to K$, where

²⁰¹⁰ Mathematics Subject Classification. 28A80, 37B10, 37C70, 54E35.

Key words and phrases. Possibly infinite self-similar systems; remetrizations; φ -contractions.

 $\Lambda = \{1, \ldots, N\}^{\mathbb{N}^*}$, such that the diagram

commutes for all $i \in \{1, \ldots, N\}$, where

$$\tau_i(\omega_1 \dots \omega_m \omega_{m+1} \dots) = i\omega_1 \dots \omega_m \omega_{m+1} \dots \text{ for each } \omega_1 \dots \omega_m \omega_{m+1} \dots \in \Lambda.$$

We say that $(K, \{f_i\}_{i \in \{1,...,N\}})$, a topological self-similar set together with a set of continuous maps as above, is a topological self-similar system.

He asked the following fundamental question (see [10]): Given a topological self-similar system $(K, \{f_i\}_{i \in \{1,...,N\}})$, does there exist a metric on K compatible to the topology such that all the functions f_i are contractions? Such a metric is called a self-similar metric. L. Janoš ([8] and [9]) settles the case N = 1.

On the one hand, Kameyama provided a topological self-similar set which does not admit a self-similar metric and, on the other hand, he proved that every totally disconnected self-similar set and every non-recurrent finitely ramified selfsimilar set have a self-similar metric.

R. Atkins, M. Barnsley, A. Vince and D. Wilson [1] gave an affirmative answer to the above question for self-similar sets derived from affine transformations on \mathbb{R}^m (see also [12] for a generalization of this result for a Banach space $(X, \|\cdot\|)$ instead of the Banach space \mathbb{R}^m and for an arbitrary set *I* instead of the set $\{1, \ldots, N\}$), M. Barnsley and A. Vince [4] for projectives functions and A. Vince [14] for Möbius transformations.

The problem of the existence of a self-similar metric on a self-similar set was also studied by K. Hveberg [7], M. Barnsley and K. Igudesman [3], T. Banakh, W. Kubiś, N. Novosad, M. Nowak and F. Strobin [2].

In [13], we modified Kameyama's question (which, as we have seen, has a negative answer for an arbitrary topological self-similar system) by weakening the requirement that the functions in the topological self-similar system are contractions to requiring that they are φ -contractions. More precisely, we gave an affirmative answer to the following question: Given a topological self-similar system $(K, \{f_i\}_{i \in \{1,...,N\}})$, does there exist a metric δ on K which is compatible with the original topology and a comparison function φ such that $f_i: (K, \delta) \to$ (K, δ) is φ -contraction for each $i \in \{1, ..., N\}$?

In this paper we study the case of a possibly infinite family of functions $(f_i)_{i \in I}$. We introduce the concept of possibly infinite self-similar system which generalizes the notion of the attractor of a possibly infinite iterated function system whose constitutive functions are φ -contractions (see Proposition 3.7).

REMETRIZATION RESULTS

We prove that for a uniformly possibly infinite self-similar system there exists a remetrization which makes contractive all its constitutive functions (see Theorem 4.1). Then, based on this result, we show that for such a system there exist a comparison function φ and a remetrization of the system which makes φ contractive all its constitutive functions (see Theorem 5.5). Finally we point out that when the set I is finite the concepts of a possibly infinite self-similar system and a topological self-similar system coincide. Consequently we obtain a generalization of the above mentioned affirmative answer to modified Kameyama's question.

2. Preliminaries

In the sequel, by \mathbb{N} we mean the set $\{0, 1, \ldots\}$ and by \mathbb{N}^* the set $\{1, 2, \ldots\}$. Let I be an arbitrary set. By $\Lambda(I)$ we mean the set $I^{\mathbb{N}^*}$ and by $\Lambda_n(I)$ we mean the set $I^{\{1,\ldots,n\}}$. The elements of $\Lambda(I)$ are written as $\omega = \omega_1 \ldots \omega_m \omega_{m+1} \ldots$ and the elements of $\Lambda_n(I)$ are written as words $\omega = \omega_1 \ldots \omega_n$, where $\omega_i \in I$. Hence $\Lambda(I)$ is the set of infinite words with letters from the alphabet I and $\Lambda_n(I)$ is the set of words of length n with letters from the alphabet I. By $\Lambda^*(I)$ we denote the set of all finite words, i.e. $\Lambda^*(I) = \bigcup_{n \in \mathbb{N}^*} \Lambda_n(I) \cup \{\lambda\}$, where by λ we mean the empty word. If $\omega = \omega_1 \ldots \omega_m \omega_{m+1} \ldots \in \Lambda(I)$ or if $\omega = \omega_1 \ldots \omega_n \in$ $\Lambda_n(I)$, where $m, n \in \mathbb{N}^*$, $n \ge m$, then the word $\omega_1 \ldots \omega_m$ is denoted by $[\omega]_m$. By $|\omega|$ we mean the length of ω . For two words $\alpha = \alpha_1 \ldots \alpha_n \in \Lambda_n(I)$ and $\beta = \beta_1 \ldots \beta_m \in \Lambda_m(I)$ or $\beta = \beta_1 \ldots \beta_m \beta_{m+1} \ldots \in \Lambda(I)$, by $\alpha\beta$ we mean the concatenation of the words α and β , i.e. $\alpha\beta = \alpha_1 \ldots \alpha_n\beta_1 \ldots \beta_m$ and respectively, $\alpha\beta = \alpha_1 \ldots \alpha_n\beta_1 \ldots \beta_m\beta_{m+1} \ldots On \Lambda(I)$, we consider the metric

$$d_{\Lambda}(\alpha,\beta) = \sum_{k=1}^{\infty} \frac{1-\delta_{\alpha_k}^{\beta_k}}{3^k}, \quad \text{where } \delta_x^y = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{if } x \neq y, \end{cases}$$

 $\alpha = \alpha_1 \dots \alpha_{n+1} \alpha_{n+2} \dots$ and $\beta = \beta_1 \dots \beta_{n+1} \beta_{n+2} \dots$

Let (X, d) be a metric space and $f_i: X \to X$, $i \in I$. For $\omega = \omega_1 \dots \omega_m \in \Lambda_m(I)$, we consider $f_{\omega} = f_{\omega_1} \circ \dots \circ f_{\omega_m}$ and, for a subset H of X, $H_{\omega} = f_{\omega}(H)$. We also consider $f_{\lambda} = \text{Id}$ and $H_{\lambda} = H$.

For a subset A of a metric space (X, d), we denote by diam(A) the diameter of A (or, if necessary, diam_d(A)).

3. Possibly infinite self-similar systems

A possibly infinite self-similar system generalizes the concept of the attractor of an infinite iterated function system containing φ -contractions (see [5] and [15]), as Proposition 3.7 points out. DEFINITION 3.1. A possibly infinite self-similar system (PISSS for short) consists of a complete and bounded metric space (A, d) and a family of continuous functions $(f_i)_{i \in I}$, where $f_i \colon A \to A$, such that:

(a) $A = \overline{\bigcup_{i \in I} A_i};$ (b) $\lim_{n \to \infty} \sup_{\omega \in \Lambda_n(I)} \operatorname{diam}(A_{\omega}) = 0.$

We denote it by $S = ((A, d), (f_i)_{i \in I})$. If, in addition, the family of functions $(f_i)_{i \in I}$ is equicontinuous, then S is called uniformly possibly infinite self-similar system (UPISSS for short).

DEFINITION 3.2. Let (X, d) be a metric space. A family of functions $(f_i)_{i \in I}$, $f_i \colon X \to X$, is called bounded if the set $\bigcup_{i \in I} f_i(A)$ is bounded, for every bounded subset A of X.

DEFINITION 3.3. A function $\varphi \colon [0, \infty) \to [0, \infty)$ is called a comparison function if it satisfies the following three properties:

(a) φ is increasing;

(b) $\varphi(t) < t$ for any t > 0;

(c) φ is right-continuous.

REMARK 3.4. Note that $\varphi(0) = 0$ for each comparison function φ .

REMARK 3.5 (see Remark 1 from [11]). Any function $\varphi: [0, \infty) \to [0, \infty)$ satisfying (b) and (c) from the above definition has the following property:

$$\lim_{n \to \infty} \varphi^{[n]}(t) = 0$$

for any t > 0, where by $\varphi^{[n]}$ we mean the composition of φ by itself n times.

DEFINITION 3.6. Let (X, d) be a metric space and a function $\varphi \colon [0, \infty) \to [0, \infty)$. A function $f \colon X \to X$ is called φ -contraction if

$$d(f(x), f(y)) \le \varphi(d(x, y)), \text{ for every } x, y \in X.$$

PROPOSITION 3.7. Given a complete metric space (X,d) and a comparison function $\varphi \colon [0,\infty) \to [0,\infty)$, if a bounded family of functions $(f_i)_{i\in I}$, where $f_i \colon X \to X$, is such that each function f_i is φ -contraction, then there exists a unique bounded and closed subset A of X such that $A = \bigcup_{i\in I} A_i$ and ((A,d),

 $(f_i \mid A)_{i \in I})$ is a UPISSS.

PROOF. We have:

(a) For the existence of the set A see Theorem 2.5 from [5].

(b) For each $n \in \mathbb{N}$, we have

$$\sup_{\omega \in \Lambda_n(I)} \operatorname{diam}(A_\omega) \le \varphi^{[n]}(\operatorname{diam}(A)).$$

Remetrization Results

Consequently, taking into account Remarks 3.4 and 3.5, we get that

$$\lim_{n \to \infty} \sup_{\omega \in \Lambda_n(I)} \operatorname{diam}(A_\omega) = 0$$

(c) Using Remark 3.4, we infer that $d(f_i(x), f_i(y)) \leq \varphi(d(x, y)) \leq d(x, y)$, for each $x, y \in A$ and $i \in I$, and we conclude that the family of functions $(f_i)_{i \in I}$ is equicontinuous.

The above proposition provides a large class of UPISSSs. In particular, as the functions τ_i have Lipschitz constant less or equal to 1/3, $((\Lambda(I), d_{\Lambda}), (\tau_i)_{i \in I})$ is a UPISSS having the property that $(\Lambda(I), d_{\Lambda})$ is not compact, in case that Iis infinite.

The next two propositions emphasize a connection between the points of $\Lambda(I)$ and the elements of A.

PROPOSITION 3.8. Let $S = ((A, d), (f_i)_{i \in I})$ be a PISSS. Then, for each $\omega \in \Lambda(I)$, the set $\bigcap_{n \in \mathbb{N}^*} \overline{A_{[\omega]_n}}$ has exactly one element.

PROOF. Note that $A_{[\omega]_{n+1}} \subseteq A_{[\omega]_n}$, so $\overline{A_{[\omega]_{n+1}}} \subseteq \overline{A_{[\omega]_n}}$ for each $n \in \mathbb{N}^*$ and $\lim_{n \to \infty} \operatorname{diam}(\overline{A_{[\omega]_n}}) = \lim_{n \to \infty} \operatorname{diam}(A_{[\omega]_n}) = 0.$

Then, since A is a complete metric space, basing on Cantor's intersection theorem, we conclude that $\bigcap_{n \in \mathbb{N}^*} \overline{A_{[\omega]_n}}$ has one point.

We denote by a_{ω} the element of $\bigcap_{n \in \mathbb{N}^*} \overline{A_{[\omega]_n}}$, so $\{a_{\omega}\} = \bigcap_{n \in \mathbb{N}^*} \overline{A_{[\omega]_n}}$.

PROPOSITION 3.9. Let $S = ((A, d), (f_i)_{i \in I})$ be a PISSS. Then, in the framework of the previous proposition, for each $a \in A$ and each $\omega \in \Lambda$, we have

$$\lim_{n \to \infty} f_{[\omega]_n}(a) = a_{\omega}$$

Moreover, the convergence is uniform with respect to a and ω , i.e. for each $\varepsilon > 0$ there exists $n_{\varepsilon} \in \mathbb{N}^*$ such that the inequality $d(f_{[\omega]_m}(a), a_{\omega}) < \varepsilon$ is valid for each $n \in \mathbb{N}^*$, $n \ge n_{\varepsilon}$, $a \in A$ and $\omega \in \Lambda(I)$.

PROOF. Since, for every $n \in \mathbb{N}^*$,

$$d(f_{[\omega]_n}(a), a_{\omega}) \leq \operatorname{diam}(\overline{A_{[\omega]_n}}) = \operatorname{diam}(A_{[\omega]_n}) \leq \sup_{\omega \in \Lambda_n(I)} \operatorname{diam}(A_{\omega}),$$

and $\lim_{n\to\infty} \sup_{\omega\in\Lambda_n} \operatorname{diam}(A_{\omega}) = 0$, we infer that for every $a \in A$ and every $\omega \in \Lambda(I)$, we have $\lim_{n\to\infty} f_{[\omega]_n}(a) = a_{\omega}$ uniformly with respect to $a \in A$ and $\omega \in \Lambda(I)$. \Box

R. MICULESCU — A. MIHAIL

4. A remetrization that makes contractive all the constitutive functions of a UPISSS

In this section, given a UPISSS $((A, d), (f_i)_{i \in I})$, we construct a metric ρ , which is equivalent to d, having the property that all the functions $f_i: (A, \rho) \to$ (A, ρ) are contractive.

THEOREM 4.1. Let $((A, d), (f_i)_{i \in I})$ be a UPISSS. Then there exists a metric ρ on A having the following three properties:

- (a) $\rho(f_i(x), f_i(y)) \leq \rho(x, y)$, for each $i \in I$ and each $x, y \in A$; consequently $\rho(f_{\omega}(x), f_{\omega}(y)) \leq \rho(x, y)$, for each $x, y \in A$ and each $\omega \in \Lambda^*(I)$.
- (b) ρ is equivalent to d.
- (c) The metric space (A, ρ) is complete and bounded.

PROOF. Define $\rho: A \times A \to [0, \infty)$ by

$$\rho(x,y) = \sup_{\omega \in \Lambda^*(I)} d(f_\omega(x), f_\omega(y)), \quad \text{for every } x, y \in A.$$

The function ρ attains finite values since $d(f_{\omega}(x), f_{\omega}(y)) \leq \operatorname{diam}(A)$ for every $\omega \in \Lambda^*(I)$ and every $x, y \in A$. Obviously, ρ is a bounded metric in A, satisfies (a) and $d \leq \rho$.

To establish (b) we only have to prove that if $(a_n)_{n\in\mathbb{N}}$ is a sequence of ele-

ments from A and $l \in A$ is such that $\lim_{n \to \infty} d(a_n, l) = 0$, then $\lim_{n \to \infty} \rho(a_n, l) = 0$. Indeed, as $\lim_{n \to \infty} \sup_{\omega \in \Lambda_n(I)} \operatorname{diam}(A_\omega) = 0$, for every $\varepsilon > 0$ there exists $m_{\varepsilon} \in \mathbb{N}$

such that sup diam $(A_{\omega}) < \varepsilon/2$ for every $n \in \mathbb{N}, n \geq m_{\varepsilon}$, so $\omega \in \Lambda_n(I)$

$$d(f_{\omega}(a_n), f_{\omega}(l)) \leq \operatorname{diam}(A_{\omega}) \leq \sup_{\omega' \in \Lambda_{|\omega|}(I)} \operatorname{diam}(A_{\omega'}) < \varepsilon/2$$

for every $n \in \mathbb{N}$ and every $\omega \in \Lambda^*(I)$ with $|\omega| \ge m_{\varepsilon}$. Since the family of functions $(f_i)_{i \in I}$ is equicontinuous, the family $(f_{\omega})_{\omega \in \Lambda^*(I), |\omega| < m_{\varepsilon}}$ has the same property, so, for every $\varepsilon > 0$ there exists $n_{\varepsilon} \in \mathbb{N}$ such that the inequality $d(f_{\omega}(a_n), f_{\omega}(l)) < 0$ $\varepsilon/2$ is valid for every $n \in \mathbb{N}, n \geq n_{\varepsilon}$ and every $\omega \in \Lambda^*(I)$ such that $|\omega| < m_{\varepsilon}$. We showed that for every $\varepsilon > 0$ there exists $n_{\varepsilon} \in \mathbb{N}$ such that

$$\rho(a_n, l) = \sup_{\omega \in \Lambda^*(I)} d(f_{\omega}(a_n), f_{\omega}(l)) \le \varepsilon/2 < \varepsilon$$

for every $n \in \mathbb{N}$, $n \ge n_{\varepsilon}$. Hence $\lim_{n \to \infty} \rho(a_n, l) = 0$.

Now we prove (c). The boundedness of (A, ρ) is obvious as $\rho(x, y) \leq \text{diam}(A)$ for every $x, y \in A$. We claim that (A, ρ) is complete.

Indeed, if $(a_n)_{n \in \mathbb{N}}$ is a ρ -Cauchy sequence of elements from A, then $(a_n)_{n \in \mathbb{N}}$ is also a d-Cauchy sequence. As (A, d) is complete, there exists $l \in A$ such that $\lim_{n \to \infty} d(a_n, l) = 0 \text{ and therefore } \lim_{n \to \infty} \rho(a_n, l) = 0.$

PROPOSITION 4.2. In the above framework $((A, \rho), (f_i)_{i \in I})$ is a PISSS.

PROOF. According to Theorem 4.1 (c), (A, ρ) is complete and bounded.

As the metrics d and ρ are equivalent, the function $f_i: (A, \rho) \to (A, \rho)$ is continuous for each $i \in I$ (since $f_i: (A, d) \to (A, d)$ is continuous) and the equality $A = \bigcup A_i$, which is valid for d, is also true for ρ .

Moreover, for every $x, y \in A$, $n \in \mathbb{N}$ and $\omega \in \Lambda_n(I)$, we have

$$\rho(f_{\omega}(x), f_{\omega}(y)) = \sup_{\theta \in \Lambda^{*}(I)} d(f_{\theta}(f_{\omega}(x)), f_{\theta}(f_{\omega}(y))) = \sup_{\theta \in \Lambda^{*}(I)} d(f_{\theta\omega}(x)), f_{\theta\omega}(y))$$

$$\leq \sup_{\theta \in \Lambda^{*}(I)} \operatorname{diam}_{d}(A_{\theta\omega}) \leq \sup_{\theta \in \Lambda^{*}(I)} \operatorname{diam}_{d}(A_{[\theta\omega]_{n}}) \leq \sup_{\omega \in \Lambda_{n}(I)} \operatorname{diam}_{d}(A_{\omega}),$$

 \mathbf{SO}

 $\omega \in$

$$\sup_{\alpha \in \Lambda_n(I)} \operatorname{diam}_{\rho}(A_{\omega}) \leq \sup_{\omega \in \Lambda_n(I)} \operatorname{diam}_d(A_{\omega}), \quad \text{for every } n \in \mathbb{N}.$$

Since $\lim_{n\to\infty} \sup_{\omega\in\Lambda_n(I)} \operatorname{diam}_d(A_\omega) = 0$, from the previous inequality it follows that $\lim_{n\to\infty} \sup_{\omega\in\Lambda_n(I)} \operatorname{diam}_\rho(A_\omega) = 0$. We conclude that $((A,\rho), (f_i)_{i\in I})$ is a PISSS. \Box

REMARK 4.3. According to Propositions 3.9 and 4.2, for each $\varepsilon > 0$ there exists $n_{\varepsilon} \in \mathbb{N}^*$ such that the inequality $\rho(f_{[\omega]_n}(a), a_{\omega}) < \varepsilon$ is valid for every $n \in \mathbb{N}^*, n \ge n_{\varepsilon}, a \in A$ and $\omega \in \Lambda(I)$.

Using the method of mathematical induction, we get a strictly increasing sequence of natural numbers $(m_k)_{k \in \mathbb{N}^*}$ such that the inequality

$$\rho(f_{[\omega]_n}(a), a_\omega) < \frac{5^{k-1}}{2^{4k}}$$

is valid for every $k \in \mathbb{N}^*$, $n \in \mathbb{N}^*$, $n \ge m_k$, $a \in A$ and $\omega \in \Lambda(I)$.

Note that, using the triangle inequality, we get that

$$\rho(f_{[\omega]_n}(a_1), f_{[\omega]_n}(a_2)) < \frac{5^{k-1}}{2^{4k-1}}$$

for each $k \in \mathbb{N}^*$, $n \in \mathbb{N}^*$, $n \ge m_k$, $a_1, a_2 \in A$ and $\omega \in \Lambda(I)$.

5. A remetrization that makes φ -contractions all the constitutive functions of a UPISSS

In this section, given a UPISSS $((A, d), (f_i)_{i \in I})$, we construct a comparison function φ and a metric δ , which is equivalent to d, such that all the functions $f_i : (A, \delta) \to (A, \delta)$ are φ -contractions.

We mention that in the sequel:

• By L we mean $\lim_{n \to \infty} L_n$, where $L_n = \prod_{k=1}^{n+1} (1+2^{-k})$ for every $n \in \mathbb{N}$. Note that, since

$$\ln L_n = \ln \prod_{k=1}^{n+1} (1+2^{-k}) = \sum_{k=1}^{n+1} \ln(1+2^{-k}) \le \sum_{k=1}^{n+1} 2^{-k} < 1$$

for every $n \in \mathbb{N}$, the sequence $(L_n)_{n \in \mathbb{N}}$ is bounded. As it is clear that it is also increasing, we infer that it is convergent.

- $x_k = 5^{k-1}/2^{4k-1}$ for every $k \in \mathbb{N}^*$.
- $(m_k)_{k \in \mathbb{N}^*}$ is the sequence from Remark 4.3 and $y_k = L_{m_k}/L_{m_k} + 1 = 2^{m_k+2}/2^{m_k+2} + 1$ for every $k \in \mathbb{N}^*$.

Given a UPISSS $((A, d), (f_i)_{i \in I})$, we consider the function $\delta \colon A \times A \to [0, \infty]$ given by

$$\delta(x,y) = \sup_{\omega \in \Lambda^*(I)} L_{|\omega|} \rho(f_\omega(x), f_\omega(y)),$$

for every $x, y \in A$, where ρ is the metric introduced in Theorem 4.1.

PROPOSITION 5.1. In the above framework, the inequality

$$\frac{3}{2}\rho(x,y) \le \delta(x,y) \le L\rho(x,y),$$

is valid for every $x, y \in A$.

PROOF. On the one hand, for every $x, y \in A$, we have

$$\frac{3}{2}\rho(x,y) = L_{|\lambda|}\rho(f_{\lambda}(x), f_{\lambda}(y)) \le \delta(x,y)$$

On the other hand, since by Theorem 4.1(a) the inequality

$$L_{|\omega|}\rho(f_{\omega}(x), f_{\omega}(y)) \le L_{|\omega|}\rho(x, y) \le L\rho(x, y)$$

is valid for every $\omega \in \Lambda^*(I)$, $x, y \in A$, we get that

$$\delta(x,y) = \sup_{\omega \in \Lambda^*(I)} L_{|\omega|} \rho(f_{\omega}(x), f_{\omega}(y)) \le L\rho(x,y),$$

for every $x, y \in A$.

Hence $\delta: A \times A \to [0, \infty)$ and it is a metric which is equivalent to ρ , so to d, as the reader can routinely verify.

PROPOSITION 5.2. In the above framework, the inequality

$$\delta(f_i(x), f_i(y)) \le \delta(x, y),$$

is valid for every $x, y \in A$ and every $i \in I$.

PROOF. We have

$$L_{|\omega|}\rho(f_{\omega}(f_{i}(x)), f_{\omega}(f_{i}(y))) = L_{|\omega|}\rho(f_{\omega i}(x), f_{\omega i}(y))$$

$$\leq L_{|\omega i|}\rho(f_{\omega i}(x), f_{\omega i}(y)) \leq \sup_{\omega \in \Lambda^{*}(I)} L_{|\omega|}\rho(f_{\omega}(x), f_{\omega}(y)) = \delta(x, y)$$

for every $x, y \in A$, $i \in I$ and $\omega \in \Lambda^*(I)$, so

$$\delta(f_i(x), f_i(y)) = \sup_{\omega \in \Lambda^*(I)} L_{|\omega|} \rho(f_\omega(f_i(x)), f_\omega(f_i(y))) \le \delta(x, y),$$

for every $x, y \in A$ and every $i \in I$.

340

PROPOSITION 5.3. In the above framework, the inequality

$$\delta(f_i(x), f_i(y)) \le \max\left\{\sup_{\omega \in \Lambda^*(I), \, |\omega| < m_k} L_{|\omega|}\rho(f_{\omega i}(x), f_{\omega i}(y)), Lx_k\right\}$$

is valid for every $x, y \in A$, $i \in I$ and $k \in \mathbb{N}^*$.

PROOF. We have

$$\delta(f_i(x), f_i(y)) = \sup_{\omega \in \Lambda^*(I)} L_{|\omega|} \rho(f_\omega(f_i(x)), f_\omega(f_i(y)))$$

$$= \max \left\{ \sup_{\omega \in \Lambda^*(I), |\omega| < m_k} L_{|\omega|} \rho(f_{\omega i}(x), f_{\omega i}(y)), \sup_{\omega \in \Lambda^*(I), |\omega| \ge m_k} L_{|\omega|} \rho(f_{\omega i}(x), f_{\omega i}(y)) \right\}$$

$$\overset{\text{Remark 4.3}}{\leq} \max \left\{ \sup_{\omega \in \Lambda^*(I), |\omega| < m_k} L_{|\omega|} \rho(f_{\omega i}(x), f_{\omega i}(y)), Lx_k \right\},$$
for every $x, y \in A, i \in I$ and $k \in \mathbb{N}^*$.

for every $x, y \in A, i \in I$ and $k \in \mathbb{N}^*$.

PROPOSITION 5.4. In the above framework, for every $k \in \mathbb{N}$, $x, y \in A$ and $i \in I$, we have $\delta(f_i(x), f_i(y)) \leq y_k \delta(x, y)$, provided that $Lx_k < \delta(f_i(x), f_i(y))$.

PROOF. Let us consider $k \in \mathbb{N}$, $x, y \in A$ and $i \in I$ such that $Lx_k < I$ $\delta(f_i(x), f_i(y))$. Then, taking into account Proposition 5.3, we have

$$Lx_k < \delta(f_i(x), f_i(y)) \le \max\left\{\sup_{\omega \in \Lambda^*(I), |\omega| < m_k} L_{|\omega|}\rho(f_{\omega i}(x), f_{\omega i}(y)), Lx_k\right\},\$$

so,

$$\delta(f_i(x), f_i(y)) \le \sup_{\omega \in \Lambda^*(I), |\omega| < m_k} L_{|\omega|} \rho(f_{\omega i}(x), f_{\omega i}(y))$$

Then, for every $\varepsilon > 0$ there exists $\omega_{\varepsilon} \in \Lambda^*(I)$, $|\omega_{\varepsilon}| < m_k$ such that

$$\delta(f_i(x), f_i(y)) - \varepsilon < L_{|\omega_{\varepsilon}|}\rho(f_{\omega_{\varepsilon}i}(x), f_{\omega_{\varepsilon}i}(y))$$

and consequently, as the sequence $(L_n/L_{n+1})_{n\in\mathbb{N}^*}$ is increasing, we get

$$\delta(f_i(x), f_i(y)) - \varepsilon < L_{|\omega_\varepsilon i|} \rho(f_{\omega_\varepsilon i}(x), f_{\omega_\varepsilon i}(y)) \frac{L_{|\omega_\varepsilon|}}{L_{|\omega_\varepsilon i|}} \le \frac{L_{|\omega_\varepsilon|}}{L_{|\omega_\varepsilon i|}} \delta(x, y) \le y_k \delta(x, y),$$

for every $\varepsilon > 0$. Therefore $\delta(f_i(x), f_i(y)) \le y_k \delta(x, y)$.

THEOREM 5.5. Let $((A, d), (f_i)_{i \in I})$ be a UPISSS. Then there exist a comparison function φ and a metric δ , which is equivalent to d, such that

$$\delta(f_i(x), f_i(y)) \le \varphi(\delta(x, y)),$$

for every $x, y \in A$ and $i \in I$, i.e. the function $f_i: (A, \delta) \to (A, \delta)$ is φ -contraction for every $i \in I$.

R. MICULESCU — A. MIHAIL

PROOF. Note that, in the above framework, the strictly decreasing sequence $(x_k)_{k\in\mathbb{N}^*}$ of positive reals converges to 0 and the strictly increasing sequence $(y_k)_{k \in \mathbb{N}^*}$ of reals greater or equal to 1/2 converges to 1.

With the notation $z_k = 2Lx_k$, one can easily check that, for every $k \in \mathbb{N}^*$, $z_k \leq z_{k-1}/2$ and $z_k y_{k+1} \leq z_{k-1} y_k$. Moreover, we have

$$(*) \ \forall i \in I \quad \forall k \in \mathbb{N}^* \quad \forall x, y \in A \quad \delta(x, y) > z_k \ \Rightarrow \ \delta(f_i(x), f_i(y)) \le y_k \delta(x, y).$$

Indeed, if $\delta(f_i(x), f_i(y)) \leq z_k/2$, then we have $\delta(f_i(x), f_i(y)) \leq z_k/2 < \delta(x, y)/2$ $\leq y_k \delta(x, y)$ and if $\delta(f_i(x), f_i(y)) > z_k/2$, we just use Proposition 5.4.

Now we define the function $\varphi \colon [0,\infty) \to [0,\infty)$ in the following way:

$$\varphi(0) = 0, \quad \varphi(t) = t - z_1(1 - y_2)$$

for $t \in (z_1, \infty)$ and

$$\varphi(t) = \left(\frac{t - z_k}{z_{k-1} - z_k}\right) z_{k-1} y_k + \left(\frac{z_{k-1} - t}{z_{k-1} - z_k}\right) z_k y_{k+1},$$

for every $k \in \mathbb{N}, k \geq 2$ and every $t \in (z_k, z_{k-1}]$. It is clear that φ is a comparison function.

Now we prove that $\delta(f_i(x), f_i(y)) \leq \varphi(\delta(x, y))$, for every $x, y \in A$ and $i \in I$. Since the above inequality is obvious if $\delta(x, y) = 0$, we shall treat the following two cases:

- (i) $\delta(x,y) \in (z_1,\infty);$
- (ii) $\delta(x, y) \in (z_k, z_{k-1}]$ for some $k \in \mathbb{N}, k \ge 2$.

In the first case, from (*), we infer that $\delta(f_i(x), f_i(y)) \leq y_1 \delta(x, y)$ for every $i \in I$. As $z_1 < \delta(x, y)$ and $y_1 \leq y_2$, we obtain

$$y_1\delta(x,y) \le \delta(x,y) - z_1(1-y_2) = \varphi(\delta(x,y))$$

and we conclude that $\delta(f_i(x), f_i(y)) \leq \varphi(\delta(x, y))$ for every $i \in I$.

In the second case, using again (*), we get $\delta(f_i(x), f_i(y)) \leq y_k \delta(x, y)$ for every $i \in I$. As $z_k < \delta(x, y) \le z_{k-1}$, we obtain

$$y_k \delta(x, y) \le \left(\frac{\delta(x, y) - z_k}{z_{k-1} - z_k}\right) z_{k-1} y_k + \left(\frac{z_{k-1} - \delta(x, y)}{z_{k-1} - z_k}\right) z_k y_{k+1} = \varphi(\delta(x, y)),$$

and we conclude that $\delta(f_i(x), f_i(y)) \le \varphi(\delta(x, y))$ for every $i \in I$.

and we conclude that $\delta(f_i(x), f_i(y)) \leq \varphi(\delta(x, y))$ for every $i \in I$.

DEFINITION 5.6. Given a metric space (X, d), a possibly infinite iterated function system is a pair $\mathcal{S} = ((X, d), (f_i)_{i \in I})$, where $f_i \colon X \to X$ is continuous for every $i \in I$.

DEFINITION 5.7. Given a comparison function $\varphi \colon [0,\infty) \to [0,\infty)$, a possibly infinite iterated function system $\mathcal{S} = ((X, d), (f_i)_{i \in I})$ is called φ -hyperbolic if there exists a metric δ on X, equivalent to d, such that the function $f_i: (X, \delta) \to \delta$ (X, δ) is φ -contraction for every $i \in I$.

Remetrization Results

Now, Theorem 5.5 could be restated in the following way:

THEOREM 5.8. Let $((A, d), (f_i)_{i \in I})$ be a UPISSS. Then there exists a comparison function φ such that the possibly infinite iterated function system $S = ((A, d), (f_i)_{i \in I})$ is φ -hyperbolic.

REMARK 5.9. Taking into account Proposition 3.7, which states that each possibly infinite iterated function system whose constitutive functions form a bounded family of φ -contractions generates a uniformly possibly infinite selfsimilar system, and Theorem 5.8, that says that for each uniformly possibly infinite self-similar system there exists a comparison function φ such that it becomes a φ -hyperbolic possibly infinite iterated function system, we conclude that there exists a strong connection between uniformly possibly infinite selfsimilar systems and φ -hyperbolic possibly infinite iterated function systems.

6. Kameyama's topological self-similar systems are particular cases of possibly infinite self-similar systems

PROPOSITION 6.1. In the framework of Definition 1.1, we have

$$K = \bigcup_{i=1}^{N} K_i.$$

PROOF. Indeed, for each $x \in K = \pi(\Lambda)$ there exists $\omega = \omega_1 \dots \omega_m \omega_{m+1} \dots$ in Λ such that $x = \pi(\omega) = \pi(\omega_1 \omega') = f_{\omega_1}(\pi(\omega')) \in K_{\omega_1}$, where $\omega' = \omega_2 \dots \omega_{m+1} \dots$, so $x \in \bigcup_{i=1}^{N} K_i$. Thus $K \subseteq \bigcup_{i=1}^{N} K_i \subseteq K$, so $K = \bigcup_{i=1}^{N} K_i$. As K is compact, we infer that $K = \bigcup_{i=1}^{N} K_i$.

THEOREM 6.2 (see [10, Theorem 5.1]). A topological self-similar set is metrizable.

PROPOSITION 6.3 (see [10, Lemma 1.6]). Let $(K, \{f_i\}_{i \in \{1,...,N\}})$ be a topological self-similar system and d any metric on K which is compatible with the original topology. Then

$$\lim_{n \to \infty} \left(\max_{\omega \in \Lambda_n(\{1, \dots, N\})} \operatorname{diam}(K_\omega) \right) = 0.$$

REMARK 6.4. From Proposition 6.1 and Proposition 6.3, we infer that if $(K, \{f_i\}_{i \in \{1,...,N\}})$ is a topological self-similar system and d any metric on K which is compatible with the original topology, then $S = ((K, d), (f_i)_{i \in I})$, where $I = \{1, ..., N\}$, is a PISSS. In addition, since the functions f_i are continuous and the set I is finite, S is a UPISSS. Consequently Kameyama's topological self-similar systems are particular cases of possibly infinite self-similar systems

and Theorem 5.5 is a generalization of our result from [13] stating that given a topological self-similar system $(K, (f_i)_{i \in \{1,...,N\}})$ there exist a metric δ on Kwhich is compatible with the original topology and a comparison function φ such that $f_i: (K, \delta) \to (K, \delta)$ is φ -contraction for every $i \in \{1, ..., N\}$.

Now let us consider a PISSS $\mathcal{S} = ((A, d), (f_i)_{i \in I})$ for which the set I is finite.

PROPOSITION 6.5. In the above framework, (A, d) is a compact Hausdorff topological space.

PROOF. From the definition of a PISSS we have $A = \overline{\bigcup_{i \in I} A_i}$, so

$$A_j = f_j \left(\bigcup_{i \in I} \overline{A_i} \right) = \bigcup_{i \in I} f_j(\overline{A_i}) \stackrel{f_j \text{ continuous}}{\subseteq} \bigcup_{i \in I} \overline{f_j(A_i)} = \bigcup_{i,j \in I} \overline{A_{ji}}$$

for every $j \in I$. Hence $A = \overline{\bigcup_{j \in I} A_j} \subseteq \bigcup_{i,j \in I} \overline{A_{ji}} \subseteq A$, so $A = \bigcup_{\omega \in \Lambda_2(I)} \overline{A_{\omega}}$. In a similar way we can prove that

(*)
$$A = \bigcup_{\omega \in \Lambda_n(I)} \overline{A_\omega} \text{ for every } n \in \mathbb{N}.$$

As $\lim_{n \to \infty} \sup_{\omega \in \Lambda_n(I)} \operatorname{diam}(\overline{A_\omega}) = \lim_{n \to \infty} \sup_{\omega \in \Lambda_n(I)} \operatorname{diam}(A_\omega) = 0$ and $\Lambda_n(I)$ is finite, from (*) we infer that A is totally bounded. Since it is also complete, we conclude that it is compact. \Box

Theorem 5.5 assures us that there exist a comparison function φ and a metric δ , which is equivalent to d, such that all the functions $f_i: (A, \delta) \to (A, \delta)$ are φ -contractions. Since $A = \bigcup_{i \in I} f_i(A)$, we come to the conclusion that the attractor of the iterated function system $((A, \delta), (f_i)_{i \in I})$ is A. Note that, taking into account Proposition 3.8, we can consider the function $\pi: \Lambda(I) \to A$ given by

$$\pi(\omega) = a_{\omega}$$
 for every $\omega \in \Lambda(I)$.

Then, from the standard properties of such iterated function systems (see, for example, [6], where the more general case of iterated function systems consisting of Meir–Keeler functions is treated) we obtain the following result:

PROPOSITION 6.6. In the above framework, the function π has the following properties:

- (a) *it is onto*;
- (b) $\pi \circ \tau_i = f_i \circ \pi$ for every $i \in I$;
- (c) *it is continuous*.

REMARK 6.7. From Propositions 6.5 and 6.6, we conclude that a PISSS $S = ((A, d), (f_i)_{i \in I})$ for which the set I is finite is a topological self-similar system, hence the concepts of PISSS and topological self-similar system coincide for finite sets I.

Acknowledgements. We want to thank the referees whose generous and valuable remarks and comments brought improvements to the paper and enhanced clarity.

References

- R. ATKINS, M. BARNSLEY, A. VINCE AND D. WILSON, A characterization of hyperbolic affine iterated function systems, Topology Proc. 36 (2010), 189–211.
- [2] T. BANAKH, W. KUBIŚ, N. NOVOSAD, M. NOWAK AND F. STROBIN, Contractive function systems, their attractors and metrization, Topol. Methods Nonlinear Anal. 46 (2015), 1029–1066.
- [3] M. BARNSLEY AND K. IGUDESMAN, Topological contractive systems, Lobackevskii J. Math. 32 (2011), 220–223.
- [4] M. F. BARNSLEY AND A. VINCE, Real projective iterated function systems, J. Geom. Anal. 22 (2012), 1137–1172.
- [5] D. DUMITRU, Attractors of infinite iterated function systems containing contraction type functions, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Mat. N.S. 59 (2013), 281–298.
- [6] D. DUMITRU AND A. MIHAIL, The shift space of an iterated function system containing Meir-Keeler functions, An. Univ. Bucureşti Mat. 57 (2008), 75–88.
- [7] K. HVEBERG, Injective mapping systems and self-homeomorphic fractals, Ph.D. Thesis, University of Oslo, 2005.
- [8] L. JANOŠ, A converse of the Banach's contraction theorem, Proc. Amer. Math. Soc. 18 (1967), 287–289.
- [9] L. JANOŠ, H.-M. KO AND K.-K. TAN, Edelstein's contractivity and attractors, Proc. Amer. Math. Soc. 76 (1979), 339–344.
- [10] A. KAMEYAMA, Distances on topological self-similar sets and the kneading determinants, J. Math. Kyoto Univ. 40 (2000), 603–674.
- [11] J. MATKOWSKI, Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc. **62** (1977), 344–348.
- [12] R. MICULESCU AND A. MIHAIL, Alternative characterization of hyperbolic affine infinite iterated function systems, J. Math. Anal. Appl. 407 (2013), 56–68.
- [13] _____, On a question of A. Kameyama concerning self-similar metrics, J. Math. Anal. Appl. 422 (2015), 265–271.
- [14] A. VINCE, Möbius iterated function systems, Trans. Amer. Math. Soc. 365 (2013), 491– 509.
- [15] K. WICKS, Fractals and hyperspaces, Lecture Notes in Math. 1492, Springer-Verlag, 1991.

Manuscript received September 7, 2014 accepted March 24, 2015

RADU MICULESCU AND ALEXANDRU MIHAIL Faculty of Mathematics and Computer Science University of Bucharest Str. Academiei 14 010014 Bucharest, ROMANIA *E-mail address*: miculesc@yahoo.com, mihail_alex@yahoo.com

TMNA : Volume 47 - 2016 - $\rm N^{o}$ 1